Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 613(7942): 145-152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517600

RESUMEN

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Asunto(s)
Capsicum , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Leucina , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Reconocimiento de Inmunidad Innata , Capsicum/inmunología , Capsicum/metabolismo , Capsicum/virología , Virulencia
2.
Nature ; 610(7931): 335-342, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131021

RESUMEN

Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response1-6. Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity1-3. Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity.


Asunto(s)
Glicósido Hidrolasas , Phytophthora , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Secuencias de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Glicósido Hidrolasas/metabolismo , Leucina/metabolismo , Ligandos , Phytophthora/enzimología , Phytophthora/inmunología , Phytophthora/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Multimerización de Proteína , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Nicotiana/química , Nicotiana/metabolismo
3.
Science ; 377(6607): eabm4096, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35951700

RESUMEN

Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.


Asunto(s)
Archaea , Proteínas Arqueales , Bacterias , Proteínas Bacterianas , Inmunidad Innata , Proteínas NLR , Receptores de Reconocimiento de Patrones , Proteínas Virales , Animales , Archaea/inmunología , Archaea/virología , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Bacteriófagos , Microscopía por Crioelectrón , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/clasificación , Receptores de Reconocimiento de Patrones/genética , Proteínas Virales/química , Proteínas Virales/genética
4.
Mar Drugs ; 19(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34940667

RESUMEN

C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman's degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein.


Asunto(s)
Glicoproteínas de Membrana/genética , Moluscos , Proteínas/genética , Receptores de Complemento/genética , Receptores de Reconocimiento de Patrones/genética , Animales , Organismos Acuáticos , Humanos , Glicoproteínas de Membrana/química , Océano Pacífico , Proteínas/química , Receptores de Complemento/química , Receptores de Reconocimiento de Patrones/química
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201509

RESUMEN

The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Inmunidad Innata/fisiología , Infecciones/metabolismo , Receptores de Reconocimiento de Patrones/fisiología , Animales , Citoesqueleto/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Homeostasis , Humanos , Inflamasomas/fisiología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Biosíntesis de Proteínas , Receptores de Reconocimiento de Patrones/química
6.
Nature ; 597(7874): 109-113, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261127

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that produces the second messenger cG[2'-5']pA[3'-5']p (2'3'-cGAMP) and controls activation of innate immunity in mammalian cells1-5. Animal genomes typically encode multiple proteins with predicted homology to cGAS6-10, but the function of these uncharacterized enzymes is unknown. Here we show that cGAS-like receptors (cGLRs) are innate immune sensors that are capable of recognizing divergent molecular patterns and catalysing synthesis of distinct nucleotide second messenger signals. Crystal structures of human and insect cGLRs reveal a nucleotidyltransferase signalling core shared with cGAS and a diversified primary ligand-binding surface modified with notable insertions and deletions. We demonstrate that surface remodelling of cGLRs enables altered ligand specificity and used a forward biochemical screen to identify cGLR1 as a double-stranded RNA sensor in the model organism Drosophila melanogaster. We show that RNA recognition activates Drosophila cGLR1 to synthesize the novel product cG[3'-5']pA[2'-5']p (3'2'-cGAMP). A crystal structure of Drosophila stimulator of interferon genes (dSTING) in complex with 3'2'-cGAMP explains selective isomer recognition, and 3'2'-cGAMP induces an enhanced antiviral state in vivo that protects from viral infection. Similar to radiation of Toll-like receptors in pathogen immunity, our results establish cGLRs as a diverse family of metazoan pattern recognition receptors.


Asunto(s)
Drosophila melanogaster/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , ARN Bicatenario/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Sistemas de Mensajero Secundario , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Femenino , Humanos , Inmunidad Innata , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/química , Nucleotidiltransferasas/inmunología , ARN Bicatenario/análisis , ARN Bicatenario/inmunología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Virus/inmunología
7.
Peptides ; 144: 170611, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303752

RESUMEN

Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.


Asunto(s)
Péptidos/inmunología , Inmunidad de la Planta/fisiología , Receptores de Reconocimiento de Patrones/inmunología , Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Péptidos/fisiología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
8.
Immunobiology ; 226(2): 152071, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33588306

RESUMEN

Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as ß-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.


Asunto(s)
Lectinas Tipo C/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Autofagia , Cardiopatías/inmunología , Humanos , Infecciones/inmunología , Lectinas Tipo C/química , Lectinas Tipo C/genética , Neoplasias/inmunología , Enfermedades del Sistema Nervioso/inmunología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Enfermedades Respiratorias/inmunología
9.
J Insect Sci ; 21(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33511414

RESUMEN

Insect innate immunity is initiated by the special recognition and binding of the foreign pathogens, which is accomplished by the pattern recognition receptors (PRRs). As an important type of PRRs, C-type lectins (CTLs) play various roles in insect innate immunity, including pathogen recognition, stimulation of prophenoloxidase, regulation of cellular immunity and so on. In this study, we have cloned the full-length cDNA of a CTL gene named CTL-S6 from the silkworm, Bombyx mori. The open reading frame (ORF) of B. mori CTL-S6 encodes 378 amino acids, which contain a secretion signal peptide. The mRNA of CTL-S6 exhibited the highest transcriptional level in the midgut. Its transcriptional level increased dramatically in fat body and hemocytes upon Escherichia coli or Micrococcus luteus challenge. Purified recombinant CTL-S6 could bind to bacterial cell wall components, including peptidoglycan (PGN, from Bacillus subtilis) and lipopolysaccharide (LPS, from E. coli 0111:B4), and recombinant CTL-S6 was involved in the encapsulation and melanization of hemocytes. Furthermore, the addition of recombinant CTL-S6 to the hemolymph of silkworm resulted in a significant increase in phenoloxidase activity. Overall, our results indicated that B. mori CTL-S6 may serve as a PRR for the recognition of foreign pathogens, prophenoloxidase pathway stimulation and involvement in the innate immunity.


Asunto(s)
Escherichia coli/fisiología , Inmunidad Innata/genética , Proteínas de Insectos/genética , Lectinas Tipo C/genética , Micrococcus luteus/fisiología , Receptores de Reconocimiento de Patrones/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Bombyx , Cuerpo Adiposo/inmunología , Perfilación de la Expresión Génica , Hemocitos/inmunología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Filogenia , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/metabolismo , Alineación de Secuencia
10.
Front Immunol ; 12: 760770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003072

RESUMEN

Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.


Asunto(s)
Infecciones Bacterianas/inmunología , Infecciones por Protozoos/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Receptores Depuradores de Clase B/inmunología , Animales , Bacterias , Línea Celular , Células Epiteliales/inmunología , Humanos , Leishmania , Leucocitos/inmunología , Neospora , Fagocitosis , Plasmodium berghei , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Proteínas Recombinantes/inmunología , Receptores Depuradores de Clase B/química , Receptores Depuradores de Clase B/genética , Trypanosoma brucei brucei
11.
Int J Biol Macromol ; 162: 931-934, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32599233

RESUMEN

Pattern recognition receptors (PRRs) play crucial roles in the innate immune system, and are able to identify pathogen-associated molecular patterns and damage-associated molecular patterns. Accurate identification of PRRs is essential for understanding their functions. In the present work, a random forest based method was proposed to identify PRRs, in which the sequences were formulated by using the optimal features. In the 10-fold cross validation test, an accuracy of 80.95% was obtained in identifying PRRs. We wish that the proposed method will become a useful tool, or at least play a complementary role to the existing predictors for identifying PRRs.


Asunto(s)
Receptores de Reconocimiento de Patrones/química , Análisis de Secuencia de Proteína , Secuencia de Aminoácidos , Animales , Humanos , Inmunidad Innata , Receptores de Reconocimiento de Patrones/inmunología
12.
Fish Shellfish Immunol ; 103: 285-292, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32439506

RESUMEN

C-type lectins (CTLs) play important roles in innate immune system of crustaceans as pattern recognition receptors (PRRs). In this study, a novel CTL gene was obtained from the red swamp crayfish, Procambarus clarkii, designated as PcLec. PcLec encodes a peptide with 175 amino acids, with a signal peptide and a single carbohydrate recognition domain (CRD). The PcLec transcripts were specifically expressed in crayfish stomach and were induced by bacterial challenge. In vitro assays with recombinant PcLec protein revealed that it had bacterial binding activity, polysaccharide binding activity, bacterial agglutination activity, and antimicrobial activity. Most importantly, PcLec knockdown significantly impaired the survivability of crayfish upon oral infection with its pathogen A. hydrophila. According to these results, we infer that the PcLec plays a crucial role in antibacterial defense of crayfish.


Asunto(s)
Astacoidea/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Receptores de Reconocimiento de Patrones/genética , Secuencia de Aminoácidos , Animales , Antibacterianos/metabolismo , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Astacoidea/genética , Secuencia de Bases , Lectinas Tipo C/química , Lectinas Tipo C/inmunología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Estómago
13.
Genomics ; 112(3): 2666-2676, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32135296

RESUMEN

In plant-pathogen interactions, plant immunity through pathogen-associated molecular pattern receptors (PAMPs) and R proteins, also called pattern recognition receptors (PRRs), occurs in different ways depending on both plant and pathogen species. The use and search for a structural pattern based on the presence and absence of characteristic domains, regardless of their disposition within a sequence, could be efficient in identifying PRRs proteins. Here, we develop a method mainly based on text mining and set theory to identify PRR and R genes that classify them into 13 categories based on the presence and absence of the main domains. Analyzing 24 plant and algae genomes, we showed that the RRGPredictor was more efficient, specific and sensitive than other tools already available, and identified PRR proteins with variations in size and in domain distribution throughout the sequence. Besides an easy identification of new plant PRRs proteins, RRGPredictor provided a low computational cost.


Asunto(s)
Proteínas de Plantas/genética , Receptores de Reconocimiento de Patrones/genética , Programas Informáticos , Proteínas Algáceas/genética , Minería de Datos , Genoma de Planta , Genómica/métodos , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Dominios Proteicos , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/clasificación
15.
Front Immunol ; 11: 603270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643289

RESUMEN

DM9 refers to an uncharacterized protein domain that is originally discovered in Drosophila melanogaster. Two proteins with DM9 repeats have been recently identified from Pacific oyster Crassostrea gigas as mannose-specific binding pattern-recognition receptors (PRRs). In the present study, a novel member of DM9 domain containing protein (designated as CgDM9CP-4) was identified from C. gigas. CgDM9CP-4, about 16 kDa with only two tandem DM9 domains, was highly enriched in hemocytes and gill. The transcripts level of CgDM9CP-4 in circulating hemocytes were decreased after LPS, PGN and Vibrio splendidus stimulations. The recombinant protein of CgDM9CP-4 (rCgDM9CP-4) displayed a broad binding spectrum towards various pathogen-associated molecular patterns (PAMPs) (LPS, PGN, ß-glucan and Mannose) and microorganisms (Staphylococcus aureus, Micrococcus luteus, V. splendidus, V. anguillarum, Escherichia coli, Pichia pastoris and Yarrowia lipolytica). CgDM9CP-4 was mostly expressed in gill and some of the hemocytes. Flow cytometry analysis demonstrated that the CgDM9CP-4-positive hemocytes accounted for 7.3% of the total hemocytes, and they were small in size and less in granularity. CgDM9CP-4 was highly expressed in non-phagocytes (~82% of total hemocytes). The reactive oxygen species (ROS) and the expression levels of cytokines in CgDM9CP-4-positive hemocytes were much lower than that in CgDM9CP-4-negative hemocytes. The mRNA expression level of CgDM9CP-4 in hemocytes was decreased after RNAi of hematopoietic-related factors (CgGATA, CgRunt, CgSCL, and CgNotch). In addition, CgDM9CP-4-positive cells were found to be much more abundant in hemocytes from gill than that from hemolymph, with most of them located in the gill filament. All these results suggested that CgDM9CP-4 was a novel member of PRR that expressed in undifferentiated pro-hemocytes to mediate immune recognition of pathogens.


Asunto(s)
Crassostrea/metabolismo , Branquias/metabolismo , Hemocitos/metabolismo , Inmunidad Innata , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Crassostrea/efectos de los fármacos , Crassostrea/inmunología , Crassostrea/microbiología , Citocinas/metabolismo , Branquias/efectos de los fármacos , Branquias/inmunología , Branquias/microbiología , Hemocitos/efectos de los fármacos , Hemocitos/inmunología , Hemocitos/microbiología , Interacciones Huésped-Patógeno , Lipopolisacáridos/farmacología , Unión Proteica , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal , Vibrio/inmunología , Vibrio/patogenicidad
16.
Dev Comp Immunol ; 102: 103468, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31430488

RESUMEN

Insects, which lack the adaptive immune system, have developed sophisticated innate immune system consisting of humoral and cellular immune responses to defend against invading microorganisms. Non-self recognition of microbes is the front line of the innate immune system. Repertoires of pattern recognition receptors (PRRs) recognize the conserved pathogen-associated molecular patterns (PAMPs) present in microbes, such as lipopolysaccharide (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA) and ß-1, 3-glucans, and induce innate immune responses. In this review, we summarize current knowledge of the structure, classification and roles of PRRs in innate immunity of the model organism Drosophila melanogaster, focusing mainly on the peptidoglycan recognition proteins (PGRPs), Gram-negative bacteria-binding proteins (GNBPs), scavenger receptors (SRs), thioester-containing proteins (TEPs), and lectins.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Hemocitos/inmunología , Hemocitos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Peptidoglicano/inmunología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/clasificación , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal/inmunología
17.
Dev Comp Immunol ; 102: 103493, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31499098

RESUMEN

The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.


Asunto(s)
Anélidos/inmunología , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Proteínas de Fase Aguda/química , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal/inmunología , Distribución Tisular , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
FASEB J ; 33(11): 12723-12734, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31469600

RESUMEN

Dysregulation of the complement system is involved in the pathogenesis of several diseases, and its inhibition has been shown to be a feasible therapeutic option. Therefore, there is an interest in the development of complement modulators to treat complement activation-related inflammatory pathologies. Mannose-binding lectin (MBL)/ficolin/collectin-associated protein-1 (MAP-1) is a regulatory molecule of the lectin pathway (LP), whereas complement receptor 1 (CD35) and decay-accelerating factor (CD55) are membrane-anchored regulators with effects on the central effector molecule C3. In this study, we developed 2 novel soluble chimeric inhibitors by fusing MAP-1 to the 3 first domains of CD35 (CD351-3) or the 4 domains of CD55 (CD551-4) to modulate the complement cascade at 2 different stages. The constructs showed biologic properties similar to those of the parent molecules. In functional complement activation assays, the constructs were very efficient in inhibiting LP activation at the level of C3 and in the formation of terminal complement complex. This activity was enhanced when coincubated with recombinant LP recognition molecules MBL and ficolin-3. Recombinant MAP-1 fusion proteins, combined with recombinant LP recognition molecules to target sites of inflammation, represent a novel and effective therapeutic approach involving the initiation and the central and terminal effector functions of the complement cascade.-Pérez-Alós, L., Bayarri-Olmos, R., Skjoedt, M.-O., Garred, P. Combining MAP-1:CD35 or MAP-1:CD55 fusion proteins with pattern-recognition molecules as novel targeted modulators of the complement cascade.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Antígenos CD55 , Activación de Complemento/efectos de los fármacos , Complemento C3 , Receptores de Complemento 3b , Receptores de Reconocimiento de Patrones , Proteínas Recombinantes de Fusión , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/farmacología , Antígenos CD55/química , Antígenos CD55/genética , Antígenos CD55/farmacología , Células CHO , Complemento C3/química , Complemento C3/metabolismo , Cricetulus , Humanos , Receptores de Complemento 3b/química , Receptores de Complemento 3b/genética , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
19.
Fish Shellfish Immunol ; 93: 354-360, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31306759

RESUMEN

As domain species in seep and vent ecosystem, Bathymodioline mussels has been regarded as a model organism in investigating deep sea chemosymbiosis. However, mechanisms underlying their symbiosis with chemosynthetic bacteria, especially how the host recognizes symbionts, have remained largely unsolved. In the present study, a modified pull-down assay was conducted using enriched symbiotic methane-oxidation bacteria as bait and gill proteins of Bathymodiolus platifrons as a target to isolate pattern recognition receptors involved in the immune recognition of symbionts. As a result, a total of 47 proteins including BpLRR-1 were identified from the pull-down assay. It was found that complete cDNA sequence of BpLRR-1 contained an open reading frame of 1479 bp and could encode a protein of 492 amino acid residues with no signal peptide or transmembrane region but eight LRR motif and two EFh motif. The binding patterns of BpLRR-1 against microbial associated molecular patterns were subsequently investigated by surface plasmon resonance analysis and LPS pull-down assay. Consequently, BpLRR-1 was found with high binding affinity with LPS and suggested as a key molecule in recognizing symbionts. Besides, transcripts of BpLRR-1 were found decreased significantly during symbiont depletion assay yet increased rigorously during symbionts or nonsymbiotic Vibrio alginolyticus challenge, further demonstrating its participation in the chemosynthetic symbiosis. Collectively, these results suggest that BpLRR-1 could serve as an intracellular recognition receptor for the endosymbionts, providing new hints for understanding the immune recognition in symbiosis of B. platifrons.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Mytilidae/genética , Mytilidae/inmunología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Filogenia , Receptores de Reconocimiento de Patrones/química , Alineación de Secuencia
20.
Mol Plant Microbe Interact ; 32(8): 1038-1046, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31237473

RESUMEN

Pattern-triggered immunity is an inherent feature of the plant immune system. Recognition of either microbe-derived surface structures (patterns) or of plant materials released due to the deleterious impact of microbial infection is brought about by plasma membrane pattern recognition receptors (PRRs). PRRs composed of leucine-rich repeat (LRR) ectodomains are thought to mediate sensing of proteinaceous patterns and to initiate signaling cascades culminating in the activation of generic plant defenses. In contrast to LRR receptor kinases, LRR receptor proteins (LRR-RPs) lack a cytoplasmic kinase domain for initiation of downstream signal transduction. LRR-RPs form heteromeric constitutive, ligand-independent complexes with coreceptor SOBIR1. Upon ligand binding to LRR-RPs, recruitment of coreceptor SERK3/BAK1 results in formation of a ternary PRR complex. Structure-function analysis of LRR-RP-type PRRs is missing. AtRLP23 constitutes an LRR-RP PRR that mediates recognition of a peptide motif (nlp20) found in numerous bacterial, fungal, and oomycete necrosis and ethylene-inducing peptide 1-like proteins (NLPs). We here report the use of a series of AtRLP23 variants to decipher subdomains required for ligand binding and interaction with coreceptors AtSOBIR1 and AtBAK1, respectively. Deletion of LRR1 or LRR3 subdomains efficiently abrogated the ability of AtRLP23 receptor variants to confer nlp20 pattern sensitivity, to bind nlp20, and to recruit AtBAK1 into a ternary PRR complex. This suggests that the very N-terminal part of the AtRLP23 ectodomain is crucial for receptor function. Deletion of the intracellular 17-amino-acid tail of AtRLP23 reduced but did not abolish receptor function, suggesting an auxiliary role of this domain in receptor function. We further found that interaction of AtRLP23 and other LRR-RP-type PRRs with AtSOBIR1 does not require the AtRLP23 LRR ectodomain but is brought about by a GxxxG protein dimerization motif in the transmembrane domain and a stretch of negatively charged glutamic acid residues in the outer juxtamembrane domain of the receptor. Further, AtRLP23 levels were found to be unaltered in Atsobir1-1 mutant genotypes, suggesting that AtSOBIR1 does not act as a protein scaffold in stabilizing LRR-RP-type PRRs in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Interacciones Huésped-Patógeno , Receptores de Reconocimiento de Patrones , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligandos , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA