Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Sci Rep ; 14(1): 19619, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179718

RESUMEN

Temporal discounting, in which the recipient of a reward perceives the value of that reward to decrease with delay in its receipt, is associated with impulsivity and psychiatric disorders such as depression. Here, we investigate the role of the serotonin 5-HT4 receptor (5-HT4R) in modulating temporal discounting in the macaque dorsal caudate nucleus (dCDh), the neurons of which have been shown to represent temporally discounted value. We first mapped the 5-HT4R distribution in macaque brains using positron emission tomography (PET) imaging and confirmed dense expression of 5-HT4R in the dCDh. We then examined the effects of a specific 5-HT4R antagonist infused into the dCDh. Blockade of 5-HT4R significantly increased error rates in a goal-directed delayed reward task, indicating an increase in the rate of temporal discounting. This increase was specific to the 5-HT4R blockade because saline controls showed no such effect. The results demonstrate that 5-HT4Rs in the dCDh are involved in reward-evaluation processes, particularly in the context of delay discounting, and suggest that serotonergic transmission via 5-HT4R may be a key component in the neural mechanisms underlying impulsive decisions, potentially contributing to depressive symptoms.


Asunto(s)
Núcleo Caudado , Descuento por Demora , Tomografía de Emisión de Positrones , Receptores de Serotonina 5-HT4 , Recompensa , Antagonistas del Receptor de Serotonina 5-HT4 , Animales , Núcleo Caudado/metabolismo , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/diagnóstico por imagen , Descuento por Demora/efectos de los fármacos , Masculino , Receptores de Serotonina 5-HT4/metabolismo , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Conducta Impulsiva/efectos de los fármacos , Macaca , Conducta Animal/efectos de los fármacos , Macaca mulatta
2.
Physiol Rep ; 12(13): e16128, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946059

RESUMEN

To better understand mechanisms of serotonin- (5-HT) mediated vasorelaxation, isolated lateral saphenous veins from cattle were assessed for vasoactivity using myography in response to increasing concentrations of 5-HT or selective 5-HT receptor agonists. Vessels were pre-contracted with 1 × 10-4 M phenylephrine and exposed to increasing concentrations of 5-HT or 5-HT receptor agonists that were selective for 5-HT1B, 5-HT2B, 5-HT4, and 5-HT7. Vasoactive response data were normalized as a percentage of the maximum contractile response induced by the phenylephrine pre-contraction. At 1 × 10-7 M 5-HT, a relaxation was observed with an 88.7% decrease (p < 0.01) from the phenylephrine maximum. At 1 × 10-4 M 5-HT, a contraction was observed with a 165% increase (p < 0.01) from the phenylephrine maximum. Increasing concentrations of agonists selective for 5-HT2B, 5-HT4, or 5-HT7 resulted in a 27%, 92%, or 44% (p < 0.01) decrease from the phenylephrine maximum, respectively. Of these 5-HT receptor agonists, the selective 5-HT4 receptor agonist resulted in the greatest potency (-log EC50) value (6.30) compared with 5-HT2B and 5-HT7 receptor agonists (4.21 and 4.66, respectively). To confirm the involvement of 5-HT4 in 5-HT-mediated vasorelaxation, blood vessels were exposed to either DMSO (solvent control) or a selective 5-HT4 antagonist (1 × 10-5 M) for 5-min prior to the phenylephrine pre-contraction and 5-HT additions. Antagonism of the 5-HT4 receptor attenuated the vasorelaxation caused by 5-HT. Approximately 94% of the vasorelaxation occurring in response to 5-HT could be accounted for through 5-HT4, providing strong evidence that 5-HT-mediated vasorelaxation occurs through 5-HT4 activation in bovine peripheral vasculature.


Asunto(s)
Vena Safena , Serotonina , Vasodilatación , Animales , Bovinos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vena Safena/metabolismo , Vena Safena/efectos de los fármacos , Vena Safena/fisiología , Serotonina/farmacología , Receptores de Serotonina/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Fenilefrina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Masculino
3.
Toxicol Lett ; 398: 55-64, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876450

RESUMEN

Several fungi belonging to the genus Psilocybe, also called "magic mushrooms", contain the hallucinogenic drugs psilocybin and psilocin. They are chemically related to serotonin (5-HT). In addition to being abused as drugs, they are now also being discussed or used as a treatment option for depression. Here, we hypothesized that psilocybin and psilocin may act also on cardiac serotonin receptors and studied them in vitro in atrial preparations of our transgenic mouse model with cardiac myocytes-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) as well as in human atrial preparations. Both psilocybin and psilocin enhanced the force of contraction in isolated left atrial preparations from 5-HT4-TG, increased the beating rate in isolated spontaneously beating right atrial preparations from 5-HT4-TG and augmented the force of contraction in the human atrial preparations. The inotropic and chronotropic effects of psilocybin and psilocin at 10 µM were smaller than that of 1 µM 5-HT on the left and right atria from 5-HT4-TG, respectively. Psilocybin and psilocin were inactive in WT. In the human atrial preparations, inhibition of the phosphodiesterase III by cilostamide was necessary to unmask the positive inotropic effects of psilocybin or psilocin. The effects of 10 µM psilocybin and psilocin were abrogated by 10 µM tropisetron or by 1 µM GR125487, a more selective 5-HT4 receptor antagonist. In summary, we demonstrated that psilocin and psilocybin act as agonists on cardiac 5-HT4 receptors.


Asunto(s)
Atrios Cardíacos , Ratones Transgénicos , Psilocibina , Receptores de Serotonina 5-HT4 , Psilocibina/farmacología , Psilocibina/análogos & derivados , Animales , Humanos , Receptores de Serotonina 5-HT4/metabolismo , Receptores de Serotonina 5-HT4/genética , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Alucinógenos/farmacología , Alucinógenos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratones , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Femenino
4.
J Nutr Biochem ; 131: 109676, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851516

RESUMEN

Torreya grandis (T. grandis) oil has been reported to alleviate symptoms of slow transit constipation (STC). However, the impact of sciadonic acid (SA), a distinctive fatty acid found in T. grandis oil, on the pathological progression of STC remains unclear. This study aimed to evaluate the effect of SA on STC and uncover the underlying mechanisms. The STC model was established by feeding Balb/c mice with loperamide. After 2 weeks of intervention, SA significantly improved weight loss and intestinal motility decline induced by STC, along with enhancing plasma indices and reducing colon pathological damage. SA effectively reversed the STC-induced decrease in the 5-HT4/cAMP/PKA/AQP4 signaling pathway genes and expression. Furthermore, 16S rRNA analysis demonstrated that SA mitigated the imbalance of the intestinal microbiota induced by STC, by reducing the ratio of Firmicutes to Bacteroidetes (F/B) and increasing the abundance of beneficial bacteria such as Akkermansia. In conclusion, SA intervention alleviated colonic dysfunction in STC mice. The activation of the SA-mediated 5-HT4/cAMP/PKA/AQP4 signaling pathway may serve as a potential target for STC treatment. These findings suggest that SA holds promise as a treatment option for STC and could potentially be extended to other related gut diseases for further investigation.


Asunto(s)
Acuaporina 4 , Colon , Estreñimiento , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Ratones Endogámicos BALB C , Receptores de Serotonina 5-HT4 , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Colon/metabolismo , Colon/efectos de los fármacos , Receptores de Serotonina 5-HT4/metabolismo , Receptores de Serotonina 5-HT4/genética , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos
5.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
6.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791281

RESUMEN

In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.


Asunto(s)
Receptores de Serotonina 5-HT4 , Humanos , Receptores de Serotonina 5-HT4/metabolismo , Animales , Encefalopatías/metabolismo , Encefalopatías/tratamiento farmacológico , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Encéfalo/metabolismo
7.
Clin Epigenetics ; 16(1): 71, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802956

RESUMEN

BACKGROUND: Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS: We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS: We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.


Asunto(s)
Encéfalo , Metilación de ADN , Depresión , Epigénesis Genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Transmisión Sináptica , Triptófano Hidroxilasa , Humanos , Metilación de ADN/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Masculino , Femenino , Adulto , Triptófano Hidroxilasa/genética , Serotonina/metabolismo , Serotonina/sangre , Encéfalo/metabolismo , Depresión/genética , Depresión/metabolismo , Epigénesis Genética/genética , Transmisión Sináptica/genética , Islas de CpG/genética , Persona de Mediana Edad , Adulto Joven , Receptores de Serotonina 5-HT4/genética , Receptores de Serotonina 5-HT4/metabolismo , Tomografía de Emisión de Positrones , Estudios de Cohortes
8.
J Parkinsons Dis ; 14(2): 261-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38339940

RESUMEN

Alterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism. We used a brain bank tissue from a rat and a macaque model of Parkinson's disease (PD). We then investigated its in vivo PET imaging regulation in a cohort of macaques. Dopaminergic depletion increases striatal 5-HT4R in the two models, further augmented after dyskinesia-inducing L-Dopa. Pending confirmation in PD patients, the 5-HT4R might offer a therapeutic target for dampening PD's symptoms.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de Serotonina 5-HT4/uso terapéutico , Discinesia Inducida por Medicamentos/diagnóstico por imagen , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Levodopa/uso terapéutico , Modelos Animales de Enfermedad , Oxidopamina , Antiparkinsonianos/uso terapéutico
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 221-236, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401967

RESUMEN

Lysergic acid diethylamide (LSD) is an artificial hallucinogenic drug. Thus, we hypothesized that LSD might act 5-HT4 serotonin receptors and/or H2 histamine receptors. We studied isolated electrically stimulated left atrial preparations, spontaneously beating right atrial preparations, and spontaneously beating Langendorff-perfused hearts from transgenic mice with cardiomyocyte-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) or of the H2-histamine receptor (H2-TG). For comparison, we used wild type littermate mice (WT). Finally, we measured isometric force of contraction in isolated electrically stimulated muscle strips from the human right atrium obtained from patients during bypass surgery. LSD (up to 10 µM) concentration dependently increased force of contraction and beating rate in left or right atrial preparations from 5-HT4-TG (n = 6, p < 0.05) in 5-HT4-TG atrial preparations. The inotropic and chronotropic effects of LSD were antagonized by 10 µM tropisetron in 5-HT4-TG. In contrast, LSD (10 µM) increased force of contraction and beating rate in left or right atrial preparations, from H2-TG. After pre-stimulation with cilostamide (1 µM), LSD (10 µM) increased force of contraction in human atrial preparations (n = 6, p < 0.05). The contractile effects of LSD in human atrial preparations could be antagonized by 10 µM cimetidine and 1 µM GR 125487. LSD leads to H2-histamine receptor and 5-HT4-receptor mediated cardiac effects in humans.


Asunto(s)
Dietilamida del Ácido Lisérgico , Serotonina , Humanos , Ratones , Animales , Serotonina/farmacología , Dietilamida del Ácido Lisérgico/farmacología , Histamina/farmacología , Receptores de Serotonina 5-HT4/genética , Atrios Cardíacos , Ratones Transgénicos , Receptores de Serotonina , Receptores Histamínicos , Contracción Miocárdica , Receptores Histamínicos H2/genética
10.
J Neuroimmune Pharmacol ; 18(4): 610-627, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37782386

RESUMEN

Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Receptores de Serotonina 5-HT4 , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Neuronas Dopaminérgicas/metabolismo
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1874-1883, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37766457

RESUMEN

Hyperglycemia drives dysfunction of the intestinal barrier. 5-Hydroxytryptaine 4 receptor (5-HT 4R) agonists have been considered therapeutics for constipation in clnic. However, the roles of 5-HT 4R activation in mucosa should be fully realized. Here, we investigate the effects of 5-HT 4R activation on diabetes-induced disruption of the tight junction (TJ) barrier in the colon. Not surprisingly, the TJ barrier in diabetic mice with or without 5-HT 4R is tremendously destroyed, as indicated by increased serum fluorescein isothiocyanate (FITC)-dextran and decreased transepithelial electrical resistance (TER). Simultaneously, decreased expressions of TJ proteins are shown in both wild-type (WT) and 5-HT 4R knockout (KO) mice with diabetes. Notably, chronic treatment with intraperitoneal injection of a 5-HT 4R agonist in WT mice with diabetes repairs the TJ barrier and promotes TJ protein expressions, including occludin, claudin-1 and ZO-1, in the colon, whereas a 5-HT 4R agonist does not improve TJ barrier function or TJ protein expressions in 5-HT 4R KO mice with diabetes. Furthermore, stimulation of 5-HT 4R inhibits diabetes-induced upregulation of myosin light chain kinase (MLCK), Rho-associated coiled coil protein kinase 1 (ROCK1), and phosphorylated myosin light chain (p-MLC), which are key molecules that regulate TJ integrity, in the colonic mucosa of WT mice. However, such action induced by a 5-HT 4R agonist is not observed in 5-HT 4R KO mice with diabetes. These findings indicate that 5-HT 4R activation may restore TJ integrity by inhibiting the expressions of MLCK, ROCK1 and p-MLC, improving epithelial barrier function in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Receptores de Serotonina 5-HT4 , Animales , Ratones , Colon/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Serotonina 5-HT4/genética , Receptores de Serotonina 5-HT4/metabolismo , Serotonina/farmacología , Serotonina/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas
12.
Int J Neuropsychopharmacol ; 26(9): 639-648, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37542733

RESUMEN

BACKGROUND: A prominent finding in major depressive disorder (MDD) is distorted stress hormone dynamics, which is regulated by serotonergic brain signaling. An interesting feature of the cerebral serotonin system is the serotonin 4 receptor (5-HT4R), which is lower in depressed relative to healthy individuals and also has been highlighted as a promising novel antidepressant target. Here, we test the novel hypothesis that brain 5-HT4R availability in untreated patients with MDD is correlated with cortisol dynamics, indexed by the cortisol awakening response (CAR). Further, we evaluate if CAR changes with antidepressant treatment, including a selective serotonin reuptake inhibitor, and if pretreatment CAR can predict treatment outcome. METHODS: Sixty-six patients (76% women) with a moderate to severe depressive episode underwent positron emission tomography imaging with [11C]SB207145 for quantification of brain 5-HT4R binding using BPND as outcome. Serial home sampling of saliva in the first hour from awakening was performed to assess CAR before and after 8 weeks of antidepressant treatment. Treatment outcome was measured by change in Hamilton Depression Rating Scale 6 items. RESULTS: In the unmedicated depressed state, prefrontal and anterior cingulate cortices 5-HT4R binding was positively associated with CAR. CAR remained unaltered after 8 weeks of antidepressant treatment, and pretreatment CAR did not significantly predict treatment outcome. CONCLUSIONS: Our findings highlight a link between serotonergic disturbances in MDD and cortisol dynamics, which likely is involved in disease and treatment mechanisms. Further, our data support 5-HT4R agonism as a promising precision target in patients with MDD and disturbed stress hormone dynamics.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Femenino , Masculino , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Receptores de Serotonina 5-HT4/uso terapéutico , Hidrocortisona/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo
13.
Transl Psychiatry ; 13(1): 247, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414758

RESUMEN

Sexual dysfunction is prominent in Major Depressive Disorder (MDD) and affects women with depression more than men. Patients with MDD relative to healthy controls have lower brain levels of the serotonin 4 receptor (5-HT4R), which is expressed with high density in the striatum, i.e. a key hub of the reward system. Reduced sexual desire is putatively related to disturbed reward processing and may index anhedonia in MDD. Here, we aim to illuminate plausible underlying neurobiology of sexual dysfunction in unmedicated patients with MDD. We map associations between 5-HT4R binding, as imaged with [11C]SB207145 PET, in the striatum, and self-reported sexual function. We also evaluate if pre-treatment sexual desire score predicts 8-week treatment outcome in women. From the NeuroPharm study, we include 85 untreated MDD patients (71% women) who underwent eight weeks of antidepressant drug treatment. In the mixed sex group, we find no difference in 5-HT4R binding between patients with sexual dysfunction vs normal sexual function. However, in women we find lower 5-HT4R binding in the sexual dysfunctional group compared to women with normal sexual function (ß = -0.36, 95%CI[-0.62:-0.09], p = 0.009) as well as a positive association between sexual desire and 5-HT4R binding (ß = 0.07, 95%CI [0.02:0.13], p = 0.012). Sexual desire at baseline do not predict treatment outcome (ROC curve AUC = 52%[36%:67%]) in women. Taken together, we find evidence for a positive association between sexual desire and striatal 5-HT4R availability in women with depression. Interestingly, this raises the question if direct 5-HT4R agonism can target reduced sexual desire or anhedonia in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Salud Sexual , Masculino , Humanos , Femenino , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Anhedonia , Serotonina/metabolismo , Depresión , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
14.
Transl Psychiatry ; 13(1): 165, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169780

RESUMEN

Brain serotonergic (5-HT) signaling is posited to modulate neural responses to emotional stimuli. Dysfunction in 5-HT signaling is implicated in major depressive disorder (MDD), a disorder associated with significant disturbances in emotion processing. In MDD, recent evidence points to altered 5-HT4 receptor (5-HT4R) levels, a promising target for antidepressant treatment. However, how these alterations influence neural processing of emotions in MDD remains poorly understood. This is the first study to examine the association between 5-HT4R binding and neural responses to emotions in patients with MDD and healthy controls. The study included one hundred and thirty-eight participants, comprising 88 outpatients with MDD from the NeuroPharm clinical trial (ClinicalTrials.gov identifier: NCT02869035) and 50 healthy controls. Participants underwent an [11C]SB207145 positron emission tomography (PET) scan to quantify 5-HT4R binding (BPND) and a functional magnetic resonance imaging (fMRI) scan during which they performed an emotional face matching task. We examined the association between regional 5-HT4R binding and corticolimbic responses to emotional faces using a linear latent variable model, including whether this association was moderated by depression status. We observed a positive correlation between 5-HT4R BPND and the corticolimbic response to emotional faces across participants (r = 0.20, p = 0.03). This association did not differ between groups (parameter estimate difference = 0.002, 95% CI = -0.008: 0.013, p = 0.72). Thus, in the largest PET/fMRI study of associations between serotonergic signaling and brain function, we found a positive association between 5-HT4R binding and neural responses to emotions that appear unaltered in MDD. Future clinical trials with novel pharmacological agents targeting 5-HT4R are needed to confirm whether they ameliorate emotion processing biases in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Receptores de Serotonina 5-HT4/metabolismo , Serotonina , Emociones/fisiología , Encéfalo/metabolismo , Imagen por Resonancia Magnética
15.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902177

RESUMEN

Ergotamine (2'-methyl-5'α-benzyl-12'-hydroxy-3',6',18-trioxoergotaman) is a tryptamine-related alkaloid from the fungus Claviceps purpurea. Ergotamine is used to treat migraine. Ergotamine can bind to and activate several types of 5-HT1-serotonin receptors. Based on the structural formula of ergotamine, we hypothesized that ergotamine might stimulate 5-HT4-serotonin receptors or H2-histamine receptors in the human heart. We observed that ergotamine exerted concentration- and time-dependent positive inotropic effects in isolated left atrial preparations in H2-TG (mouse which exhibits cardiac-specific overexpression of the human H2-histamine receptor). Similarly, ergotamine increased force of contraction in left atrial preparations from 5-HT4-TG (mouse which exhibits cardiac-specific overexpression of the human 5-HT4-serotonin receptor). An amount of 10 µM ergotamine increased the left ventricular force of contraction in isolated retrogradely perfused spontaneously beating heart preparations of both 5-HT4-TG and H2-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergotamine 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, that were attenuated by 10 µM of the H2-histamine receptor antagonist cimetidine, but not by 10 µM of the 5-HT4-serotonin receptor antagonist tropisetron. These data suggest that ergotamine is in principle an agonist at human 5-HT4-serotonin receptors as well at human H2-histamine receptors. Ergotamine acts as an agonist on H2-histamine receptors in the human atrium.


Asunto(s)
Ergotamina , Atrios Cardíacos , Receptores Histamínicos H4 , Receptores de Serotonina 5-HT4 , Agonistas del Receptor de Serotonina 5-HT4 , Animales , Humanos , Ratones , Ergotamina/farmacología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Contracción Miocárdica/efectos de los fármacos , Receptores Histamínicos/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Receptores Histamínicos H4/agonistas
16.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902195

RESUMEN

Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.


Asunto(s)
Cardiopatías , Receptores de Serotonina 5-HT4 , Serotonina , Animales , Humanos , Corazón , Contracción Miocárdica/fisiología , Receptores de Serotonina 5-HT4/metabolismo , Serotonina/metabolismo , Cardiopatías/metabolismo
17.
JAMA Psychiatry ; 80(4): 296-304, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753296

RESUMEN

Importance: The cerebral serotonin 4 (5-HT4) receptor is a promising novel target for treatment of major depressive disorder (MDD), and pharmacological stimulation of the 5-HT4 receptor has been associated with improved learning and memory in healthy individuals. Objective: To map the neurobiological signatures of patients with untreated MDD compared with healthy controls and to examine the association between cerebral 5-HT4 receptor binding and cognitive functions in the depressed state. Design, Setting, and Participants: This case-control study used baseline data from the NeuroPharm clinical depression trial in Denmark. Adult participants included antidepressant-free outpatients with a current moderate to severe depressive episode and healthy controls. All participants completed positron emission tomography (PET) scanning with [11C]SB207145 for quantification of brain 5-HT4 receptor binding, but only the patients underwent cognitive testing. Data analyses were performed from January 21, 2020, to April 22, 2022. Main Outcomes and Measures: The main study outcome was the group difference in cerebral 5-HT4 receptor binding between patients with MDD and healthy controls. In addition, the association between 5-HT4 receptor binding and verbal memory performance in the patient group was tested. Other cognitive domains (working memory, reaction time, emotion recognition bias, and negative social emotions) were assessed as secondary outcomes. Results: A total of 90 patients with untreated MDD (mean [SD] age, 27.1 [8.2] years; 64 women [71.1%]) and 91 healthy controls (mean [SD] age, 27.1 [8.0] years; 55 women [60.4%]) were included in the analysis. Patients with current MDD had significantly lower cerebral 5-HT4 receptor binding than healthy controls (-7.0%; 95% CI, -11.2 to -2.7; P = .002). In patients with MDD, there was a correlation between cerebral 5-HT4 receptor binding and verbal memory (r = 0.29; P = .02). Conclusions and Relevance: Results of this study show that cerebral 5-HT4 receptor binding was lower in patients with MDD than in healthy controls and that the memory dysfunction in patients with MDD was associated with lower cerebral 5-HT4 receptor binding. The cerebral 5-HT4 receptor is a promising treatment target for memory dysfunction in patients with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Femenino , Trastorno Depresivo Mayor/tratamiento farmacológico , Receptores de Serotonina 5-HT4/metabolismo , Receptores de Serotonina 5-HT4/uso terapéutico , Estudios de Casos y Controles , Encéfalo , Cognición
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1471-1485, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754881

RESUMEN

It is unclear whether bufotenin (= N,N-dimethyl-serotonin = 5-hydroxy-N,N-dimethyl-tryptamine), a hallucinogenic drug, can act on human cardiac serotonin 5-HT4 receptors. Therefore, the aim of the study was to examine the cardiac effects of bufotenin and for comparison tryptamine in transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes (5-HT4-TG), in their wild-type littermates (WT) and in isolated electrically driven (1 Hz) human atrial preparations. In 5-HT4-TG, we found that both bufotenin and tryptamine enhanced the force of contraction in left atrial preparations (pD2 = 6.77 or 5.5, respectively) and the beating rate in spontaneously beating right atrial preparations (pD2 = 7.04 or 5.86, respectively). Bufotenin (1 µM) increased left ventricular force of contraction and beating rate in Langendorff perfused hearts from 5-HT4-TG, whereas it was inactive in hearts from WT animals, as was tryptamine. The positive inotropic and chronotropic effects of bufotenin and tryptamine were potentiated by an inhibitor of monoamine oxidases (50 µM pargyline). Furthermore, bufotenin concentration- (0.1-10 µM) and time-dependently elevated force of contraction in isolated electrically stimulated musculi pectinati from the human atrium and these effects were likewise reversed by tropisetron (10 µM). We found that bufotenin (10 µM) increased the phosphorylation state of phospholamban in the isolated perfused hearts, left and right atrial muscle strips of 5-HT4-TG but not from WT and in isolated human right atrial preparations. In summary, we showed that bufotenin can increase the force of contraction via stimulation of human 5-HT4 receptors transgenic mouse cardiac preparations but notably also in human atrial preparations.


Asunto(s)
Fibrilación Atrial , Serotonina , Ratones , Animales , Humanos , Serotonina/farmacología , Ratones Transgénicos , Bufotenina/farmacología , Contracción Miocárdica , Receptores de Serotonina 5-HT4/genética , Atrios Cardíacos , Receptores de Serotonina
19.
Virol Sin ; 38(1): 9-22, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36007838

RESUMEN

The human endogenous retroviruses type W family envelope (HERV-W env) gene is located on chromosome 7q21-22. Our previous studies show that HERV-W env is elevated in schizophrenia and HERV-W env can increase calcium influx. Additionally, the 5-HTergic system and particularly 5-hydroxytryptamine (5-HT) receptors play a prominent role in the pathogenesis and treatment of schizophrenia. 5-hydroxytryptamine receptor 4 (5-HT4R) agonist can block calcium channels. However, the underlying relationship between HERV-W env and 5-HT4R in the etiology of schizophrenia has not been revealed. Here, we used enzyme-linked immunosorbent assay to detect the concentration of HERV-W env and 5-HT4R in the plasma of patients with schizophrenia and we found that there were decreased levels of 5-HT4R and a negative correlation between 5-HT4R and HERV-W env in schizophrenia. Overexpression of HERV-W env decreased the transcription and protein levels of 5-HT4R but increased small conductance Ca2+-activated K+ type 2 channels (SK2) expression levels. Further studies revealed that HERV-W env could interact with 5-HT4R. Additionally, luciferase assay showed that an essential region (-364 to -176 from the transcription start site) in the SK2 promoter was required for HERV-W env-induced SK2 expression. Importantly, 5-HT4R participated in the regulation of SK2 expression and promoter activity. Electrophysiological recordings suggested that HERV-W env could increase SK2 channel currents and the increase of SK2 currents was inhibited by 5-HT4R. In conclusion, HERV-W env could activate SK2 channels via decreased 5-HT4R, which might exhibit a novel mechanism for HERV-W env to influence neuronal activity in schizophrenia.


Asunto(s)
Retrovirus Endógenos , Esquizofrenia , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Receptores de Serotonina 5-HT4/genética , Esquizofrenia/genética , Ensayo de Inmunoadsorción Enzimática , Productos del Gen env/genética , Productos del Gen env/metabolismo
20.
Adv Exp Med Biol ; 1383: 329-334, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587170

RESUMEN

Because of their importance in the regulation of gut functions, several therapeutic targets involving serotonin-related proteins have been developed or repurposed to treat motility disorders, including serotonin transporter inhibitors, tryptophan hydroxylase blockers, 5-HT3 antagonists, and 5-HT4 agonists. This chapter focuses on our discovery of 5-HT4 receptors in the epithelial cells of the colon and our efforts to evaluate the effects of stimulating these receptors. 5-HT4 receptors appear to be expressed by all epithelial cells in the mouse colon, based on expression of a reporter gene driven by the 5-HT4 receptor promoter. Application of 5-HT4 agonists to the mucosal surface causes serotonin release from enterochromaffin cells, mucus secretion from goblet cells, and chloride secretion from enterocytes. Luminal administration of 5-HT4 agonists speeds up colonic motility and suppresses distention-induced nociceptive responses. Luminal administration of 5-HT4 agonists also decreases the development of, and improves recovery from, experimental colitis. Recent studies determined that the prokinetic actions of minimally absorbable 5-HT4 agonists are just as effective as absorbable compounds. Collectively, these findings indicate that targeting epithelial receptors with non-absorbable 5-HT4 agonists could offer a safe and effective strategy for treating constipation and colitis.


Asunto(s)
Colitis , Serotonina , Ratones , Animales , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Agonistas del Receptor de Serotonina 5-HT4/uso terapéutico , Agonistas del Receptor de Serotonina 5-HT4/metabolismo , Estreñimiento/tratamiento farmacológico , Receptores de Serotonina 5-HT4/metabolismo , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/metabolismo , Motilidad Gastrointestinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...