Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioessays ; 46(3): e2300151, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38227376

RESUMEN

SUR2, similar to SUR1, is a regulatory subunit of the ATP-sensitive potassium channel (KATP), which plays a key role in numerous important physiological processes and is implicated in various diseases. Recent structural studies have revealed that, like SUR1, SUR2 can undergo ligand-dependent dynamic conformational changes, transitioning between an inhibitory inward-facing conformation and an activating occluded conformation. In addition, SUR2 possesses a unique inhibitory Regulatory helix (R helix) that is absent in SUR1. The binding of the activating Mg-ADP to NBD2 of SUR2 competes with the inhibitory Mg-ATP, thereby promoting the release of the R helix and initiating the activation process. Moreover, the signal generated by Mg-ADP binding to NBD2 might be directly transmitted to the TMD of SUR2, prior to NBD dimerization. Furthermore, the C-terminal 42 residues (C42) of SUR2 might allosterically regulate the kinetics of Mg-nucleotide binding on NBD2. These distinctive properties render SUR2 intricate sensors for intracellular Mg-nucleotides.


Asunto(s)
Nucleótidos , Canales de Potasio de Rectificación Interna , Nucleótidos/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo
2.
Curr Opin Struct Biol ; 79: 102541, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807078

RESUMEN

KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.


Asunto(s)
Adenosina Trifosfato , Humanos , Ligandos , Receptores de Sulfonilureas/química
3.
J Gen Physiol ; 155(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287534

RESUMEN

ATP-sensitive potassium (KATP) channels composed of Kir6.x and sulfonylurea receptor (SURs) subunits couple cellular metabolism to electrical activity. Cantú syndrome (CS) is a rare disease caused by mutations in the genes encoding Kir6.1 (KCNJ8) and SUR2A (ABCC9) that produce KATP channel hyperactivity due to a reduced channel block by physiological ATP concentrations. We functionally characterized the p.S1054Y SUR2A mutation identified in two CS carriers, who exhibited a mild phenotype although the mutation was predicted as highly pathogenic. We recorded macroscopic and single-channel currents in CHO and HEK-293 cells and measured the membrane expression of the channel subunits by biotinylation assays in HEK-293 cells. The mutation increased basal whole-cell current density and at the single-channel level, it augmented opening frequency, slope conductance, and open probability (Po), and promoted the appearance of multiple conductance levels. p.S1054Y also reduced Kir6.2 and SUR2A expression specifically at the membrane. Overexpression of ankyrin B (AnkB) prevented these gain- and loss-of-function effects, as well as the p.S1054Y-induced reduction of ATP inhibition of currents measured in inside-out macropatches. Yeast two-hybrid assays suggested that SUR2A WT and AnkB interact, while p.S1054Y interaction with AnkB is decreased. The p.E322K Kir6.2 mutation, which prevents AnkB binding to Kir6.2, produced similar biophysical alterations than p.S1054Y. Our results are the first demonstration of a CS mutation whose functional consequences involve the disruption of AnkB effects on KATP channels providing a novel mechanism by which CS mutations can reduce ATP block. Furthermore, they may help explain the mild phenotype associated with this mutation.


Asunto(s)
Canales KATP , Canales de Potasio de Rectificación Interna , Humanos , Canales KATP/metabolismo , Receptores de Sulfonilureas/química , Ancirinas/metabolismo , Células HEK293 , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Mutación , Adenosina Trifosfato/metabolismo , Potasio/metabolismo
4.
Dev Cell ; 57(11): 1383-1399.e7, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35588738

RESUMEN

Loss- or gain-of-function mutations in ATP-sensitive potassium channel (K-ATP)-encoding genes, KCNJ8 and ABCC9, cause human central nervous system disorders with unknown pathogenesis. Here, using mice, zebrafish, and cell culture models, we investigated cellular and molecular causes of brain dysfunctions derived from altered K-ATP channel function. We show that genetic/chemical inhibition or activation of KCNJ8/ABCC9-containing K-ATP channel function leads to brain-selective suppression or promotion of arterial/arteriolar vascular smooth muscle cell (VSMC) differentiation, respectively. We further show that brain VSMCs develop from KCNJ8/ABCC9-containing K-ATP channel-expressing mural cell progenitor and that K-ATP channel cell autonomously regulates VSMC differentiation through modulation of intracellular Ca2+ oscillation via voltage-dependent calcium channels. Consistent with defective VSMC development, Kcnj8 knockout mice showed deficiency in vasoconstrictive capacity and neuronal-evoked vasodilation leading to local hyperemia. Our results demonstrate a role for KCNJ8/ABCC9-containing K-ATP channels in the differentiation of brain VSMC, which in turn is necessary for fine-tuning of cerebral blood flow.


Asunto(s)
Canales KATP/metabolismo , Músculo Liso Vascular , Acoplamiento Neurovascular , Receptores de Sulfonilureas/metabolismo , Adenosina Trifosfato , Animales , Encéfalo/metabolismo , Canales KATP/genética , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética , Pez Cebra/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815345

RESUMEN

KATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of KATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter-like sulfonylurea receptor (SUR). Although structures of KATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic KATP (hKATP) structures with an open pore at 3.1- to 4.0-Å resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hKATP exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.


Asunto(s)
Adenosina Trifosfato/química , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio/química , Receptores de Sulfonilureas/genética , Adenosina Difosfato/química , Sitio Alostérico , Animales , Sitios de Unión , Línea Celular , Microscopía por Crioelectrón , Citoplasma/metabolismo , Células HEK293 , Humanos , Insectos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Estructura Molecular , Mutación , Potasio/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Sulfonilureas/química
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021087

RESUMEN

ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/química , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
7.
Biochem J ; 477(3): 671-689, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31957808

RESUMEN

ATP-sensitive potassium (KATP) channels are widely expressed and play key roles in many tissues by coupling metabolic state to membrane excitability. The SUR subunits confer drug and enhanced nucleotide sensitivity to the pore-forming Kir6 subunit, and so information transfer between the subunits must occur. In our previous study, we identified an electrostatic interaction between Kir6 and SUR2 subunits that was key for allosteric information transfer between the regulatory and pore-forming subunit. In this study, we demonstrate a second putative interaction between Kir6.2-D323 and SUR2A-Q1336 using patch clamp electrophysiological recording, where charge swap mutation of the residues on either side of the potential interaction compromise normal channel function. The Kir6.2-D323K mutation gave rise to a constitutively active, glibenclamide and ATP-insensitive KATP complex, further confirming the importance of information transfer between the Kir6 and SUR2 subunits. Sensitivity to modulators was restored when Kir6.2-D323K was co-expressed with a reciprocal charge swap mutant, SUR-Q1336E. Importantly, equivalent interactions have been identified in both Kir6.1 and Kir6.2 suggesting this is a second important interaction between Kir6 and the proximal C terminus of SUR.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Canales KATP , Canales de Potasio de Rectificación Interna/química , Receptores de Sulfonilureas/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitio Alostérico , Células HEK293 , Humanos , Canales KATP/química , Canales KATP/metabolismo , Modelos Estructurales , Mutación , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
8.
Cell Rep ; 27(6): 1848-1857.e4, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067468

RESUMEN

Repaglinide (RPG) is a short-acting insulin secretagogue widely prescribed for the treatment of type 2 diabetes. It boosts insulin secretion by inhibiting the pancreatic ATP-sensitive potassium channel (KATP). However, the mechanisms by which RPG binds to the KATP channel are poorly understood. Here, we describe two cryo-EM structures: the pancreatic KATP channel in complex with inhibitory RPG and adenosine-5'-(γ-thio)-triphosphate (ATPγS) at 3.3 Å and a medium-resolution structure of a RPG-bound mini SUR1 protein in which the N terminus of the inward-rectifying potassium channel 6.1 (Kir6.1) is fused to the ABC transporter module of the sulfonylurea receptor 1 (SUR1). These structures reveal the binding site of RPG in the SUR1 subunit. Furthermore, the high-resolution structure reveals the complex architecture of the ATP binding site, which is formed by both Kir6.2 and SUR1 subunits, and the domain-domain interaction interfaces.


Asunto(s)
Carbamatos/química , Carbamatos/metabolismo , Páncreas/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Receptores de Sulfonilureas/ultraestructura
9.
Pediatr Diabetes ; 20(4): 397-407, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30861254

RESUMEN

BACKGROUND: Gain-of-function of ATP-sensitive K+ (KATP ) channels because of mutations in the genes encoding SUR1 (ABCC8) or Kir6.2 (KCNJ11) is a major cause of neonatal diabetes mellitus (NDM). Our aim is to determine molecular defects in KATP channels caused by ABCC8 mutations in Asian Indian children with NDM by in vitro functional studies. METHODS: Wild-type (WT; NM_000352.4) or mutant sulfonylurea receptor 1 (SUR1) and Kir6.2 were co-expressed in COSm6 cells. Biogenesis efficiency and surface expression of mutant channels were assessed by immunoblotting and immunostaining. The response of mutant channels to cytoplasmic ATP and ADP was assessed by inside-out patch-clamp recordings. The response of mutant channels to known KATP inhibitors in intact cells were determined by 86 Rb efflux assays. RESULTS: Five SUR1 missense mutations, D212Y, P254S, R653Q, R992C, and Q1224H, were studied and showed increased activity in MgATP/MgADP. Two of the mutants, D212Y and P254S, also showed reduced response to ATP4- inhibition, as well as markedly reduced surface expression. Moreover, all five mutants were inhibited by the KATP channel inhibitors glibenclamide and carbamazepine. CONCLUSIONS: The study shows the mechanisms by which five SUR1 mutations identified in Asian Indian NDM patients affect KATP channel function to cause the disease. The reduced ATP4- sensitivity caused by the D212Y and P254S mutations in the L0 of SUR1 provides novel insight into the role of L0 in channel inhibition by ATP. The results also explain why sulfonylurea therapy is effective in two patients and inform how it should be effective for the other three patients.


Asunto(s)
Diabetes Mellitus/congénito , Diabetes Mellitus/genética , Mutación con Ganancia de Función , Enfermedades del Recién Nacido/genética , Receptores de Sulfonilureas/genética , Animales , Pueblo Asiatico/genética , Pueblo Asiatico/estadística & datos numéricos , Células COS , Chlorocebus aethiops , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/etnología , Femenino , Humanos , India/epidemiología , Lactante , Recién Nacido , Enfermedades del Recién Nacido/tratamiento farmacológico , Enfermedades del Recién Nacido/etnología , Masculino , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Compuestos de Sulfonilurea/uso terapéutico , Receptores de Sulfonilureas/química , Resultado del Tratamiento
10.
Elife ; 82019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30789344

RESUMEN

The response of ATP-sensitive K+ channels (KATP) to cellular metabolism is coordinated by three classes of nucleotide binding site (NBS). We used a novel approach involving labeling of intact channels in a native, membrane environment with a non-canonical fluorescent amino acid and measurement (using FRET with fluorescent nucleotides) of steady-state and time-resolved nucleotide binding to dissect the role of NBS2 of the accessory SUR1 subunit of KATP in channel gating. Binding to NBS2 was Mg2+-independent, but Mg2+ was required to trigger a conformational change in SUR1. Mutation of a lysine (K1384A) in NBS2 that coordinates bound nucleotides increased the EC50 for trinitrophenyl-ADP binding to NBS2, but only in the presence of Mg2+, indicating that this mutation disrupts the ligand-induced conformational change. Comparison of nucleotide-binding with ionic currents suggests a model in which each nucleotide binding event to NBS2 of SUR1 is independent and promotes KATP activation by the same amount.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales KATP/metabolismo , Receptores de Sulfonilureas/metabolismo , Sitios de Unión , Activación Enzimática , Células HEK293 , Humanos , Canales KATP/química , Canales KATP/genética , Cinética , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Unión Proteica , Conformación Proteica/efectos de los fármacos , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética
11.
J Biol Chem ; 294(10): 3707-3719, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30587573

RESUMEN

Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Adenosina Difosfato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Cricetinae , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Hidrólisis , Activación del Canal Iónico , Modelos Moleculares , Mutación , Canales de Potasio de Rectificación Interna/química , Unión Proteica , Conformación Proteica en Hélice alfa
12.
Biosystems ; 177: 48-55, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30395892

RESUMEN

Mutations in gene KCNJ11 encoding the Kir6.2 subunit of the ATP-sensitive potassium channel (KATP), a representative of a quite complex biosystem, may affect insulin release from pancreatic beta-cells. Both gain and loss of channel activity are observed, which lead to varied clinical phenotypes ranging from neonatal diabetes to congenital hyperinsulinism. In order to understand the mechanisms of the channel function better we mapped, based on the literature review, known medically relevant Kir6.2/SUR1 mutations into recently (2017) determined CryoEM 3D structures of this complex. We used a clustering algorithm to find hots spots in the 3D structure, thus we may hypothesize about their nano-mechanical role in the channel gating and the insulin level control. We also adapted a simple model of the channel gating to cover all currently known factors that can influence the KATP biosystem functions.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Teóricos , Complejos Multiproteicos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Transducción de Señal , Receptores de Sulfonilureas/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Células Secretoras de Insulina/citología , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica , Análisis Espacial , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética
13.
J Gen Physiol ; 150(5): 653-669, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29685928

RESUMEN

Adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are molecular sensors of cell metabolism. These hetero-octameric channels, comprising four inward rectifier K+ channel subunits (Kir6.1 or Kir6.2) and four sulfonylurea receptor (SUR1 or SUR2A/B) subunits, detect metabolic changes via three classes of intracellular adenine nucleotide (ATP/ADP) binding site. One site, located on the Kir subunit, causes inhibition of the channel when ATP or ADP is bound. The other two sites, located on the SUR subunit, excite the channel when bound to Mg nucleotides. In pancreatic ß cells, an increase in extracellular glucose causes a change in oxidative metabolism and thus turnover of adenine nucleotides in the cytoplasm. This leads to the closure of KATP channels, which depolarizes the plasma membrane and permits Ca2+ influx and insulin secretion. Many of the molecular details regarding the assembly of the KATP complex, and how changes in nucleotide concentrations affect gating, have recently been uncovered by several single-particle cryo-electron microscopy structures of the pancreatic KATP channel (Kir6.2/SUR1) at near-atomic resolution. Here, the author discusses the detailed picture of excitatory and inhibitory ligand binding to KATP that these structures present and suggests a possible mechanism by which channel activation may proceed from the ligand-binding domains of SUR to the channel pore.


Asunto(s)
Microscopía por Crioelectrón/métodos , Canales KATP/química , Receptores de Sulfonilureas/química , Adenosina Trifosfato/metabolismo , Animales , Humanos , Activación del Canal Iónico , Canales KATP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Compuestos de Sulfonilurea/farmacología , Receptores de Sulfonilureas/agonistas , Receptores de Sulfonilureas/antagonistas & inhibidores
14.
Nat Commun ; 9(1): 907, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500353

RESUMEN

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Asunto(s)
Monóxido de Carbono/metabolismo , Canales Iónicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HEK293 , Hemo/metabolismo , Humanos , Activación del Canal Iónico , Canales KATP/metabolismo , Modelos Moleculares , Espectrometría Raman , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
15.
Protein Cell ; 9(6): 553-567, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29594720

RESUMEN

ATP-sensitive potassium channels (KATP) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of ß-cells, pancreatic KATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic KATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.


Asunto(s)
Páncreas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Sulfonilureas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Microscopía por Crioelectrón , Ligandos , Mesocricetus , Ratones , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Células Sf9 , Spodoptera , Receptores de Sulfonilureas/metabolismo
16.
J Biol Chem ; 293(6): 2041-2052, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29275331

RESUMEN

The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9, the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (KATP) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which KATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium (86Rb+) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases KATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in KATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS.


Asunto(s)
Cardiomegalia/genética , Mutación con Ganancia de Función , Hipertricosis/genética , Mutación Missense , Osteocondrodisplasias/genética , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética , Animales , Cardiomegalia/metabolismo , Gliburida/química , Gliburida/metabolismo , Humanos , Hipertricosis/metabolismo , Canales KATP/química , Canales KATP/genética , Canales KATP/metabolismo , Osteocondrodisplasias/metabolismo , Dominios Proteicos , Ratas , Receptores de Sulfonilureas/metabolismo
17.
Methods Mol Biol ; 1684: 51-61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058183

RESUMEN

Potassium channels are multimeric protein complexes regulated by diverse physiological and pharmacological ligands. The key to understanding mechanisms of channel regulation is the ability to detect structural changes associated with ligand binding. While high-resolution structural methods such as X-ray crystallography and single-particle cryo-electron microscopy offer direct visualization of channel structures, these methods do have limitations and may not be suitable for the question of interest. In this chapter, we describe the use of a photo-cross-linker unnatural amino acid, p-azido-L-phenylalanine, to probe interactions between two proteins, the sulfonylurea receptor 1 and the inwardly rectifying potassium channel Kir6.2, that form the ATP-sensitive potassium (KATP) channel complex in the absence or presence of ligands. The difference in the extent of crosslinking between a liganded state and unliganded state can be used as a readout of ligand-induced structural changes. We anticipate that the protocol described here will also be applicable for other potassium channels and protein complexes.


Asunto(s)
Canales KATP/química , Fenilalanina/análogos & derivados , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/metabolismo , Animales , Azidas/metabolismo , Células COS , Chlorocebus aethiops , Reactivos de Enlaces Cruzados/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Canales KATP/metabolismo , Ligandos , Fenilalanina/genética , Fenilalanina/metabolismo , Canales de Potasio de Rectificación Interna/química , Unión Proteica , Multimerización de Proteína , Receptores de Sulfonilureas/química
18.
Pediatr Diabetes ; 19(2): 251-258, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28791793

RESUMEN

BACKGROUND: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation. OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available. METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient. RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported. CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Gliburida/uso terapéutico , Hipoglucemiantes/uso terapéutico , Enfermedades del Recién Nacido/tratamiento farmacológico , China , Deleción Cromosómica , Trastornos de los Cromosomas/tratamiento farmacológico , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 1/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Diabetes Mellitus/genética , Relación Dosis-Respuesta a Droga , Monitoreo de Drogas , Femenino , Estudios de Seguimiento , Gliburida/administración & dosificación , Gliburida/efectos adversos , Hospitales Pediátricos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/efectos adversos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/genética , Insulina/efectos adversos , Insulina/química , Insulina/genética , Insulina/uso terapéutico , Masculino , Mutación , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética
19.
Elife ; 62017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29286281

RESUMEN

In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP's ability to override ATP inhibition.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Canales de Potasio de Rectificación Interna/química , Receptores de Sulfonilureas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Magnesio/química , Magnesio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Unión Proteica , Conformación Proteica , Receptores de Sulfonilureas/metabolismo
20.
Elife ; 62017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29035201

RESUMEN

Sulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of a hamster SUR1/rat Kir6.2 channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.63 Å resolution, which reveals unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.


Asunto(s)
Gliburida/química , Gliburida/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cricetinae , Microscopía por Crioelectrón , Hipoglucemiantes/química , Hipoglucemiantes/metabolismo , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...