Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Res ; 46(1): 89-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37703903

RESUMEN

OBJECTIVE: One of the important causes of death in cancer patients is malignant metastasis, invasion, and metastasis of tumor cells. Metastasis is also the most basic physiological characteristics and pathogenesis of various tumors. Previously published studies have suggested that autocrine motor factor receptor (AMFR) is the key regulator of tumor cell migration and invasion. Meanwhile, AMFR is highly expressed in esophageal tumors, gastrointestinal tumors, and bladder cancer, and it is also involved in its pathogenesis. However, the role of AMFR in glioblastoma has not been reported. METHODS: In order to study the role of AMFR in the cell migration and invasion of glioblastoma, AMFR was silenced using siRNA and overexpressed using cDNA. Immunoblotting analysis and real-time quantitative polymerase chain reaction (PCR) were employed to assess the expression of AMFR. We conducted wound healing assay, cell migration assay, and tumorsphere formation assay to detect the invasion and metastatic ability of glioblastoma. RESULTS: This study found that the level of AMFR expression was significantly correlated with the malignant degree of glioma tissue in clinic samples. AMFR silencing decreased cell migration and invasion of LN229. Overexpression of AMFR significantly increased cell migration and invasion of U251. CONCLUSION: This study suggests that AMFR could be used as a therapeutic strategy for the clinical treatment of glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Receptores del Factor Autocrino de Motilidad/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Glioblastoma/genética , Glioblastoma/patología , ARN Interferente Pequeño/genética , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Invasividad Neoplásica
2.
Cell Death Dis ; 14(12): 810, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065978

RESUMEN

Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.


Asunto(s)
Ferroptosis , Hepatocitos , Hepatopatías , Receptores del Factor Autocrino de Motilidad , Daño por Reperfusión , Animales , Humanos , Ratones , Hepatocitos/enzimología , Inflamación/metabolismo , Hepatopatías/metabolismo , Daño por Reperfusión/metabolismo , Trasplante de Hígado , Receptores del Factor Autocrino de Motilidad/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Coenzima A Ligasas
3.
Nature ; 618(7964): 394-401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225996

RESUMEN

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Ubiquitinación , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo
4.
Nat Microbiol ; 8(1): 107-120, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36593296

RESUMEN

Staphylococcus aureus invades cells and persists intracellularly, causing persistent inflammation that is notoriously difficult to treat. Here we investigated host-pathogen interactions underlying intracellular S. aureus infection in macrophages and discovered that the endoplasmic reticulum (ER) is an important cellular compartment for intracellular S. aureus infection. Using CRISPR-Cas9 guide RNA library screening, we determined that the autocrine motility factor receptor (AMFR), an ER-resident E3 ubiquitin ligase, played an essential role in mediating intracellular S. aureus-induced inflammation. AMFR directly interacted with TAK1-binding protein 3 (TAB3) in the ER, inducing K27-linked polyubiquitination of TAB3 on lysine 649 and promoting TAK1 activation. Moreover, the virulence factor γ-haemolysin B (HIgB) of S. aureus bound to the AMFR and regulated TAB3. Our findings highlight an unknown role of AMFR in intracellular S. aureus infection-induced pneumonia and suggest that pharmacological interruption of AMFR-mediated TAB3 signalling cascades and HIgB targeting may prevent invasive staphylococci-mediated pneumonia.


Asunto(s)
Neumonía , Ubiquitina-Proteína Ligasas , Humanos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Factores de Virulencia/metabolismo
5.
JCI Insight ; 7(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35938532

RESUMEN

Dysregulation of excitatory amino acid transporter 2 (EAAT2) contributes to the development of temporal lobe epilepsy (TLE). Several strategies for increasing total EAAT2 levels have been proposed. However, the mechanism underlying the oligomeric assembly of EAAT2, impairment of which inhibits the formation of functional oligomers by EAAT2 monomers, is still poorly understood. In the present study, we identified E3 ubiquitin ligase AMFR as an EAAT2-interacting protein. AMFR specifically increased the level of EAAT2 oligomers rather than inducing protein degradation through K542-specific ubiquitination. By using tissues from humans with TLE and epilepsy model mice, we observed that AMFR and EAAT2 oligomer levels were simultaneously decreased in the hippocampus. Screening of 2386 FDA-approved drugs revealed that the most common analgesic/antipyretic medicine, acetaminophen (APAP), can induce AMFR transcriptional activation via transcription factor SP1. Administration of APAP protected against pentylenetetrazol-induced epileptogenesis. In mice with chronic epilepsy, APAP treatment partially reduced the occurrence of spontaneous seizures and greatly enhanced the antiepileptic effects of 17AAG, an Hsp90 inhibitor that upregulates total EAAT2 levels, when the 2 compounds were administered together. In summary, our studies reveal an essential role for AMFR in regulating the oligomeric state of EAAT2 and suggest that APAP can improve the efficacy of EAAT2-targeted antiepileptic treatments.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Acetaminofén , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Humanos , Ratones , Receptores del Factor Autocrino de Motilidad/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
6.
J Exp Med ; 219(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35333296

RESUMEN

Alveolar macrophages (AMs) are specialized tissue-resident macrophages that orchestrate the immune response in allergic inflammation and asthma. However, what signals direct AMs to cross talk with other immune cells remains unclear. Here, we report that autocrine motility factor receptor (AMFR), an endoplasmic reticulum-resident E3 ubiquitin ligase, is upregulated in AMs of asthma and is critical for this condition. AMFR deficiency significantly decreased allergy-induced T helper 2 (Th2) and eosinophilic inflammation, with less granulocyte-macrophage colony-stimulating factor (GM-CSF) production in AMs. Mechanistically, following thymic stromal lymphopoietin (TSLP) stimulation, AMFR associated directly with cytokine-inducible SH2-containing protein (CIS), induced the ubiquitination of Lys48-linked polyubiquitination of CIS, and consequently blocked the inhibitory effect of CIS on signal transducer and activator of transcription 5 (STAT5) phosphorylation and the downstream pathway activation in AMs. In conclusion, our results demonstrate that AMFR serves a crucial role in promoting inflammation in asthma through regulating AM function, and may emerge as a new potential drug target for asthma therapy.


Asunto(s)
Asma , Macrófagos Alveolares , Receptores del Factor Autocrino de Motilidad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos Alveolares/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121659

RESUMEN

Ca2+ release from the endoplasmic reticulum (ER) is an essential event in the modulation of Ca2+ homeostasis, which is coordinated by multiple biological processes, ranging from cell proliferation to apoptosis. Deregulated Ca2+ homeostasis is linked with various cancer hallmarks; thus, uncovering the mechanisms underlying Ca2+ homeostasis dynamics may lead to new anticancer treatment strategies. Here, we demonstrate that a reported Ca2+-channel protein TMCO1 (transmembrane and coiled-coil domains 1) is overexpressed in colon cancer tissues at protein levels but not at messenger RNA levels in colon cancer. Further study revealed that TMCO1 is a substrate of ER-associated degradation E3 ligase Gp78. Intriguingly, Gp78-mediated TMCO1 degradation at K186 is under the control of the iASPP (inhibitor of apoptosis-stimulating protein of p53) oncogene. Mechanistically, iASPP robustly reduces ER Ca2+ stores, mainly by competitively binding with Gp78 and interfering with Gp78-mediated TMCO1 degradation. A positive correlation between iASPP and TMCO1 proteins is further validated in human colon tissues. Inhibition of iASPP-TMCO1 axis promotes cytosolic Ca2+ overload-induced apoptotic cell death, reducing tumor growth both in vitro and in vivo. Thus, iASPP-TMCO1 represents a promising anticancer treatment target by modulating Ca2+ homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proliferación Celular/fisiología , Resistencia a Medicamentos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Células HCT116 , Células HT29 , Homeostasis , Humanos , Ratones , Ratones Desnudos
9.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
10.
Biochem Biophys Res Commun ; 558: 22-28, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33894674

RESUMEN

Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.


Asunto(s)
Acetatos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Ciclopentanos/administración & dosificación , Glucosa-6-Fosfato Isomerasa/administración & dosificación , Oxilipinas/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Citocinas/administración & dosificación , Citocinas/genética , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Glucosa-6-Fosfato Isomerasa/genética , Humanos , Células MCF-7 , Terapia Molecular Dirigida , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Transducción de Señal/efectos de los fármacos , Ensayo de Tumor de Célula Madre
11.
Autophagy ; 17(7): 1729-1752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559118

RESUMEN

Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.


Asunto(s)
Autofagosomas/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Nat Commun ; 11(1): 379, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953408

RESUMEN

Insig-2 is an ER membrane protein negatively controlling lipid biosynthesis. Here, we find that Insig-2 is increased in the tissues, including liver, but unaltered in the muscle of gp78-deficient mice. In hepatocytes and undifferentiated C2C12 myoblasts, Insig-2 is ubiquitylated on Cys215 by gp78 and degraded. However, the C215 residue is oxidized by elevated reactive oxygen species (ROS) during C2C12 myoblasts differentiating into myotubes, preventing Insig-2 from ubiquitylation and degradation. The stabilized Insig-2 downregulates lipogenesis through inhibiting the SREBP pathway, helping to channel the carbon flux to ATP generation and protecting myotubes from lipid over-accumulation. Evolutionary analysis shows that the YECK (in which C represents Cys215 in human Insig-2) tetrapeptide sequence in Insig-2 is highly conserved in amniotes but not in aquatic amphibians and fishes, suggesting it may have been shaped by differential selection. Together, this study suggests that competitive oxidation-ubiquitylation on Cys215 of Insig-2 senses ROS and prevents muscle cells from lipid accumulation.


Asunto(s)
Cisteína/metabolismo , Proteínas de la Membrana/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Ubiquitinación , Anfibios , Animales , Células CHO , Línea Celular , Cricetulus , Regulación hacia Abajo , Evolución Molecular , Peces , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Lipogénesis , Hígado/metabolismo , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor Autocrino de Motilidad/genética , Análisis de Secuencia de Proteína , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcriptoma
13.
BMC Med Genet ; 20(1): 202, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864301

RESUMEN

BACKGROUND: The morbidity and mortality of endometrial tumors, a common type of malignant cancer in women, have increased in recent years. POLE encodes the DNA polymerase ε, which is responsible for the leading strand DNA replication. Somatic mutations of POLE have been acknowledged in numerous cancers, resulting in the accumulation of DNA errors, leading to ultra-mutated tumors. Mutations in the exonuclease domain of POLE have been reported to improve progression-free survival in endometrial cancer. However, the potential relationship and underlying mechanism between POLE mutations and the prognosis of endometrial cancer patients remains unclear. METHODS: The whole exome sequencing data, RNA sequencing data, and clinical information were obtained from the TCGA database and employed for the analyses in this study. The detailed mutational information was analyzed using whole exome sequencing data and the mutated genes were shown with OncoPlot. The survival curves and cox proportional hazards regression analysis were used to accessed patient prognosis, the association of clinical characteristics and prognosis. Differentially expressed genes were analyzed by the edgeR R/Bioconductor package, then the GSEA Pre-ranked tool was used for Gene Set Enrichment Analysis (GSEA) to estimate the function of genes. Expression values were clustered using hierarchical clustering with Euclidean distance and ward linkage by the dendextend R package. RESULTS: POLE mutational status was proven to be an independent prognostic factor for endometrial cancer patients. Patients with somatic POLE mutations presented a favorable prognosis. POLE mutations regulated glycolysis and cytokine secretion, affecting cell metabolism and immune response. Autocrine motility factor (AMF)/PGI and AMFR/gp78 exhibited higher expression levels in POLE mutant patients. The comprehensive high expressions of AMFR/gp78 and low expression of POLE were associated with the favorable prognosis of endometrial cancer patients. CONCLUSIONS: This study showed the POLE mutations a vital factor in endometrial cancer patients, leading to a higher expression of AMF/PGI and AMFR/gp78. These results suggested comprehensive consideration of the POLE mutations, expression of AMF/PGI and AMFR/gp78 may provide a more feasible and effective approach for the treatment of endometrial cancer, which might improve the prognosis.


Asunto(s)
ADN Polimerasa II/genética , Neoplasias Endometriales/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Transducción de Señal , Replicación del ADN/genética , Supervivencia sin Enfermedad , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Glucosa/metabolismo , Humanos , Persona de Mediana Edad , Pronóstico
14.
J Biol Chem ; 294(52): 20084-20096, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31748412

RESUMEN

The endoplasmic reticulum-associated degradation (ERAD) pathway mediates the endoplasmic reticulum-to-cytosol retrotranslocation of defective proteins through protein complexes called retrotranslocons. Defective proteins usually have complex conformations and topologies, and it is unclear how ERAD can thread these conformationally diverse protein substrates through the retrotranslocons. Here, we investigated the substrate conformation flexibility necessary for transport via retrotranslocons on the ERAD-L, ERAD-M, and HIV-encoded protein Vpu-hijacked ERAD branches. To this end, we appended various ERAD substrates with specific domains whose conformations were tunable in flexibility or tightness by binding to appropriate ligands. With this technique, we could define the capacity of specific retrotranslocons in disentangling very tight, less tight but well-folded, and unstructured conformations. The Hrd1 complex, the retrotranslocon on the ERAD-L branch, permitted the passage of substrates with a proteinase K-resistant tight conformation, whereas the E3 ligase gp78-mediated ERAD-M allowed passage only of nearly completely disordered but not well-folded substrates and thus may have the least unfoldase activity. Vpu-mediated ERAD, containing a potential retrotranslocon, could unfold well-folded substrates for successful retrotranslocation. However, substrate retrotranslocation in Vpu-mediated ERAD was blocked by enhanced conformational tightness of the substrate. On the basis of these findings, we propose a mechanism underlying polypeptide movement through the endoplasmic reticulum membrane. We anticipate that our biochemical system paves the way for identifying the factors necessary for the retrotranslocation of membrane proteins.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Desplegamiento Proteico , Receptores del Factor Autocrino de Motilidad/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Especificidad por Sustrato , Trimetrexato/farmacología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
15.
Mol Pharmacol ; 96(5): 641-654, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492698

RESUMEN

The hepatic endoplasmic reticulum (ER)-anchored monotopic proteins, cytochromes P450 (P450s), are enzymes that metabolize endobiotics (physiologically active steroids and fatty acids), as well as xenobiotics including therapeutic/chemotherapeutic drugs, nutrients, carcinogens, and toxins. Alterations of hepatic P450 content through synthesis, inactivation, or proteolytic turnover influence their metabolic function. P450 proteolytic turnover occurs via ER-associated degradation (ERAD) involving ubiquitin (Ub)-dependent proteasomal degradation (UPD) as a major pathway. UPD critically involves P450 protein ubiquitination by E2/E3 Ub-ligase complexes. We have previously identified the ER-polytopic gp78/AMFR (autocrine motility factor receptor) as a relevant E3 in CYP3A4, CYP3A23, and CYP2E1 UPD. We now document that liver-conditional genetic ablation of gp78/AMFR in male mice disrupts P450 ERAD, resulting in statistically significant stabilization of Cyp2a5 and Cyp2c, in addition to that of Cyp3a and Cyp2e1. More importantly, we establish that such stabilization is of the functionally active P450 proteins, leading to corresponding statistically significant enhancement of their drug-metabolizing capacities. Our findings, with clinically relevant therapeutic drugs (nicotine, coumarin, chlorzoxazone, and acetaminophen) and the prodrug (tamoxifen) as P450 substrates, reveal that P450 ERAD disruption could influence therapeutic drug response and/or toxicity, warranting serious consideration as a potential source of clinically relevant drug-drug interactions (DDIs). Because gp78/AMFR is not only an E3 Ub-ligase, but also a cell-surface prometastatic oncogene that is upregulated in various malignant cancers, our finding that hepatic gp78/AMFR knockout can enhance P450-dependent bioactivation of relevant cancer chemotherapeutic prodrugs is of therapeutic relevance and noteworthy in prospective drug design and development. SIGNIFICANCE STATEMENT: The cell-surface and ER transmembrane protein gp78/AMFR, a receptor for the prometastatic autocrine motility factor (AMF), as well as an E3 ubiquitin-ligase involved in the ER-associated degradation (ERAD) of not only the tumor metastatic suppressor KAI1 but also of hepatic cytochromes P450, is upregulated in various human cancers, enhancing their invasiveness, metastatic potential, and poor prognosis. Liver-specific gp78/AMFR genetic ablation results in functional protein stabilization of several hepatic P450s and consequently enhanced drug and prodrug metabolism, a feature that could be therapeutically exploited in the bioactivation of chemotherapeutic prodrugs through design and development of novel short-term gp78/AMFR chemical inhibitors.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Eliminación de Gen , Hepatocitos/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Aspirina/farmacología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/genética , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estabilidad Proteica/efectos de los fármacos , Receptores del Factor Autocrino de Motilidad/genética , Tamoxifeno/farmacología , Ubiquitina-Proteína Ligasas/genética
16.
J Neurosci ; 39(36): 7074-7085, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31300519

RESUMEN

Maintaining a pool of functional mitochondria requires degradation of damaged ones within the cell. PINK1 is critical in this quality-control process: loss of mitochondrial membrane potential causes PINK1 to accumulate on the mitochondrial surface, triggering mitophagy. However, little is known about how PINK1 is regulated. Recently, we showed that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation of its mature form via a mechanism inconsistent with the proposed N-end rule process. Using both human female and monkey cell lines, we now demonstrate that once generated within the mitochondria, 52 kDa PINK1 adopts a mitochondrial topology most consistent with it being at the mitochondrial-endoplasmic reticulum (ER) interface. From this particular submitochondrial location, PINK1 interacts with components of the ER-associated degradation pathway, such as the E3 ligases gp78 and HRD1, which cooperate to catalyze PINK1 ubiquitination. The valosin-containing protein and its cofactor, UFD1, then target ubiquitinated PINK1 for proteasomal degradation. Our data show that PINK1 in healthy mitochondria is negatively regulated via an interplay between mitochondria and ER, and shed light on how this mitochondrial protein gains access to the proteasome.SIGNIFICANCE STATEMENT Regulation of mitochondrial content of PINK1, a contributor to mitophagy, is an important area of research. Recently, we found that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation. We now extend and refine this novel finding by showing that PINK1 localizes at the mitochondrial-endoplasmic reticulum (ER) interface, from where it interacts with the ER-associated degradation machinery, which catalyzes its ubiquitination and transfer to the proteasome. Thus, these data show that PINK1 in healthy mitochondria is negatively regulated via a mitochondria and ER interplay, and how this mitochondrial protein gains access to the proteasome.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Proteolisis , Ubiquitinación , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Receptores del Factor Autocrino de Motilidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo
17.
Mol Cell Biol ; 39(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31061093

RESUMEN

GP78 is an autocrine motility factor (AMF) receptor (AMFR) with E3 ubiquitin ligase activity that plays a significant role in tumor cell proliferation, motility, and metastasis. Aberrant extracellular signal-regulated kinase (ERK) activation via receptor tyrosine kinases promotes tumor proliferation and invasion. The activation of GP78 leads to ERK activation, but its underlying mechanism is not fully understood. Here, we show that GP78 is required for epidermal growth factor receptor (EGFR)-mediated ERK activation. On one hand, GP78 interacts with and promotes the ubiquitination and subsequent degradation of dual-specificity phosphatase 1 (DUSP1), an endogenous negative regulator of mitogen-activated protein kinases (MAPKs), resulting in ERK activation. On the other hand, GP78 maintains the activation status of EGFR, as evidenced by the fact that EGF fails to induce EGFR phosphorylation in GP78-deficient cells. By the regulation of both EGFR and ERK activation, GP78 promotes cell proliferation, motility, and invasion. Therefore, this study identifies a previously unknown signaling pathway by which GP78 stimulates ERK activation via DUSP1 degradation to mediate EGFR-dependent cancer cell proliferation and invasion.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatasa 1 de Especificidad Dual/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Invasividad Neoplásica , Fosforilación , Proteolisis , Ubiquitinación
18.
Cell Commun Signal ; 17(1): 22, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836961

RESUMEN

BACKGROUND: Autocrine motility factor (AMF) is a critical factor regulating aggressiveness of endometrial cancer (EC). Multiple pieces of evidence indicate that it is through G protein coupled estrogen receptor (GPER) signaling pathway that some growth factors promoted the migration and proliferation of tumor cells. The aim of this study is to explore the role of GPER-1 in AMF mediated regulatory mechanisms of EC recurrence and progression. METHODS: Real-Time Cell Analysis (RTCA) assays were performed to assess whether AMF depends on Autocrine motility factor recepter (AMFR) signaling in EC cells. A genome-wide expression microarray and Yeast Two-Hybrid assay were used to detect AMF and GPER-1 interaction in the context of AMFR depletion, and co-immunoprecipitation and immunofluorescence experiments were performed to confirm the physical interaction. Isobaric Tags for Relative and Absolute Quantification (iTRAQ) analysis was used for the identification of the target pathway activated by AMF-GPER-1 interaction. Cohorts of mice harboring xenografts derived from modified SPEC2 cell lines were treated with or without exogenous AMF to validate the results of previous experiments. Immunohistochemistry was performed to assess AMF and GPER-1 expression in endometrial cancer specimens and normal endometrium. RESULTS: Our data showed that GPER-1 binds to AMF and the formed complex translocates from the plasma membrane to the cytoplasm. Mechanistic investigations demonstrated that interaction between AMF and GPER-1 triggers phosphoinositide-3-kinase signaling and promotes EC cell growth. More importantly, through animal experiments and human tissue experiments, we found that AMF contributes to GPER-1-mediated EC progression, which is consistent with the above observations. CONCLUSIONS: Our work not only delineated the regulatory mechanisms of endometrial cancer progression by AMF-GPER-1-AKT signaling cascade but also laid the foundation of targeting this pathway for treating endometrial cancer.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Glucosa-6-Fosfato Isomerasa/farmacología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Silenciador del Gen/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica/efectos de los fármacos , Receptores del Factor Autocrino de Motilidad/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Nat Metab ; 1(5): 570-583, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-32694855

RESUMEN

Metabolism in mammals is regulated by complex interplay among different organs. Fatty acid synthesis is increased in white adipose tissue (WAT) when it is inhibited in the liver. Here we identify glycoprotein non-metastatic melanoma protein B (Gpnmb) as one liver-WAT cross-talk factor involved in lipogenesis. Inhibition of the hepatic sterol regulatory element-binding protein pathway leads to increased transcription of Gpnmb and promotes processing of the membrane protein to a secreted form. Gpnmb stimulates lipogenesis in WAT and exacerbates diet-induced obesity and insulin resistance. In humans, Gpnmb is tightly associated with body mass index and is a strong risk factor for obesity. Gpnmb inhibition by a neutralizing antibody or liver-specific knockdown improves metabolic parameters, including weight gain reduction and increased insulin sensitivity, probably by promoting the beiging of WAT. These results suggest that Gpnmb is a liver-secreted factor regulating lipogenesis in WAT, and that Gpnmb inhibition may provide a therapeutic strategy in obesity and diabetes.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Proteínas del Ojo/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidad/metabolismo , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Lipogénesis/genética , Lipogénesis/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Receptores del Factor Autocrino de Motilidad/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Regulación hacia Arriba
20.
FASEB J ; 33(2): 1927-1945, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230921

RESUMEN

The mechanism by which the endoplasmic reticulum (ER) ubiquitin ligases sense stress to potentiate their activity is poorly understood. GP78, an ER E3 ligase, is best known for its role in ER-associated protein degradation, although its activity is also linked to mitophagy, ER-mitochondria junctions, and MAPK signaling, thus highlighting the importance of understanding its regulation. In healthy cells, Mahogunin really interesting new gene (RING) finger 1 (MGRN1) interacts with GP78 and proteasomally degrades it to alleviate mitophagy. Here, we identify calmodulin (CaM) as the adapter protein that senses fluctuating cytosolic Ca2+ levels and modulates the Ca2+-dependent MGRN1-GP78 interactions. When stress elevates cytosolic Ca2+ levels in cultured and primary neuronal cells, CaM binds to both E3 ligases and inhibits their interaction. Molecular docking, simulation, and biophysical studies show that CaM interacts with both proteins with different affinities and binding modes. The physiological impact of this interaction switch manifests in the regulation of ER-associated protein degradation, ER-mitochondria junctions, and relative distribution of smooth ER and rough ER.-Mukherjee, R., Bhattacharya, A., Sau, A., Basu, S., Chakrabarti, S., Chakrabarti, O. Calmodulin regulates MGRN1-GP78 interaction mediated ubiquitin proteasomal degradation system.


Asunto(s)
Calmodulina/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores del Factor Autocrino de Motilidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Señalización del Calcio , Calmodulina/química , Calmodulina/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neuronas/citología , Complejo de la Endopetidasa Proteasomal/genética , Receptores del Factor Autocrino de Motilidad/química , Receptores del Factor Autocrino de Motilidad/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...