Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.224
Filtrar
1.
Sci Rep ; 14(1): 9919, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689031

RESUMEN

Natriuretic peptides (NP) have multiple actions benefitting cardiovascular and metabolic health. Although many of these are mediated by Guanylyl Cyclase (GC) receptors NPR1 and NPR2, their role and relative importance in vivo is unclear. The intracellular mediator of NPR1 and NPR2, cGMP, circulates in plasma and can be used to examine relationships between receptor activity and tissue responses targeted by NPs. Plasma cGMP was measured in 348 participants previously recruited in a multidisciplinary community study (CHALICE) at age 50 years at a single centre. Associations between bio-active NPs and bio-inactive aminoterminal products with cGMP, and of cGMP with tissue response, were analysed using linear regression. Mediation of associations by NPs was assessed by Causal Mediation Analysis (CMA). ANP's contribution to cGMP far exceed those of other NPs. Modelling across three components (demographics, NPs and cardiovascular function) shows that ANP and CNP are independent and positive predictors of cGMP. Counter intuitively, findings from CMA imply that in specific tissues, NPR1 responds more to BNP stimulation than ANP. Collectively these findings align with longer tissue half-life of BNP, and direct further therapeutic interventions towards extending tissue activity of ANP and CNP.


Asunto(s)
GMP Cíclico , Receptores del Factor Natriurético Atrial , Humanos , Receptores del Factor Natriurético Atrial/metabolismo , Persona de Mediana Edad , Masculino , Femenino , GMP Cíclico/metabolismo , Péptidos Natriuréticos/metabolismo , Factor Natriurético Atrial/metabolismo , Factor Natriurético Atrial/sangre
2.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369645

RESUMEN

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Asunto(s)
Encéfalo , Cricetulus , Péptidos Natriuréticos , Animales , Encéfalo/metabolismo , Péptidos Natriuréticos/metabolismo , Células CHO , Receptores del Factor Natriurético Atrial/metabolismo , Comunicación Paracrina , Ligandos , Anguilla/metabolismo , Sistema Endocrino/metabolismo
3.
Int J Cancer ; 154(7): 1272-1284, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151776

RESUMEN

Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.


Asunto(s)
Receptores del Factor Natriurético Atrial , Neoplasias Gástricas , Humanos , Ratones , Animales , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptosis , Proliferación Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
4.
PLoS One ; 18(11): e0293636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917630

RESUMEN

Natriuretic peptides (NP), including atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), play essential roles in regulating blood pressure, cardiovascular homeostasis, and systemic metabolism. One of the major metabolic effects of NP is manifested by their capacity to stimulate lipolysis and the thermogenesis gene program in adipocytes, however, in skeletal muscle their effects on metabolism and muscle function are not as well understood. There are three NP receptors (NPR): NPRA, NPRB, and NPRC, and all three NPR genes are expressed in skeletal muscle and C2C12 myocytes. In C2C12 myocytes treatment with either ANP, BNP, or CNP evokes the cGMP signaling pathway. Since NPRC functions as a clearance receptor and the amount of NPRC in a cell type determines the signaling strength of NPs, we generated a genetic model with Nprc gene deletion in skeletal muscle and tested whether enhancing NP signaling by preventing its clearance in skeletal muscle would improve exercise performance in mice. Under sedentary conditions, Nprc skeletal muscle knockout (MKO) mice showed comparable exercise performance to their floxed littermates in terms of maximal running velocity and total endurance running time. Eight weeks of voluntary running-wheel training in a young cohort significantly increased exercise performance, but no significant differences were observed in MKO compared with floxed control mice. Furthermore, 6-weeks of treadmill training in a relatively aged cohort also increased exercise performance compared with their baseline values, but again there were no differences between genotypes. In summary, our study suggests that NP signaling is potentially important in skeletal myocytes but its function in skeletal muscle in vivo needs to be further studied in additional physiological conditions or with new genetic mouse models.


Asunto(s)
Péptidos Natriuréticos , Receptores del Factor Natriurético Atrial , Humanos , Ratones , Animales , Anciano , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos/metabolismo , Receptores de Péptidos , Péptido Natriurético Tipo-C/genética , Ratones Noqueados , Vasodilatadores , Músculo Esquelético/metabolismo , Factor Natriurético Atrial/farmacología , Péptido Natriurético Encefálico
5.
Sci Rep ; 13(1): 20439, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993528

RESUMEN

Atrial natriuretic peptide (ANP) is a peptide hormone that regulates blood pressure and volume. ANP interacts with natriuretic peptide receptor-A (NPR-A) to lower the blood pressure through vasodilation, diuresis and natriuresis. Previously, we designed two human ANP analogues, one with exclusively diuretic function (DGD-ANP) and the other with exclusively vasodilatory function (DRD-ANP). Although both ANP analogues interact with NPR-A, their ability to produce cGMP was different. Three alternatively spliced isoforms of NPR-A were previously identified in rodents. Here, we evaluated the putative human isoforms for their cGMP production independently and in combination with WT NPR-A in various percentages. All three NPR-A isoforms failed to produce cGMP in the presence of ANP, DGD-ANP, or DRD-ANP. Co-expression of isoforms with WT NPR-A were found to significantly impair cGMP production. Considering the differential tissue expression levels of all three spliced isoforms in rodents have previously been demonstrated, the existence of these non-functional receptor isoforms may act as negative regulator for ANP/NPR-A activation and fine-tune cGMP production by WT NPR-A to different degree in different tissues. Thus, NPR-A isoforms potentially contribute to tissue-specific functions of ANP.


Asunto(s)
Factor Natriurético Atrial , Receptores del Factor Natriurético Atrial , Humanos , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal , GMP Cíclico/metabolismo
6.
Sci Adv ; 9(31): eadd4222, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531438

RESUMEN

Cardiac fibrosis plays a key role in the progression of diabetic cardiomyopathy (DCM). Previous studies demonstrated the cardioprotective effects of natriuretic peptides. However, the effects of natriuretic peptide receptor C (NPRC) on cardiac fibrosis in DCM remains unknown. Here, we observed that myocardial NPRC expression was increased in mice and patients with DCM. NPRC-/- diabetic mice showed alleviated cardiac fibrosis, as well as improved cardiac function and remodeling. NPRC knockdown in both cardiac fibroblasts and cardiomyocytes decreased collagen synthesis and proliferation of cardiac fibroblasts. RNA sequencing identified that NPRC deletion up-regulated the expression of TGF-ß-induced factor homeobox 1 (TGIF1), which inhibited the phosphorylation of Smad2/3. Furthermore, TGIF1 up-regulation was mediated by the activation of cAMP/PKA and cGMP/PKG signaling induced by NPRC deletion. These findings suggest that NPRC deletion attenuated cardiac fibrosis and improved cardiac remodeling and function in diabetic mice, providing a promising approach to the treatment of diabetic cardiac fibrosis.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Receptores del Factor Natriurético Atrial , Animales , Ratones , Diabetes Mellitus Experimental/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Fibrosis , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Receptores del Factor Natriurético Atrial/genética
7.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572787

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Enfermedades Renales , Ratones , Humanos , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Aldosterona/efectos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Acetatos/efectos adversos , Acetatos/metabolismo , Fibrosis
8.
Signal Transduct Target Ther ; 8(1): 290, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37553374

RESUMEN

Previous studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE-/- mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE-/- mice to generate ApoE-/-NPRC-/- mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE-/-NPRC-/- versus ApoE-/- mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE-/- mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , FN-kappa B , Receptores del Factor Natriurético Atrial , Animales , Humanos , Ratones , Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Citocinas/metabolismo , Células Endoteliales/metabolismo , Inflamación/patología , Ratones Noqueados , Ratones Noqueados para ApoE , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo/genética , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(28): e2307882120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399424

RESUMEN

The cardiac natriuretic peptides (NPs) control pivotal physiological actions such as fluid and electrolyte balance, cardiovascular homeostasis, and adipose tissue metabolism by activating their receptor enzymes [natriuretic peptide receptor-A (NPRA) and natriuretic peptide receptor-B (NPRB)]. These receptors are homodimers that generate intracellular cyclic guanosine monophosphate (cGMP). The natriuretic peptide receptor-C (NPRC), nicknamed the clearance receptor, lacks a guanylyl cyclase domain; instead, it can bind the NPs to internalize and degrade them. The conventional paradigm is that by competing for and internalizing NPs, NPRC blunts the ability of NPs to signal through NPRA and NPRB. Here we show another previously unknown mechanism by which NPRC can interfere with the cGMP signaling function of the NP receptors. By forming a heterodimer with monomeric NPRA or NPRB, NPRC can prevent the formation of a functional guanylyl cyclase domain and thereby suppress cGMP production in a cell-autonomous manner.


Asunto(s)
Guanilato Ciclasa , Receptores del Factor Natriurético Atrial , Guanilato Ciclasa/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Péptidos/metabolismo , Péptidos Natriuréticos , Transducción de Señal , Factor Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo
10.
Orphanet J Rare Dis ; 18(1): 221, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501190

RESUMEN

OBJECTIVE: Heterozygous loss-of-function variants in the NPR2 gene cause short stature with nonspecific skeletal abnormalities and account for about 2 ~ 6% of idiopathic short stature. This study aimed to analyze and identify pathogenic variants in the NPR2 gene and explore the therapeutic response to recombinant growth hormone (rhGH). METHODS: NPR2 was sequenced in three Chinese Han patients with short stature via exome sequencing. In vitro functional experiments, homology modeling and molecular docking analysis of variants were performed to examine putative protein changes and the pathogenicity of the variants. RESULT: Three patients received rhGH therapy for two years, and two NPR2 heterozygous variants were identified in three unrelated cases: c.1579 C > T,p.Leu527Phe in patient 1 and c.2842dupC,p.His948Profs*5 in patient 2. Subsequently, a small gene model was constructed, and transcriptional analysis of the synonymous variant (c.2643G > A) was performed in patient 3, which revealed the deletion of exon 17 and the premature formation of a stop codon (p.His840Gln*). Functional studies showed that both NPR2 variants, His948Profs*5 and His840Gln*, failed to produce cGMP in the homozygous state. Furthermore, the Leu527Phe variant of NPR2 was almost unresponsive to the stimulatory effect of ATP on CNP-dependent guanylyl cyclase activity. This loss of response to ATP has not been previously reported. The average age of patients at the start of treatment was 6.5 ± 1.8 years old, and their height increased by 1.59 ± 0.1 standard deviation score after 2 years of treatment. CONCLUSION: In this report, two novel variants in NPR2 gene were described. Our findings broaden the genotypic spectrum of NPR2 variants in individuals with short stature and provid insights into the efficacy of rhGH in these patients.


Asunto(s)
Enanismo , Hormona del Crecimiento , Receptores del Factor Natriurético Atrial , Niño , Preescolar , Humanos , Adenosina Trifosfato , Estatura , Enanismo/tratamiento farmacológico , Enanismo/genética , Hormona del Crecimiento/genética , Hormona del Crecimiento/uso terapéutico , Simulación del Acoplamiento Molecular , Mutación , Receptores del Factor Natriurético Atrial/genética
11.
Br J Pharmacol ; 180(24): 3254-3270, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37522273

RESUMEN

BACKGROUND AND PURPOSE: Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH: Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS: We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS: We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.


Asunto(s)
Factor Natriurético Atrial , Guanilato Ciclasa , Ratas , Animales , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Guanilato Ciclasa/metabolismo , Ratas Wistar , Receptores del Factor Natriurético Atrial/metabolismo , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/farmacología , GMP Cíclico/metabolismo
12.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239899

RESUMEN

The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.


Asunto(s)
Angiotensina II , Guanilato Ciclasa , Humanos , Ratas , Animales , Guanilato Ciclasa/metabolismo , Angiotensina II/farmacología , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptido Natriurético Encefálico , GMP Cíclico/metabolismo , Péptidos Natriuréticos
13.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049825

RESUMEN

Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.


Asunto(s)
Hipertensión , Péptidos Natriuréticos , Ratas , Animales , Humanos , Conejos , Péptidos Natriuréticos/farmacología , Receptores del Factor Natriurético Atrial , Corazón , Elapidae , Hipertensión/tratamiento farmacológico
14.
BMC Med ; 21(1): 158, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101178

RESUMEN

BACKGROUND: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. METHODS: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. RESULTS: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64-0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60-0.92), stroke (0.69, 95% CI 0.50-0.95) and heart failure (0.77, 95% CI 0.58-1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. CONCLUSIONS: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.


Asunto(s)
Enfermedades Cardiovasculares , Accidente Cerebrovascular , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Receptores del Factor Natriurético Atrial/genética , Análisis de la Aleatorización Mendeliana , Péptidos Natriuréticos , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
15.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982395

RESUMEN

Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs' signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.


Asunto(s)
Síndrome Metabólico , Daño por Reperfusión , Ratas , Animales , Factor Natriurético Atrial/metabolismo , PPAR alfa/agonistas , Clofibrato/farmacología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos , Isquemia , Arritmias Cardíacas , Inflamación/tratamiento farmacológico
16.
Mol Omics ; 19(2): 105-125, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36412146

RESUMEN

The atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP) are critical biological makers and regulators of cardiac functions. Our previous results show that NPRA (natriuretic peptide receptor A)-deficient mice have distinct metabolic patterns and expression profiles compared with the control. Still, the molecular mechanism that could account for this observation remains to be elucidated. Here, methylation alterations were detected by mazF-digestion, and differentially expressed genes of transcriptomes were detected by a Genome Oligo Microarray using the myocardium from NPRA-deficient (NPRA-/-) mice and wild-type (NPRA+/+) mice as the control. Comprehensive analysis of m6A methylation data gave an altered landscape of m6A modification patterns and altered transcript profiles in cardiac-specific NPRA-deficient mice. The m6A "reader" igf2bp3 showed a clear trend of increase, suggesting a function in altered methylation and expression in cardiac-specific NPRA-deficient mice. Intriguingly, differentially m6A-methylated genes were enriched in the metabolic process and insulin resistance pathway, suggesting a regulatory role in cardiac metabolism of m6A modification regulated by NPRA. Notably, it was confirmed that the pyruvate dehydrogenase kinase 4 (Pdk4) gene upregulated the gene expression and the hypermethylation level simultaneously, which may be the key factor for the cardiac metabolic imbalance and insulin resistance caused by natriuretic peptide signal resistance. Taken together, cardiac metabolism might be regulated by natriuretic peptide signaling, with decreased m6A methylation and a decrease of Pdk4.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
17.
Obes Rev ; 24(1): e13522, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336901

RESUMEN

Atrial natriuretic peptide (ANP) has been considered to exert an essential role as a cardiac secretory hormone in the regulation of hemodynamic homeostasis. As the research progresses, the role of ANP in the crosstalk between heart and lipid metabolism has become an interesting topic that is attracting the interest of researchers. The regulation of ANP in lipid metabolism shows favorable effects, particularly the activation of brown adipose tissue (BAT). The complex regulatory network of ANP on BAT has not been fully outlined. This narrative review critically evaluated the existing literature on the regulatory effects of ANP on BAT. In general, we have summarized the expression of ANP and its receptors in various human tissues, analyzed the progress of research on the relationship between the ANP and BAT, and described several potential pathways of ANP to BAT. Exogenous ANP, natriuretic peptide receptor C (NPRC) deficiency, cold exposure, bariatric surgery, and cardiac or renal insufficiency could all contribute to BAT expression by increasing circulating ANP levels.


Asunto(s)
Factor Natriurético Atrial , Receptores del Factor Natriurético Atrial , Humanos , Factor Natriurético Atrial/metabolismo , Factor Natriurético Atrial/farmacología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo
18.
Cardiovasc Res ; 118(18): 3416-3433, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36004816

RESUMEN

The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.


Asunto(s)
Insuficiencia Cardíaca , Receptores del Factor Natriurético Atrial , Humanos , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos/uso terapéutico , Péptidos Natriuréticos/metabolismo , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Péptido Natriurético Encefálico/metabolismo , Corazón , Péptido Natriurético Tipo-C/genética , Guanilato Ciclasa/metabolismo , Vasodilatadores , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/uso terapéutico , Factor Natriurético Atrial/metabolismo
19.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232788

RESUMEN

The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-ß1 receptor (TGF-ß1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-ßRI (4.3-fold), TGF-ßRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-ß1-mediated SMAD-dependent pathway.


Asunto(s)
Guanilato Ciclasa , Receptores del Factor Natriurético Atrial/metabolismo , Factor de Crecimiento Transformador beta1 , Actinas/metabolismo , Animales , Benzamidas , Colágeno , Factor de Crecimiento del Tejido Conjuntivo , Femenino , Fibrosis , Guanilato Ciclasa/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Proteínas Quimioatrayentes de Monocitos , Péptidos Natriuréticos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Pirazoles , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores
20.
Peptides ; 158: 170894, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36243172

RESUMEN

Hypertension is associated with vascular remodeling due to hyperproliferation and hypertrophy of vascular smooth muscle cells (VSMC). VSMC from several animal models of hypertensive rats including spontaneously hypertensive rats (SHR) exhibit hyperproliferation, hypertrophy and decreased expression of natriuretic peptide receptor-C (NPR-C). In addition, angiotensin II (Ang II) and growth factors that promotes vascular remodeling have also been shown to attenuate the expression of NPR-C in VSMC. The present study investigates the relationship between the decreased expression of NPR-C and vascular remodeling in SHR and the underlying molecular mechanisms. Aortic VSMC from SHR and their control Wistar Kyoto (WKY) rats were transfected with cDNA of NPR-C and used for the vascular remodeling studies. Transfection of VSMC with cDNA of NPR-C augmented the expression of NPR-C in both VSMC from SHR and WKY rats and resulted in the attenuation of hyperproliferation and hypertrophy of VSMC from SHR. The overexpression of NPR-C also resulted in the attenuation of increased expression of epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), cell cycle proteins, cyclin D1, cyclin-dependent kinase 4 (Cdk4), phospho-retinoblastoma (pRb) and Giα-2 proteins, all these signaling molecules implicated in the hyperproliferation/hypertrophy of VSMC from SHR. In summary, these results indicate that augmenting the decreased expression of NPR-C in VSMC from SHR improves vascular remodeling by attenuating hyperproliferation and hypertrophy through decreasing the overexpression of several signaling molecules. It may be suggested that NPR-C plays a vasculoprotective role and that the downregulation of NPR-C contributes to the vascular remodeling in SHR.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Receptores del Factor Natriurético Atrial , Animales , Ratas , Células Cultivadas , ADN Complementario , Regulación hacia Abajo , Hipertensión/genética , Hipertensión/metabolismo , Hipertrofia/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Remodelación Vascular/genética , Receptores del Factor Natriurético Atrial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA