Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194775

RESUMEN

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/química , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Reparación del ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Mutaciones Letales Sintéticas
2.
J Virol ; 97(12): e0173723, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38051260

RESUMEN

IMPORTANCE: Viruses are constantly evolving to promote propagation in the host. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes host RAD51 for replication. Silencing of RAD51 impaired SARS-CoV-2 propagation. Viral RNA colocalized with RAD51 in the cytoplasm of SARS-CoV-2-infected cells, suggesting that both viral RNA and RAD51 may form a replication complex. We, therefore, evaluated RAD51 inhibitors as possible therapeutic agents against SARS-CoV-2. Indeed, RAD51 inhibitors exerted antiviral activities against not only Wuhan but also variants of SARS-CoV-2. Molecular docking model shows that RAD51 inhibitors impede SARS-CoV-2 propagation by interfering with dimerization of RAD51. These data suggest that RAD51 may represent a novel host-based drug target for coronavirus disease 2019 treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/virología , Simulación del Acoplamiento Molecular , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , ARN Viral , SARS-CoV-2/fisiología , Interacciones Huésped-Patógeno
3.
Otolaryngol Head Neck Surg ; 167(5): 860-868, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35230908

RESUMEN

OBJECTIVE: To describe the RAD51 response (DNA repair) to radiation-induced DNA damage in patient-derived vestibular schwannoma (VS) cells and investigate the utility of RAD51 inhibitor (RI-1) in enhancing radiation toxicity. STUDY DESIGN: Basic and translational science. SETTING: Tertiary academic facility. METHODS: VS tumors (n = 10) were cultured on 96-well plates and 16-well slides, exposed to radiation (0, 6, 12, or 18 Gy), and treated with RI-1 (0, 5, or 10 µM). Immunofluorescence was performed at 6 hours for γ-H2AX (DNA damage marker), RAD51 (DNA repair protein), and p21 (cell cycle arrest protein). Viability assays were performed at 96 hours, and capillary Western blotting was utilized to determine RAD51 expression in naïve VS tumors (n = 5). RESULTS: VS tumors expressed RAD51. In cultured VS cells, radiation initiated dose-dependent increases in γ-H2AX and p21 expression. VS cells upregulated RAD51 to repair DNA damage following radiation. Addition of RI-1 reduced RAD51 expression in a dose-dependent manner and was associated with increased γ-H2AX levels and decreased viability in a majority of cultured VS tumors. CONCLUSION: VS may evade radiation injury by entering cell cycle arrest and upregulating RAD51-dependent repair of radiation-induced double-stranded breaks in DNA. Although there was variability in responses among individual primary VS cells, RAD51 inhibition with RI-1 reduced RAD51-dependent DNA repair to enhance radiation toxicity in VS cells. Further investigations are warranted to understand the mechanisms of radiation resistance in VS and determine whether RI-1 is an effective radiosensitizer in patients with VS.


Asunto(s)
Neuroma Acústico , Recombinasa Rad51 , Traumatismos por Radiación , Humanos , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Recombinasa Rad51/antagonistas & inhibidores , Células Tumorales Cultivadas/efectos de la radiación
4.
Cell Death Dis ; 13(2): 96, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110528

RESUMEN

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.


Asunto(s)
Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Complejo Represivo Polycomb 1/metabolismo , Recombinasa Rad51/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Recombinación Homóloga , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores
5.
mSphere ; 6(6): e0071821, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34730376

RESUMEN

The homologous recombination (HR) pathway has been implicated as the predominant mechanism for the repair of chromosomal DNA double-strand breaks (DSBs) of the malarial parasite. Although the extrachromosomal mitochondrial genome of this parasite experiences a greater number of DSBs due to its close proximity to the electron transport chain, nothing is known about the proteins involved in the repair of the mitochondrial genome. We investigated the involvement of nucleus-encoded HR proteins in the repair of the mitochondrial genome, as this genome does not code for any DNA repair proteins. Here, we provide evidence that the nucleus-encoded "recombinosome" of the parasite is also involved in mitochondrial genome repair. First, two crucial HR proteins, namely, Plasmodium falciparum Rad51 (PfRad51) and P. falciparum Bloom helicase (PfBlm) are located in the mitochondria. They are recruited to the mitochondrial genome at the schizont stage, a stage that is prone to DSBs due to exposure to various endogenous and physiologic DNA-damaging agents. Second, the recruitment of these two proteins to the damaged mitochondrial genome coincides with the DNA repair kinetics. Moreover, both the proteins exit the mitochondrial DNA (mtDNA) once the genome is repaired. Most importantly, the specific chemical inhibitors of PfRad51 and PfBlm block the repair of UV-induced DSBs of the mitochondrial genome. Additionally, overexpression of these two proteins resulted in a kinetically faster repair. Given the essentiality of the mitochondrial genome, blocking its repair by inhibiting the HR pathway could offer a novel strategy for curbing malaria. IMPORTANCE The impact of malaria on global public health and the world economy continues to surge despite decades of vaccine research and drug development efforts. An alarming rise in resistance toward all the commercially available antimalarial drugs and the lack of an effective malaria vaccine brings us to the urge to identify novel intervention strategies for curbing malaria. Here, we uncover the molecular mechanism behind the repair of the most deleterious form of DNA lesions on the parasitic mitochondrial genome. Given that the single-copy mitochondrion is an indispensable organelle of the malaria parasite, we propose that targeting the mitochondrial DNA repair pathways should be exploited as a potential malaria control strategy. The establishment of the parasitic homologous recombination machinery as the predominant repair mechanism of the mitochondrial DNA double-strand breaks underscores the importance of this pathway as a novel druggable target.


Asunto(s)
Antimaláricos/farmacología , Genoma Mitocondrial/efectos de los fármacos , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores , RecQ Helicasas/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Recombinación Homóloga , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
6.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576930

RESUMEN

RAD51 is the central protein in DNA repair by homologous recombination (HR), involved in several steps of this process. It is shown that overexpression of the RAD51 protein is correlated with increased survival of cancer cells to cancer treatments. For the past decade, RAD51 overexpression-mediated resistance has justified the development of targeted inhibitors. One of the first molecules described to inhibit RAD51 was the 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) molecule. This small molecule is effective in inhibiting different functions of RAD51, however its mode of action and the chemical functions involved in this inhibition have not been identified. In this work, we used several commercial molecules derived from DIDS to characterize the structural determinants involved in modulating the activity of RAD51. By combining biochemical and biophysical approaches, we have shown that DIDS and two analogs were able to inhibit the binding of RAD51 to ssDNA and prevent the formation of D-loop by RAD51. Both isothiocyanate substituents of DIDS appear to be essential in the inhibition of RAD51. These results open the way to the synthesis of new molecules derived from DIDS that should be greater modulators of RAD51 and more efficient for HR inhibition.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/análogos & derivados , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/administración & dosificación , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/administración & dosificación , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/farmacología , ADN de Cadena Simple/metabolismo , Relación Dosis-Respuesta a Droga , Recombinasa Rad51/antagonistas & inhibidores
7.
Biomolecules ; 11(7)2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34356606

RESUMEN

The genetic principle of synthetic lethality has most successfully been exploited in therapies engaging Poly-ADP-ribose-polymerase (PARP) inhibitors to treat patients with homologous recombination (HR)-defective tumors. In this work, we went a step further following the idea of a local molecular cooperation and designed hybrid compounds M1-M3. The drug conjugates M1-M3 combine Olaparib, the first PARP inhibitor approved for clinical use, with Cpd 1, an inhibitor of RAD51 that blocks its HR functions and yet permits RAD51 nucleoprotein filament formation on single-stranded DNA. While in M2 and M3, the parental drugs are linked by -CO-(CH2)n-CO-spacers (n = 2 and 4, respectively), they are directly merged omitting the piperazine ring of Olaparib in M1. Monitoring anti-survival effects of M1-M3 in six breast cancer cell lines of different molecular subtypes showed that in each cell line, at least one of the drug conjugates decreased viability by one to two orders of magnitude compared with parental drugs. While triple-negative breast cancer (TNBC) cells with frequent BRCA1 pathway dysfunction were sensitive to spacer-linked hybrid compounds M1 and M2 regardless of their HR capacities, non-TNBC cells were responsive to the merged drug conjugate M1 only, suggesting different spatial requirements for dual inhibition in these two groups of cell lines. These results demonstrate that, depending on chemical linkage, dual PARP1-RAD51 inhibitory drugs can either sensitize non-TNBC and re-sensitize TNBC cells, or discriminate between these groups of cells.


Asunto(s)
Antineoplásicos , Proteínas de Neoplasias/antagonistas & inhibidores , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Recombinasa Rad51/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
8.
Cancer Lett ; 520: 361-373, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389435

RESUMEN

The anthracycline derivative doxorubicin (Doxo) induces DNA double-strand breaks (DSBs) by inhibition of DNA topoisomerase type II. Defective mismatch repair (MMR) contributes to Doxo resistance and has been reported for colon and mammary carcinomas. Here, we investigated the outcome of pharmacological inhibition of various DNA repair-related mechanisms on Doxo-induced cytotoxicity employing MMR-deficient HCT-116 colon carcinoma cells. Out of different inhibitors tested (i.e. HDACi, PARPi, MRE11i, RAD52i, RAD51i), we identified the RAD51-inhibitor B02 as the most powerful compound to synergistically increase Doxo-induced cytotoxicity. B02-mediated synergism rests on pleiotropic mechanisms, including pronounced G2/M arrest, damage to mitochondria and caspase-driven apoptosis. Of note, B02 also promotes the cytotoxicity of oxaliplatin and 5-fluoruracil (5-FU) in HCT-116 cells and, furthermore, also increases Doxo-induced cytotoxicity in MMR-proficient colon and mammary carcinoma cells. Summarizing, pharmacological inhibition of RAD51 is suggested to synergistically increase the cytotoxic efficacy of various types of conventional anticancer drugs in different tumor entities. Hence, pre-clinical in vivo studies are preferable to determine the therapeutic window of B02 in a clinically oriented therapeutic regimen.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Recombinasa Rad51/genética , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasas/genética , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Daño del ADN/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/genética , Doxorrubicina/efectos adversos , Sinergismo Farmacológico , Fluorouracilo/farmacología , Células HCT116 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Oxaliplatino/farmacología , Recombinasa Rad51/antagonistas & inhibidores
9.
Genes (Basel) ; 12(6)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208492

RESUMEN

Targeting DNA repair proteins with small-molecule inhibitors became a proven anti-cancer strategy. Previously, we identified an inhibitor of a major protein of homologous recombination (HR) RAD51, named B02. B02 inhibited HR in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. Here, using a medicinal chemistry approach, we aimed to improve the potency of B02. We identified the B02 analog, B02-isomer, which inhibits HR in human cells with significantly higher efficiency. We also show that B02-iso sensitizes triple-negative breast cancer MDA-MB-231 cells to the PARP inhibitor (PARPi) olaparib.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Recombinación Homóloga/efectos de los fármacos , Quinazolinonas/farmacología , Recombinasa Rad51/antagonistas & inhibidores , Antineoplásicos/química , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Ftalazinas/farmacología , Piperazinas/farmacología , Unión Proteica , Quinazolinonas/química , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo
10.
Mol Cancer Ther ; 20(7): 1257-1269, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33947685

RESUMEN

Despite advances in surgery, chemotherapy, and radiation, there are limited treatment options for advanced head and neck squamous cell carcinoma (HNSCC) and survival remains very poor. Therefore, effective therapies are desperately needed. Recently, selective exploitation of DNA damage and replication stress responses has become a novel approach for cancer treatment. Wee1 kinase and Rad51 recombinase are two proteins involved in regulating replication stress and homologous recombination repair in cancer cells. In this study, we investigated the combined effect of Rad51 inhibitor (B02) and Wee1 inhibitor (AZD1775) in vitro and in vivo in various HNSCC cell lines. Clonogenic survival assays demonstrated that B02 synergized with AZD1775 in vitro in all HNSCC cell lines tested. The synergy between these drugs was associated with forced CDK1 activation and reduced Chk1 phosphorylation leading to induction of excessive DNA damage and replication stress, culminating in aberrant mitosis and apoptosis. Our results showed that elevated Rad51 mRNA expression correlated with worse survival in HNSCC patients with HPV-positive tumors. The combination of B02 and AZD1775 significantly inhibited tumor growth in vivo in mice bearing HPV-positive HNSCC tumors as compared to HPV-negative HNSCC. This differential sensitivity appears to be linked to HPV-positive tumors having more in vivo endogenous replication stress owing to transformation by E6 and E7 oncogenes. Furthermore, addition of B02 radiosensitized the HPV-negative HNSCC tumors in vitro and in vivo In conclusion, our data implicate that a novel rational combination with Rad51 and Wee1 inhibitors holds promise as synthetic lethal therapy, particularly in high-risk HPV-positive HNSCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Biología Computacional/métodos , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Recombinación Homóloga , Humanos , Ratones , Pirazoles/farmacología , Pirimidinonas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33792683

RESUMEN

Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2'-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Animales , Afidicolina/farmacología , Células Cultivadas , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiadenina/farmacología , Didesoxinucleótidos/farmacología , Femenino , Fase G2 , Indoles/farmacología , Ratones , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Oocitos , Cultivo Primario de Células , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Tetrahidroisoquinolinas/farmacología
12.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916766

RESUMEN

R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , ADN/biosíntesis , Inhibidores Enzimáticos/farmacología , Fase G1/efectos de los fármacos , Estructuras R-Loop , Recombinasa Rad51 , Línea Celular Tumoral , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo
13.
Cell Chem Biol ; 28(6): 835-847.e5, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33662256

RESUMEN

BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.


Asunto(s)
Proteína BRCA2/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Muerte Celular/efectos de los fármacos , Cristalografía por Rayos X , Daño del ADN , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica/efectos de los fármacos , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Células Tumorales Cultivadas
14.
Bioorg Chem ; 104: 104210, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32920356

RESUMEN

Cisplatin, a representative of platinum-based drug, is clinically and widely used in the treatment of various types of malignant cancer. However, its non-selectivity to almost all the cell lines and resistance in long-term use severely limit its scope of use. As biotin-specific uptake systems are overexpressed in many types of tumors but rarely occur in normal tissues, making biotin a promising target for cancer treatment. In the study, we synthesized the Pt(II) complex C2 and determined its biological activities. The existence of biotin enhanced the ability of the complex to target tumors, while the introduction of a naphthalimide compound makes it possible to diagnose tumors and monitor their progress. We have also introduced a known Pt(II) complex DN604, which not only retains the excellent cytotoxicity of platinum drugs, but also inhibits the expression of DNA double-strand breaks (DSBs) repair-related NHEJ protein Ku70 and HR protein Rad51. In summary, we report a novel trifunctional Pt(II) complex that could target tumor cells, monitor tumor progression, and reverse DSBs repair-induced cisplatin-resistance.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Autoantígeno Ku/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos Organoplatinos/farmacología , Recombinasa Rad51/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cisplatino/química , Cisplatino/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Autoantígeno Ku/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Recombinasa Rad51/metabolismo , Relación Estructura-Actividad
15.
Cell Death Dis ; 11(7): 581, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32719412

RESUMEN

Rad51 is an essential factor of the homologous recombination DNA repair pathway and therefore plays an important role in maintaining genomic stability. We show that RAD51 and other homologous recombination repair genes are overexpressed in metastatic melanoma cell lines and in melanoma patient samples, which correlates with reduced survival of melanoma patients. In addition, Rad51 expression in melanoma cells was regulated on a transcriptional level by the MAPK signaling pathway with Elk1 as the main downstream transcriptional effector. Most strikingly, melanoma cells which developed resistance towards MAPK inhibitors could be efficiently targeted by Rad51 inhibitors similar to their sensitive counterparts, leading to DNA damage, G2/M arrest and apoptosis. Furthermore, the treatment of MAPK inhibitor resistant cells with Rad51 inhibitors enhances the susceptibility of these cells for MAPK inhibitor treatment in vitro and in vivo. These data indicate that Rad51 plays a critical role in the survival of metastatic melanoma cells and is a promising target for the therapy of melanoma irrespective of its MAPK inhibitor resistance status.


Asunto(s)
Resistencia a Antineoplásicos , Sistema de Señalización de MAP Quinasas , Melanoma/enzimología , Melanoma/patología , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Recombinasa Rad51/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Recombinasa Rad51/antagonistas & inhibidores , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
16.
J Cancer Res Ther ; 16(2): 215-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474504

RESUMEN

OBJECTIVE: Osteosarcoma is a malignant bone tumor and is generally treated with radiotherapy combined with radiosensitizers. The aim of the present study was to investigate the radiosensitization effects of berberine on osteosarcoma cells and the role of Rad51 in radiosensitivity by berberine. MATERIALS AND METHODS: Cells from the human osteosarcoma cell line MG-63 were exposed to γ-ray irradiation (0, 2, 4, 6, and 8 Gy) and berberine (20 µM). Radiosensitivity was evaluated by determining cell viability using an MTT assay. Flow cytometry was used to determine cell cycle and apoptosis. Real-time PCR and western blot were performed to analyze the mRNA and protein expressions of Rad51. The protein levels of E-cadherin and vimentin were also measured to evaluate the epithelial-mesenchymal transition (EMT) process. Tumor invasion was determined by the Boyden chamber assay. RESULTS: Berberine exacerbated the decline in viability of MG-63 cells exposed to γ-rays irradiation at various concentrations (25, 50, 75, and 100 µmol/L) and induced cell cycle arrest in the G2/M phase as well as apoptosis. The mRNA and protein expressions of Rad51 were significantly decreased by berberine in MG-63 cells. Inhibition of Rad51 by B02 enhanced the radiosensitivity of MG-63 cells. Berberine inhibited their invasive capability as well as increased E-cadherin and decreased vimentin protein levels; this indicated that berberine suppressed the EMT process in MG-63 cells exposed to γ-rays irradiation. CONCLUSION: Berberine enhances the radiosensitivity of MG-63 osteosarcoma cells. Rad51 is a potential target of berberine in the radiosensitization of osteosarcoma.


Asunto(s)
Berberina/farmacología , Puntos de Control del Ciclo Celular , Supervivencia Celular , Transición Epitelial-Mesenquimal , Osteosarcoma/radioterapia , Recombinasa Rad51/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/radioterapia , Línea Celular Tumoral , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Recombinasa Rad51/metabolismo
17.
Cell Rep ; 29(3): 560-572.e4, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618627

RESUMEN

DNA double-strand breaks (DSBs) are deleterious and tumorigenic but could also be essential for DNA-based processes. Yet the landscape of physiological DSBs and their role and repair are still elusive. Here, we mapped DSBs at high resolution in cancer and non-tumorigenic cells and found a transcription-coupled repair mechanism at oncogenic super-enhancers. At these super-enhancers the transcription factor TEAD4, together with various transcription factors and co-factors, co-localizes with the repair factor RAD51 of the homologous recombination pathway. Depletion of TEAD4 or RAD51 increases DSBs at RAD51/TEAD4 common binding sites within super-enhancers and decreases expression of related genes, which are mostly oncogenes. Co-localization of RAD51 with transcription factors at super-enhancers occurs in various cell types, suggesting a broad phenomenon. Together, our findings uncover a coupling between transcription and repair mechanisms at oncogenic super-enhancers, to control the hyper-transcription of multiple cancer drivers.


Asunto(s)
Reparación del ADN , Recombinasa Rad51/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estradiol/farmacología , Humanos , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/genética , Radiación Ionizante , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-1/química , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Oncol Rep ; 42(6): 2426-2434, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638261

RESUMEN

RAD51, is a key homologous recombination protein that repairs DNA damage and maintains gene diversity and stability. Previous studies have demonstrated that the over­expression of RAD51 is associated with chemotherapy resistance of tumor cells to chemotherapy, and enhanced activity of DNA damage repair (DDR) systems contributes to resistance of adult T­cell leukemia­lymphoma (ATL) resistance to chemotherapy. Thus, targeting RAD51 is a potential strategy for the sensitization of ATL cells to chemotherapeutic drugs by inducing DNA damage. In general, cells can repair minor DNA damage through DDR; however, serious DNA damage may cause cell toxicity in cells which cannot be restored. In the present, down regulation of RAD51 by shRNA and imatinib sensitized Jurkat cells to etoposide by decreasing the activity of homologous recombination (HR). We found that the suppression of RAD51 by shRNA inhibited tumor cells proliferation and enhanced apoptosis of Jurkat cells after etoposide treatment. Importantly, downregulation of RAD51 by imatinib obviously increased the apoptosis of Jurkat cell after etoposide treatment. These results demonstrated that RAD51 may be of great value to as a novel target for the clinical treatment of adult T­cell leukemia­lymphoma (ATL), and it may improve the survival of leukemia patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Recombinasa Rad51/antagonistas & inhibidores , Reparación del ADN por Recombinación/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Roturas del ADN de Doble Cadena , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Etopósido/farmacología , Etopósido/uso terapéutico , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células Jurkat , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
19.
Sci Rep ; 9(1): 11227, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375703

RESUMEN

DNA damaging chemotherapies are successful in cancer therapy, however, the damage can be reversed by DNA repair mechanisms that may be up-regulated in cancer cells. We hypothesized that inhibiting RAD51, a protein involved in homologous recombination DNA repair, would block DNA repair and restore the effectiveness of DNA damaging chemotherapy. We used phage-display to generate a novel synthetic antibody fragment that bound human RAD51 with high affinity (KD = 8.1 nM) and inhibited RAD51 ssDNA binding in vitro. As RAD51 is an intracellular target, we created a corresponding intrabody fragment that caused a strong growth inhibitory phenotype on human cells in culture. We then used a novel cell-penetrating peptide "iPTD" fusion to generate a therapeutically relevant antibody fragment that effectively entered living cells and enhanced the cell-killing effect of a DNA alkylating agent. The iPTD may be similarly useful as a cell-penetrating peptide for other antibody fragments and open the door to numerous intracellular targets previously off-limits in living cells.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Reparación del ADN/efectos de los fármacos , Fragmentos de Inmunoglobulinas/uso terapéutico , Recombinasa Rad51/antagonistas & inhibidores , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Células Cultivadas , Daño del ADN/efectos de los fármacos , Humanos , Fragmentos de Inmunoglobulinas/farmacología , Biblioteca de Péptidos
20.
Cell Cycle ; 18(15): 1770-1783, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238782

RESUMEN

Although improvements in radiation therapy were made over the years, radioresistance is still a major challenge. Cancer cells are often deficient for DNA repair response, a feature that is currently exploited as a new anti-cancer strategy. In this context, combination of inhibitors targeting complementary pathways is of interest to sensitize cells to radiation. In this work, we used PARP (Olaparib) and RAD51 (B02) inhibitors to radiosensitize cancer cells to proton and X-ray radiation. More particularly, Olaparib and B02 were used at concentration leading to limited cytotoxic (alone or in combination) but increasing cell death when the cells were irradiated. We showed that, although at limited concentration, Olaparib and B02 were able to radiosensitize different cancer cell lines, i.e. lung and pancreatic cancer cells. Antagonistic, additive or synergistic effects were observed and correlated to cell proliferation rate. The inhibitors enhanced persistent DNA damage, delayed apoptosis, prolonged cell cycle arrest and senescence upon irradiation. These results demonstrated that radiation-induced synthetic lethality might widen the therapeutic window, hence extending the use of PARP inhibitors to patients without BRCAness.


Asunto(s)
Neoplasias/radioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinasa Rad51/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Mutaciones Letales Sintéticas , Células A549 , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Compuestos de Boro/uso terapéutico , Compuestos de Boro/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Humanos , Ftalazinas/uso terapéutico , Ftalazinas/toxicidad , Piperazinas/uso terapéutico , Piperazinas/toxicidad , Poli(ADP-Ribosa) Polimerasas/metabolismo , Protones , Radiación Ionizante , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA