Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.718
Filtrar
1.
New Phytol ; 243(3): 966-980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840557

RESUMEN

Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclo Celular , Daño del ADN , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Recombinasa Rad51 , Transcripción Genética , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/citología , Ciclo Celular/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Sci Rep ; 14(1): 14185, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902391

RESUMEN

Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Movimiento Celular , Daño del ADN , Helicobacter pylori , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Helicobacter pylori/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Histonas/metabolismo
3.
Nucleic Acids Res ; 52(12): 7031-7048, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828785

RESUMEN

Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.


Asunto(s)
ADN Helicasas , Recombinación Homóloga , Recombinasa Rad51 , Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Intercambio Genético , Mutación , Reparación del ADN por Recombinación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Enzimas Reparadoras del ADN
4.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828772

RESUMEN

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Asunto(s)
Secuencias de Aminoácidos , Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Unión Proteica , Recombinasa Rad51 , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Ratones , Humanos , Sitios de Unión , Modelos Moleculares , Cristalografía por Rayos X , Recombinación Homóloga , Proteínas de Unión a Fosfato
5.
Nat Commun ; 15(1): 5044, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890315

RESUMEN

Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.


Asunto(s)
Ciclo Celular , Marcación de Gen , Proteína 2 Homóloga a MutS , Recombinasa Rad51 , Proteína Recombinante y Reparadora de ADN Rad52 , Humanos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Ciclo Celular/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Reparación del ADN , Reparación del ADN por Unión de Extremidades , Fase G1/genética
6.
Mol Biol Rep ; 51(1): 745, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874758

RESUMEN

BACKGROUND: Sn1-type alkylating agents methylate the oxygen atom on guanine bases thereby producing O6-methylguanine. This modified base could pair with thymine and cytosine, resulting in the formation of O6-methylguanine/thymine mismatch during DNA replication, recognized by the mismatch repair (MMR) complex, which then initiates the DNA damage response and subsequent apoptotic processes. In our investigation of the molecular mechanisms underlying MMR-dependent apoptosis, we observed FANCD2 modification upon the activity of alkylating agent N-methyl-N-nitrosourea (MNU). This observation led us to hypothesize a relevant role for FANCD2 in the apoptosis induction process. METHODS AND RESULTS: We generated FANCD2 knockout cells using the CRISPR/Cas9 method in the human cervical cancer cell line HeLa MR. FANCD2-deficient cells exhibited MNU hypersensitivity. Upon MNU exposure, FANCD2 colocalized with the MMR complex. MNU-treated FANCD2 knockout cells displayed severe S phase delay followed by increased G2/M arrest and MMR-dependent apoptotic cell death. Moreover, FANCD2 knockout cells exhibited impaired CtIP and RAD51 recruitment to the damaged chromatin and DNA double-strand break accumulation, indicated by simultaneously observed increased γH2AX signal and 53BP1 foci. CONCLUSIONS: Our data suggest that FANCD2 is crucial for recruiting homologous recombination factors to the sites of the MMR-dependent replication stress to resolve the arrested replication fork and counteract O6-methylguanine-triggered MMR-dependent apoptosis.


Asunto(s)
Apoptosis , Reparación de la Incompatibilidad de ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Guanina , Humanos , Reparación de la Incompatibilidad de ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Apoptosis/genética , Apoptosis/efectos de los fármacos , Guanina/metabolismo , Guanina/análogos & derivados , Células HeLa , Daño del ADN , Metilnitrosourea/toxicidad , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética
7.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740757

RESUMEN

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Asunto(s)
Reparación del ADN , Resistencia a Antineoplásicos , Hierro , Neoplasias Ováricas , Recombinasa Rad51 , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ferritinas/efectos de los fármacos , Ferritinas/metabolismo , Hierro/metabolismo , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Oxidorreductasas/metabolismo , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Recombinasa Rad51/metabolismo , ADN Polimerasa theta/efectos de los fármacos , ADN Polimerasa theta/metabolismo , Apoferritinas/efectos de los fármacos , Apoferritinas/metabolismo
8.
Cell Rep ; 43(5): 114205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753485

RESUMEN

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Replicación del ADN/efectos de los fármacos , Línea Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN Polimerasa II/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Recombinasa Rad51/metabolismo
9.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38803223

RESUMEN

Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Recombinación Homóloga , Recombinasa Rad51 , Arabidopsis/metabolismo , Arabidopsis/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sitios de Unión , Mutación , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Meiosis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Reparación del ADN
10.
J Biol Chem ; 300(6): 107342, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705392

RESUMEN

Posttranslational modifications of Hsp90 are known to regulate its in vivo chaperone functions. Here, we demonstrate that the lysine acetylation-deacetylation dynamics of Hsp82 is a major determinant in DNA repair mediated by Rad51. We uncover that the deacetylated lysine 27 in Hsp82 dictates the formation of the Hsp82-Aha1-Rad51 complex, which is crucial for client maturation. Intriguingly, Aha1-Rad51 complex formation is not dependent on Hsp82 or its acetylation status; implying that Aha1-Rad51 association precedes the interaction with Hsp82. The DNA damage sensitivity of Hsp82 (K27Q/K27R) mutants are epistatic to the loss of the (de)acetylase hda1Δ; reinforcing the importance of the reversible acetylation of Hsp82 at the K27 position. These findings underscore the significance of the cross talk between a specific Hsp82 chaperone modification code and the cognate cochaperones in a client-specific manner. Given the pivotal role that Rad51 plays during DNA repair in eukaryotes and particularly in cancer cells, targeting the Hda1-Hsp90 axis could be explored as a new therapeutic approach against cancer.


Asunto(s)
Reparación del ADN , Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Recombinasa Rad51 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Acetilación , Daño del ADN , Procesamiento Proteico-Postraduccional , Lisina/metabolismo
11.
Nat Commun ; 15(1): 4430, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789420

RESUMEN

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Replicación del ADN , Resistencia a Antineoplásicos , Histonas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Femenino , Humanos , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/deficiencia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Histonas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ratones Desnudos
12.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719812

RESUMEN

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Asunto(s)
Acetilglucosamina , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Recombinasa Rad51 , Reparación del ADN por Recombinación , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Acetilglucosamina/metabolismo , Recombinasa Rad51/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fosforilación , Replicación del ADN , Ubiquitinación , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Daño del ADN , ADN/metabolismo , Células HEK293 , Rayos Ultravioleta , Unión Proteica , Glicosilación , Síntesis Translesional de ADN
13.
Sci Rep ; 14(1): 9906, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689033

RESUMEN

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Asunto(s)
Apoptosis , Proteínas Cullin , Intestinos , Regeneración , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Apoptosis/efectos de la radiación , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Intestinos/efectos de la radiación , Intestinos/patología , Ratones Endogámicos C57BL , Fosforilación/efectos de la radiación , Recombinasa Rad51/metabolismo , Radiación Ionizante , Regeneración/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
14.
Nucleic Acids Res ; 52(10): 5774-5791, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597669

RESUMEN

RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.


Asunto(s)
Inestabilidad Genómica , Recombinasa Rad51 , Humanos , Cromátides/metabolismo , Cromátides/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Línea Celular , Técnicas de Inactivación de Genes
15.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
16.
Chirality ; 36(4): e23664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561319

RESUMEN

Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.


Asunto(s)
ADN , Recombinasa Rad51 , Recombinasa Rad51/química , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Estereoisomerismo , ADN/química , ADN de Cadena Simple
17.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675528

RESUMEN

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , S-Adenosilmetionina/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Recombinasa Rad51/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos
18.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568172

RESUMEN

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Asunto(s)
Desecación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de la radiación , Recombinasa Rad51/metabolismo , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/análisis , Dosis de Radiación
19.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654320

RESUMEN

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Asunto(s)
Carcinoma Nasofaríngeo , Recombinasa Rad51 , Tolerancia a Radiación , Reparación del ADN por Recombinación , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Ratones , Animales , Tolerancia a Radiación/genética , ARN Circular/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Línea Celular Tumoral , Femenino , Masculino , Pronóstico , Ratones Desnudos
20.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38571319

RESUMEN

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Asunto(s)
Acetaldehído , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Acetaldehído/toxicidad , Humanos , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Reparación del ADN/efectos de los fármacos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Mutación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...