Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.709
Filtrar
1.
J Neurosci Res ; 102(5): e25338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706427

RESUMEN

The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Ratas Sprague-Dawley , Animales , Masculino , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratas , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Quinurenina/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Modelos Animales de Enfermedad , Recuperación de la Función/efectos de los fármacos , Triptófano/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos
2.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736654

RESUMEN

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Asunto(s)
Clorhidrato de Fingolimod , Hidrogeles , Células-Madre Neurales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/terapia , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/administración & dosificación , Células-Madre Neurales/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/administración & dosificación , Ratas , Recuperación de la Función/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Puntos Cuánticos/química , Modelos Animales de Enfermedad , Femenino , Médula Espinal/efectos de los fármacos
3.
Neuroreport ; 35(9): 549-557, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739900

RESUMEN

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocina CXCL5 , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Recuperación de la Función , Animales , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Quimiocina CXCL5/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratones , Masculino , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Anticuerpos Neutralizantes/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo
4.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615859

RESUMEN

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Asunto(s)
Gelatina , Ácido Hialurónico , Janus Quinasa 2 , Enfermedades Neuroinflamatorias , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Animales , Ratones , Recuperación de la Función/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Gelatina/química , Gelatina/farmacología , Janus Quinasa 2/metabolismo , Dextranos/química , Andamios del Tejido/química , Microesferas , Factor de Transcripción STAT3/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Animales de Enfermedad , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Hidrogeles/química , Hidrogeles/farmacología
5.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658922

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Asunto(s)
Hematoma , Accidente Cerebrovascular Hemorrágico , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Recuperación de la Función , Animales , Ratones , Hematoma/tratamiento farmacológico , Hematoma/patología , Hematoma/metabolismo , Masculino , Accidente Cerebrovascular Hemorrágico/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo
6.
Acta Biomater ; 180: 308-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615813

RESUMEN

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Asunto(s)
Matriz Extracelular , Factor Neurotrófico Derivado de la Línea Celular Glial , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Remielinización , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neurogénesis/efectos de los fármacos , Remielinización/efectos de los fármacos , Matriz Extracelular/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratas , Femenino , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
7.
Biomed Pharmacother ; 174: 116560, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583338

RESUMEN

Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 µg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 µg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.


Asunto(s)
Autofagia , Ferroptosis , Infarto de la Arteria Cerebral Media , Recuperación de la Función , Animales , Autofagia/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Recuperación de la Función/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Venenos de Avispas/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
8.
Phytomedicine ; 128: 155380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507854

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE: To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS: First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS: Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION: Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.


Asunto(s)
Ferroptosis , Neuronas , Oligodendroglía , Triterpenos Pentacíclicos , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Triterpenos , Ferroptosis/efectos de los fármacos , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Oligodendroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Triterpenos/farmacología , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos
9.
Stem Cells Transl Med ; 13(5): 477-489, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38387017

RESUMEN

OBJECTIVE: In our previous study, we found that local release of curcumin from nanomicelles prevents peritendinous adhesion during Achilles tendon healing. The aim of this study is to further investigate the signaling integrated by curcumin to direct the tenogenetic program of tendon stem cells contributing to tendon healing. METHODS: A surgical model of tendon rupture and repair (TRR) was established in rats. Peritendinous adhesion and inflammation, biomechanical function, and expression of ß-catenin and epithelial cellular adhesion molecule (EpCAM) were determined. A dataset was analyzed to investigate differentially expressed genes and enriched genes related to the signaling pathways. Tendon stem cells were treated with curcumin to investigate the cellular and molecular events as well as the signaling pathway. RESULTS: In rat TRR model, curcumin treatment resulted in not only significantly decreased peritendinous inflammatory but also improved tendon functional recovery along with significantly increased expressions of EpCAM and ß-catenin. Analysis of the dataset indicated that the enriched genes were positively related to differentiation pathways but negatively related to proliferation pathways. In rat tendon stem cells, curcumin treatment inhibited proliferation but promoted differentiation. Curcumin's antioxidative activity was associated with tenogenesis. The upregulated expression of tendon lineage-specific markers was dependent on phosphatidylinositol 3'-kinase/Akt (PI3K/Akt) pathway which could be a potential mechanism of tenogenesis of curcumin treatment. CONCLUSION: Curcumin could improve tendon functional recovery via promoting tenogenesis in addition to its antioxidant and anti-inflammatory activities. Curcumin induced differentiation of tendon stem/progenitor cell into tenocytes via PI3K/Akt signaling pathway. This finding provided evidence for the application of curcumin to prevent adhesion during tendon repair.


Asunto(s)
Curcumina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Traumatismos de los Tendones , Animales , Curcumina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Traumatismos de los Tendones/tratamiento farmacológico , Masculino , Recuperación de la Función/efectos de los fármacos , Tendón Calcáneo/lesiones , Tendón Calcáneo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tendones/efectos de los fármacos , Tendones/metabolismo , Rotura
10.
Adv Healthc Mater ; 13(12): e2303462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38243745

RESUMEN

Oxidative stress (OS) is one of the crucial molecular events of secondary spinal cord injury (SCI). Basic fibroblast growth factor (bFGF) is a multipotent cell growth factor with an anti-oxidant effect. However, bFGF has a short half-life in vivo, which limits its therapeutic application. Biodegradable polymers with excellent biocompatibility have been recently applied in SCI. The negative aspect is that polymers cannot provide a significant therapeutic effect. Betulinic acid (BA), a natural anti-inflammatory compound, has been polymerized into poly (betulinic acid) (PBA) to serve as a drug carrier for bFGF. This study explores the therapeutic effects and underlying molecular mechanisms of PBA nanoparticles (NPs) loaded with bFGF (PBA-bFGF NPs) in SCI. Results show that PBA-bFGF NPs produce remarkable biocompatibility in vivo and in vitro. The results also demonstrate that local delivery of PBA-bFGF NPs enhances motor function recovery, inhibits OS, mitigates neuroinflammation, and alleviates neuronal apoptosis following SCI. Furthermore, the results indicate that local delivery of PBA-bFGF NPs activates the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway following SCI. In summary, results suggest that local delivery of PBA-bFGF NPs delivers potential therapeutic advantages in the treatment and management of SCI.


Asunto(s)
Ácido Betulínico , Factor 2 de Crecimiento de Fibroblastos , Nanopartículas , Triterpenos Pentacíclicos , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Triterpenos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Nanopartículas/química , Factor 2 de Crecimiento de Fibroblastos/química , Recuperación de la Función/efectos de los fármacos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Triterpenos/química , Triterpenos/farmacología , Ratas , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Polímeros/química , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química
12.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36129998

RESUMEN

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Oligonucleótidos Antisentido , Superóxido Dismutasa-1 , Adulto , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Método Doble Ciego , Humanos , Inyecciones Espinales , Proteínas de Neurofilamentos/sangre , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Superóxido Dismutasa-1/líquido cefalorraquídeo , Superóxido Dismutasa-1/genética
13.
Br J Surg ; 109(8): 704-710, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35639621

RESUMEN

BACKGROUND: Delayed return to gut function and prolonged postoperative ileus (PPOI) delay recovery after colorectal surgery. Prucalopride is a selective serotonin-4-receptor agonist that may improve gut motility. METHODS: This was a multicentre, double-blind, parallel, placebo-controlled randomized trial of 2 mg prucalopride versus placebo in patients undergoing elective colorectal resection. Patients with inflammatory bowel disease and planned ileostomy formation were excluded, but colostomy formation was allowed. The study medication was given 2 h before surgery and daily for up to 6 days after operation. The aim was to determine whether prucalopride improved return of gut function and reduced the incidence of PPOI. The primary endpoint was time to passage of stool and tolerance of diet (GI-2). Participants were allocated in a 1 : 1 ratio, in blocks of 10. Randomization was computer-generated. All study personnel, medical staff, and patients were blinded. RESULTS: This study was completed between October 2017 and May 2020 at two tertiary hospitals in New Zealand. A total of 148 patients were randomized, 74 per arm. Demographic data were similar in the two groups. There was no difference in median time to GI-2 between prucalopride and placebo groups: 3.5 (i.q.r. 2-5) versus 4 (3-5) days respectively (P = 0.124). Prucalopride improved the median time to passage of stool (3 versus 4 days; P = 0.027) but not time to tolerance of diet (2 versus 2 days; P = 0.669) or median duration of hospital stay (4 versus 4 days; P = 0.929). In patients who underwent laparoscopic surgery (125, 84.5 per cent), prucalopride improved median time to GI-2: 3 (2-4) days versus 4 (3-5) days for placebo (P = 0.012). The rate of PPOI, complications, and adverse events was similar in the two groups. CONCLUSION: Prucalopride did not improve time to overall recovery of gut function after elective colorectal surgery. Registration number: NCT02947269 (http://www.clinicaltrials.gov).


Asunto(s)
Benzofuranos , Cirugía Colorrectal , Procedimientos Quirúrgicos Electivos , Ileus , Complicaciones Posoperatorias , Recuperación de la Función , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Cirugía Colorrectal/efectos adversos , Método Doble Ciego , Procedimientos Quirúrgicos Electivos/efectos adversos , Humanos , Ileus/tratamiento farmacológico , Ileus/etiología , Nueva Zelanda , Complicaciones Posoperatorias/tratamiento farmacológico , Complicaciones Posoperatorias/etiología , Recuperación de la Función/efectos de los fármacos , Centros de Atención Terciaria
14.
Oxid Med Cell Longev ; 2022: 7547269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251481

RESUMEN

Chronic kidney disease (CKD) and cardiovascular disease are known to be linked, and the involvement of indoxyl sulfate (IS), a type of uremic toxin, has been suggested as one of the causes. It is known that IS induces vascular dysfunction through overproduction of reactive oxygen species (ROS). On the other hand, the involvement of IS in the vascular dysfunction associated with acute kidney injury (AKI) is not fully understood. Therefore, we investigated this issue using the thoracic aorta of rats with ischemic AKI. Ischemic AKI was induced by occlusion of the left renal artery and vein for 45 min, followed by reperfusion 2 weeks after contralateral nephrectomy. One day after reperfusion, there was marked deterioration in renal function evidenced by an increase in plasma creatinine. Furthermore, blood IS levels increased markedly due to worsening renal function. Seven days and 28 days after reperfusion, blood IS levels decreased with the improvement in renal function. Of note, acetylcholine-induced vasorelaxation deteriorated over time after reperfusion, contradicting the recovery of renal function. In addition, 28 days after reperfusion, we observed a significant increase in ROS production in the vascular tissue. Next, we administered AST-120, a spherical adsorbent charcoal, after reperfusion to assess whether the vascular endothelial dysfunction associated with the ischemic AKI was due to a temporary increase in blood IS levels. AST-120 reduced the temporary increase in blood IS levels after reperfusion without influencing renal function, but did not restore the impaired vascular reactivity. Thus, in ischemic AKI, we confirmed that the vascular endothelial function of the thoracic aorta is impaired even after the recovery of kidney injury, probably with excessive ROS production. IS, which increases from ischemia to early after reperfusion, may not be a major contributor to the vascular dysfunction associated with ischemic AKI.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/complicaciones , Aorta Torácica/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Indicán/sangre , Isquemia/sangre , Isquemia/complicaciones , Daño por Reperfusión/sangre , Daño por Reperfusión/complicaciones , Transducción de Señal/efectos de los fármacos , Animales , Carbono/administración & dosificación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Masculino , Óxido Nítrico/metabolismo , Óxidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/efectos de los fármacos , Insuficiencia Renal Crónica/metabolismo
15.
Biochem Biophys Res Commun ; 598: 124-130, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35158211

RESUMEN

At present, there are no satisfactory therapeutic drugs for the functional recovery of spinal cord injury (SCI). We previously identified a novel peptide (OM-LV20) that accelerated the regeneration of injured skin tissues of mice and exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Here, the intraperitoneal injection of OM-LV20 (1 µg/kg) markedly improved motor function recovery in the hind limbs of rats with traumatic SCI, and further enhanced spinal cord repair. Administration of OM-LV20 increased the number of surviving neuron bodies, as well as the expression levels of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB). In the acute stage of SCI, OM-LV20 treatment also increased superoxide dismutase and glutathione content but decreased the levels of malonaldehyde and nitric oxide. Thus, OM-LV20 significantly promoted structural and functional recovery of SCI in adult rats by increasing neuronal survival and BDNF and TrkB expression, and thereby regulating the balance of oxidative stress. Based on our knowledge, this research is the first report on the effects of amphibian-derived peptide on the recovery of SCI and our results highlight the potential of peptide OM-LV20 administration in the acceleration of the recovery of SCI.


Asunto(s)
Péptidos/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Recuperación de la Función/efectos de los fármacos , Regeneración/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo
16.
Oxid Med Cell Longev ; 2022: 7530102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132352

RESUMEN

PURPOSE: Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS: A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS: We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION: Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.


Asunto(s)
Electroacupuntura/métodos , Exosomas/metabolismo , MicroARNs/genética , Traumatismos de los Nervios Periféricos/sangre , Traumatismos de los Nervios Periféricos/terapia , Recuperación de la Función/genética , Nervio Ciático/lesiones , Transducción de Señal/genética , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular Transformada , Modelos Animales de Enfermedad , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Masculino , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Células de Schwann/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
17.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216504

RESUMEN

Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17ß-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso-Beattie-Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERß following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.


Asunto(s)
Estrógenos Conjugados (USP)/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Modelos Animales de Enfermedad , Estradiol/metabolismo , Estrógenos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
18.
Commun Biol ; 5(1): 74, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058552

RESUMEN

Acute ischemic stroke triggers complex systemic pathological responses for which the exploration of drug resources remains a challenge. Wasp venom extracted from Vespa magnifica (Smith, 1852) is most commonly used to treat rheumatoid arthritis as well as neurological disorders. Vespakinin-M (VK), a natural peptide from wasp venom, has remained largely unexplored for stroke. Herein, we first confirmed the structure, stability, toxicity and distribution of VK as well as its penetration into the blood-brain barrier. VK (150 and 300 µg/kg, i.p.) was administered to improve stroke constructed by middle cerebral artery occlusion in mice. Our results indicate that VK promote functional recovery in mice after ischemia stroke, including an improvement of neurological impairment, reduction of infarct volume, maintenance of blood-brain barrier integrity, and an obstruction of the inflammatory response and oxidative stress. In addition, VK treatment led to reduced neuroinflammation and apoptosis associated with the activation of PI3K-AKT and inhibition of IκBα-NF-κB signaling pathways. Simultaneously, we confirmed that VK can combine with bradykinin receptor 2 (B2R) as detected by molecular docking, the B2R antagonist HOE140 could counteract the neuro-protective effects of VK on stroke in mice. Overall, targeting the VK-B2R interaction can be considered as a practical strategy for stroke therapy.


Asunto(s)
Bradiquinina/análogos & derivados , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Recuperación de la Función/efectos de los fármacos , Avispas/química , Animales , Barrera Hematoencefálica/fisiopatología , Bradiquinina/química , Bradiquinina/farmacología , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Masculino , Ratones , Fármacos Neuroprotectores/química
19.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054878

RESUMEN

Many clinical studies utilizing MSCs (mesenchymal stem cells, mesenchymal stromal cells, or multipotential stromal cells) are underway in multiple clinical settings; however, the ideal approach to prepare these cells in vitro and to deliver them to injury sites in vivo with maximal effectiveness remains a challenge. Here, pretreating MSCs with agents that block the apoptotic pathways were compared with untreated MSCs. The treatment effects were evaluated in the myocardial infarct setting following direct injection, and physiological parameters were examined at 4 weeks post-infarct in a rat permanent ligation model. The prosurvival treated MSCs were detected in the hearts in greater abundance at 1 week and 4 weeks than the untreated MSCs. The untreated MSCs improved ejection fraction in infarcted hearts from 61% to 77% and the prosurvival treated MSCs further improved ejection fraction to 83% of normal. The untreated MSCs improved fractional shortening in the infarcted heart from 52% to 68%, and the prosurvival treated MSCs further improved fractional shortening to 77% of normal. Further improvements in survival of the MSC dose seems possible. Thus, pretreating MSCs for improved in vivo survival has implications for MSC-based cardiac therapies and in other indications where improved cell survival may improve effectiveness.


Asunto(s)
Corazón/fisiopatología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electrocardiografía , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/toxicidad , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Infarto del Miocardio/patología , Ratas Endogámicas Lew , Recuperación de la Función/efectos de los fármacos
20.
J Extracell Vesicles ; 11(1): e12185, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029057

RESUMEN

Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and severely limits psychosocial function and quality of life, but no effective medication is currently available. Circular RNAs (circRNAs) have been revealed to participate in the MDD pathological process. Targeted delivery of circRNAs without blood-brain barrier (BBB) restriction for remission of MDD represents a promising approach for antidepressant therapy. In this study, RVG-circDYM-extracellular vesicles (RVG-circDYM-EVs) were engineered to target and preferentially transfer circDYM to the brain, and the effect on the pathological process in a chronic unpredictable stress (CUS) mouse model of depression was investigated. The results showed that RVG-circDYM-EVs were successfully purified by ultracentrifugation from overexpressed circDYM HEK 293T cells, and the characterization of RVG-circDYM-EVs was successfully demonstrated in terms of size, morphology and specific markers. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that systemic administration of RVG-circDYM-EVs efficiently delivered circDYM to the brain, and alleviated CUS-induced depressive-like behaviours, and we discovered that RVG-circDYM-EVs notably inhibited microglial activation, BBB leakiness and peripheral immune cells infiltration, and attenuated astrocyte disfunction induced by CUS. CircDYM can bind mechanistically to the transcription factor TAF1 (TATA-box binding protein associated factor 1), resulting in the decreased expression of its downstream target genes with consequently suppressed neuroinflammation. Taken together, our findings suggest that extracellular vesicle-mediated delivery of circDYM is effective for MDD treatment and promising for clinical applications.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Vesículas Extracelulares/metabolismo , ARN Circular/administración & dosificación , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Modelos Animales de Enfermedad , Glicoproteínas/administración & dosificación , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Histona Acetiltransferasas/genética , Humanos , Inflamación , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Recuperación de la Función/efectos de los fármacos , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA