Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811815

RESUMEN

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Asunto(s)
Axones , Factor Estimulante de Colonias de Granulocitos , Interleucina-4 , Ratones Endogámicos C57BL , Regeneración Nerviosa , Neutrófilos , Animales , Neutrófilos/inmunología , Regeneración Nerviosa/inmunología , Ratones , Humanos , Axones/metabolismo , Axones/fisiología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Interleucina-4/metabolismo , Activación Neutrófila , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traslado Adoptivo , Citocinas/metabolismo , Células Cultivadas
2.
Science ; 376(6594): 694-695, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549427
4.
Pharmacol Res Perspect ; 9(5): e00795, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34609083

RESUMEN

Neurodegenerative diseases (NDD) are disorders characterized by the progressive loss of neurons affecting motor, sensory, and/or cognitive functions. The incidence of these diseases is increasing and has a great impact due to their high morbidity and mortality. Unfortunately, current therapeutic strategies only temporarily improve the patients' quality of life but are insufficient for completely alleviating the symptoms. An interaction between the immune system and the central nervous system (CNS) is widely associated with neuronal damage in NDD. Usually, immune cell infiltration has been identified with inflammation and is considered harmful to the injured CNS. However, the immune system has a crucial role in the protection and regeneration of the injured CNS. Nowadays, there is a consensus that deregulation of immune homeostasis may represent one of the key initial steps in NDD. Dr. Michal Schwartz originally conceived the concept of "protective autoimmunity" (PA) as a well-controlled peripheral inflammatory reaction after injury, essential for neuroprotection and regeneration. Several studies suggested that immunizing with a weaker version of the neural self-antigen would generate PA without degenerative autoimmunity. The development of CNS-related peptides with immunomodulatory neuroprotective effect led to important research to evaluate their use in chronic and acute NDD. In this review, we refer to the role of PA and the potential applications of active immunization as a therapeutic option for NDD treatment. In particular, we focus on the experimental and clinical promissory findings for CNS-related peptides with beneficial immunomodulatory effects.


Asunto(s)
Autoantígenos/uso terapéutico , Autoinmunidad/inmunología , Factores Inmunológicos/uso terapéutico , Regeneración Nerviosa/inmunología , Enfermedades Neurodegenerativas/terapia , Neuroprotección/inmunología , Péptidos/uso terapéutico , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/terapia , Animales , Acetato de Glatiramer/uso terapéutico , Humanos , Inmunización Pasiva , Inmunomodulación , Proteína Básica de Mielina/uso terapéutico , Enfermedades Neurodegenerativas/inmunología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/terapia , Fragmentos de Péptidos/uso terapéutico , Deficiencias en la Proteostasis , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/terapia , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/terapia
5.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359839

RESUMEN

Neuroinflammation has been put forward as a mechanism triggering axonal regrowth in the mammalian central nervous system (CNS), yet little is known about the underlying cellular and molecular players connecting these two processes. In this study, we provide evidence that MMP2 is an essential factor linking inflammation to axonal regeneration by using an in vivo mouse model of inflammation-induced axonal regeneration in the optic nerve. We show that infiltrating myeloid cells abundantly express MMP2 and that MMP2 deficiency results in reduced long-distance axonal regeneration. However, this phenotype can be rescued by restoring MMP2 expression in myeloid cells via a heterologous bone marrow transplantation. Furthermore, while MMP2 deficiency does not affect the number of infiltrating myeloid cells, it does determine the coordinated expression of pro- and anti-inflammatory molecules. Altogether, in addition to its role in axonal regeneration via resolution of the glial scar, here, we reveal a new mechanism via which MMP2 facilitates axonal regeneration, namely orchestrating the expression of pro- and anti-inflammatory molecules by infiltrating innate immune cells.


Asunto(s)
Axones/inmunología , Trasplante de Médula Ósea , Metaloproteinasa 2 de la Matriz/genética , Regeneración Nerviosa/inmunología , Traumatismos del Nervio Óptico/inmunología , Nervio Óptico/inmunología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Axones/ultraestructura , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/inmunología , Movimiento Celular , Proteína GAP-43/genética , Proteína GAP-43/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Inflamación , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Metaloproteinasa 2 de la Matriz/deficiencia , Metaloproteinasa 2 de la Matriz/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/inmunología , Regeneración Nerviosa/genética , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Retina/inmunología , Retina/lesiones , Retina/metabolismo , Trasplante Heterólogo , Irradiación Corporal Total
6.
Acta Neuropathol Commun ; 9(1): 125, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274026

RESUMEN

Peripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


Asunto(s)
Quitosano , Regeneración Tisular Dirigida , Interleucina-17/genética , Macrófagos/inmunología , Regeneración Nerviosa/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Nervio Ciático/fisiología , Animales , Interleucina-17/inmunología , Macrófagos Peritoneales/inmunología , Ratones , Ratones Noqueados , Regeneración Nerviosa/fisiología , Células RAW 264.7 , Nervio Ciático/cirugía , Andamios del Tejido
7.
J Trauma Acute Care Surg ; 90(2): 281-286, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264266

RESUMEN

INTRODUCTION: Repulsive guidance molecule a (RGMa) is a key protein that negatively regulates neuronal regeneration as its inhibition enhances axonal growth and promotes functional recovery in animal models of spinal cord injury. However, the role of RGMa in traumatic brain injury (TBI) remains elusive. This study aimed to clarify TBI-responsive RGMa expression in a murine model. METHODS: Adult male C57BL/6J mice were subjected to controlled cortical impact. Brains were extracted 6 hours and 1, 3, 7, 14 and 21 days after injury (n = 6 in each group). Changes in the messenger RNA (mRNA) expression of RGMa and its receptor, neogenin, were evaluated by quantitative polymerase chain reaction in the damaged area of the cortex and contralateral cortex, along with expression measurement of inflammation-related molecules. Neurological deficit was also assessed by the cylinder test. RESULTS: Neurological score was consistently lower in the TBI group compared to the sham group throughout the experimental period. The mRNA expressions of representative inflammatory cytokine TNF-α and chemokine receptor CCR2 were remarkably increased in the injured cortex on day 1 and gradually decreased over time, although remaining at higher values at least until day 14. The mRNA expressions of RGMa and neogenin were significantly suppressed in the damaged cortex until day 3. Interestingly, RGMa expression was suppressed most on day 1 and recovered over time. CONCLUSION: In the acute phase of TBI, gene expression of inflammatory cytokines significantly increased, and gene expressions of RGMa and neogenin significantly decreased in the inflammatory milieu of the damaged area. Despite the subsequent remission of inflammation, RGMa gene expression recovered to the normal level 1 week after TBI. Intrinsic regenerative response to acute brain injury might be hampered by the following recovery of RGMa expression, hinting at the possibility of functional RGMa inhibition as a new, effective maneuver against TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteínas Ligadas a GPI/metabolismo , Regeneración Nerviosa/inmunología , Proteínas del Tejido Nervioso/metabolismo , Receptores CCR2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones , Factores de Tiempo
8.
Cell Rep ; 33(11): 108507, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326790

RESUMEN

The innate immune system plays key roles in tissue regeneration. For example, microglia promote neurogenesis in Müller glia in birds and fish after injury. Although mammalian retina does not normally regenerate, neurogenesis can be induced in mouse Müller glia by Ascl1, a proneural transcription factor. We show that in mice, microglia inhibit the Ascl1-mediated retinal regeneration, suggesting that the innate immune system limits the regenerative response to injury.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microglía/inmunología , Regeneración Nerviosa/inmunología , Retina/fisiopatología , Animales , Ratones
9.
Cells ; 9(9)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967118

RESUMEN

Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.


Asunto(s)
Comunicación Celular/inmunología , Sistema Nervioso Central/inmunología , Macrófagos/inmunología , Microglía/inmunología , Regeneración Nerviosa/inmunología , Sistema Nervioso Periférico/inmunología , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/patología , Infarto Encefálico/inmunología , Infarto Encefálico/metabolismo , Infarto Encefálico/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Intoxicación por Monóxido de Carbono/inmunología , Intoxicación por Monóxido de Carbono/metabolismo , Intoxicación por Monóxido de Carbono/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Glucólisis/genética , Glucólisis/inmunología , Humanos , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Fosforilación Oxidativa , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
10.
Nat Commun ; 11(1): 4504, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908131

RESUMEN

The strategies concerning modification of the complex immune pathological inflammatory environment during acute spinal cord injury remain oversimplified and superficial. Inspired by the acidic microenvironment at acute injury sites, a functional pH-responsive immunoregulation-assisted neural regeneration strategy was constructed. With the capability of directly responding to the acidic microenvironment at focal areas followed by triggered release of the IL-4 plasmid-loaded liposomes within a few hours to suppress the release of inflammatory cytokines and promote neural differentiation of mesenchymal stem cells in vitro, the microenvironment-responsive immunoregulatory electrospun fibers were implanted into acute spinal cord injury rats. Together with sustained release of nerve growth factor (NGF) achieved by microsol core-shell structure, the immunological fiber scaffolds were revealed to bring significantly shifted immune cells subtype to down-regulate the acute inflammation response, reduce scar tissue formation, promote angiogenesis as well as neural differentiation at the injury site, and enhance functional recovery in vivo. Overall, this strategy provided a delivery system through microenvironment-responsive immunological regulation effect so as to break through the current dilemma from the contradiction between immune response and nerve regeneration, providing an alternative for the treatment of acute spinal cord injury.


Asunto(s)
Microambiente Celular/inmunología , Sistemas de Liberación de Medicamentos/instrumentación , Factor de Crecimiento Nervioso/administración & dosificación , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Preparaciones de Acción Retardada/administración & dosificación , Modelos Animales de Enfermedad , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Interleucina-4/administración & dosificación , Liposomas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Factor de Crecimiento Nervioso/farmacocinética , Regeneración Nerviosa/inmunología , Ratas , Recuperación de la Función/inmunología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Traumatismos de la Médula Espinal/inmunología
12.
Cell Death Dis ; 11(7): 523, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32655141

RESUMEN

Neural tube defects (NTDs) lead to prenatal mortality and lifelong morbidity. Currently, surgical closure of NTD lesions results in limited functional recovery. We previously suggested that nerve regeneration was critical for NTD therapy. Here, we report that transamniotic bone marrow-derived mesenchymal stem cell (BMSC) therapy for NTDs during early development may achieve beneficial functional recovery. In our ex vivo rat embryonic NTD model, BMSCs injected into the amniotic cavity spontaneously migrated into the defective neural tissue. Hepatocyte growth factor and its receptor c-MET were found to play critical roles in this NTD lesion-specific migration. Using the in vivo rat fetal NTD model, we further discovered that the engrafted BMSCs specifically differentiated into the cell types of the defective tissue, including skin and different types of neurons in situ. BMSC treatment triggered skin repair in fetuses, leading to a 29.9 ± 5.6% reduction in the skin lesion area. The electrophysiological functional recovery assay revealed a decreased latency and increased motor-evoked potential amplitude in the BMSC-treated fetuses. Based on these positive outcomes, ease of operation, and reduced trauma to the mother and fetus, we propose that transamniotic BMSC administration could be a new effective therapy for NTDs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa/inmunología , Defectos del Tubo Neural/terapia , Animales , Diferenciación Celular , Humanos , Ratas , Recuperación de la Función
13.
Theranostics ; 10(18): 8227-8249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724468

RESUMEN

The regenerative capacity of the peripheral nervous system is closely related to the role that Schwann cells (SCs) play in construction of the basement membrane containing multiple extracellular matrix proteins and secretion of neurotrophic factors, including laminin (LN) and brain-derived neurotrophic factor (BDNF). Here, we developed a self-assembling peptide (SAP) nanofiber hydrogel based on self-assembling backbone Ac-(RADA)4-NH2 (RAD) dual-functionalized with laminin-derived motif IKVAV (IKV) and a BDNF-mimetic peptide epitope RGIDKRHWNSQ (RGI) for peripheral nerve regeneration, with the hydrogel providing a three-dimensional (3D) microenvironment for SCs and neurites. Methods: Circular dichroism (CD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the secondary structures, microscopic structures, and morphologies of self-assembling nanofiber hydrogels. Then the SC adhesion, myelination and neurotrophin secretion were evaluated on the hydrogels. Finally, the SAP hydrogels were injected into hollow chitosan tubes to bridge a 10-mm-long sciatic nerve defect in rats, and in vivo gene expression at 1 week, axonal regeneration, target muscular re-innervation, and functional recovery at 12 weeks were assessed. Results: The bioactive peptide motifs were covalently linked to the C-terminal of the self-assembling peptide and the functionalized peptides could form well-defined nanofibrous hydrogels capable of providing a 3D microenvironment similar to native extracellular matrix. SCs displayed improved cell adhesion on hydrogels with both IKV and RGI, accompanied by increased cell spreading and elongation relative to other groups. RSCs cultured on hydrogels with IKV and RGI showed enhanced gene expression of NGF, BDNF, CNTF, PMP22 and NRP2, and decreased gene expression of NCAM compared with those cultured on other three groups after a 7-day incubation. Additionally, the secretion of NGF, BDNF, and CNTF of RSCs was significantly improved on dual-functionalized peptide hydrogels after 3 days. At 1 week after implantation, the expressions of neurotrophin and myelin-related genes in the nerve grafts in SAP and Autograft groups were higher than that in Hollow group, and the expression of S100 in groups containing both IKV and RGI was significantly higher than that in groups containing either IKV or RGI hydrogels, suggesting enhanced SC proliferation. The morphometric parameters of the regenerated nerves, their electrophysiological performance, the innervated muscle weight and remodeling of muscle fibers, and motor function showed that RAD/IKV/RGI and RAD/IKV-GG-RGI hydrogels could markedly improve axonal regeneration with enhanced re-myelination and motor functional recovery through the synergetic effect of IKV and RGI functional motifs. Conclusions: We found that the dual-functionalized SAP hydrogels promoted RSC adhesion, myelination, and neurotrophin secretion in vitro and successfully bridged a 10-mm gap representing a sciatic nerve defect in rats in vivo. The results demonstrated the synergistic effect of IKVAV and RGI on axonal regrowth and function recovery after peripheral nerve injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/inmunología , Laminina/inmunología , Regeneración Nerviosa/inmunología , Oligopéptidos/inmunología , Fragmentos de Péptidos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Andamios del Tejido/química , Animales , Factor Neurotrófico Derivado del Encéfalo/química , Línea Celular , Dendrímeros/química , Modelos Animales de Enfermedad , Epítopos/inmunología , Humanos , Hidrogeles/química , Masculino , Nanofibras/química , Oligopéptidos/química , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Recuperación de la Función/inmunología , Células de Schwann , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología
14.
Mol Immunol ; 121: 81-91, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32172028

RESUMEN

Traumatic injury to the peripheral nervous system (PNS) is the most common cause of acquired nerve damage and impairs the quality of life of patients. The success of nerve regeneration depends on distal stump degeneration, tissue clearance and remodeling, processes in which the immune system participates. We previously reported improved motor recovery in sciatic nerve crush mice following adoptive transfer of lymphocytes, which migrated to the lesion site. However, lymphocyte activity and the nerve tissue response remain unexplored. Thus, in the present study, we evaluated sciatic nerve regeneration and T cell polarization in lymphocyte recipient mice. Splenic lymphocytes were isolated from mice 14 days after sciatic nerve crush and transferred to axotomized animals three days postinjury. Immediate lymphocyte migration to the crushed nerve was confirmed by in vivo imaging. Phenotyping of T helper (Th) cells by flow cytometry revealed an increased frequency of the proinflammatory Th1 and Th17 cell subsets in recipient mice at 7 days and showed that the frequency of these cells remained unchanged for up to 21 days. Moreover, nerve regeneration was improved upon cell therapy, as shown by sustained immunolabeling of axons, Schwann cells, growth-associated protein 43 and BDNF from 14 to 28 days after lesion. Macrophage and IgG immunolabeling were also higher in cell-transferred mice at 14 and 21 days following nerve crush. Functionally, we observed better sensory recovery in the lymphocyte-treated group. Overall, our data demonstrate that enhanced inflammation early after nerve injury has beneficial effects for the regenerative process, improving tissue clearance and axonal regrowth towards the target organs.


Asunto(s)
Traslado Adoptivo/métodos , Transfusión de Linfocitos , Regeneración Nerviosa/inmunología , Traumatismos de los Nervios Periféricos/terapia , Nervio Ciático/lesiones , Animales , Axones/fisiología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Compresión Nerviosa/efectos adversos , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/patología , Calidad de Vida , Nervio Ciático/citología , Nervio Ciático/fisiología , Bazo/citología
15.
Glia ; 68(4): 811-829, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31724770

RESUMEN

Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Regeneración Nerviosa/inmunología , Neuroglía/inmunología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Especificidad de la Especie
16.
Sci Rep ; 9(1): 17309, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754174

RESUMEN

Neurodegeneration in multiple sclerosis (MS) correlates with disease progression and reparative processes may be triggered. Growth-associated protein 43 (GAP-43) exhibits induced expression during axonal growth and reduced expression during MS progression. We aimed to evaluate if GAP-43 can serve as a biomarker of regeneration in relapsing-remitting MS (RRMS) and whether disease-modifying therapies (DMTs) influence GAP-43 concentration in cerebrospinal fluid (CSF). GAP-43 was measured using an enzyme-linked immunosorbent assay in 105 MS patients (73 RRMS, 12 primary progressive MS, 20 secondary progressive MS) and 23 healthy controls (HCs). In 35 of the patients, lumbar puncture, clinical assessment, and magnetic resonance imaging was performed before initiation of therapeutic intervention, and at follow-up. CSF GAP-43 concentration was significantly lower in progressive MS compared with HCs (p = 0.004) and RRMS (p = < 0.001) and correlated negatively with disability (p = 0.026). However, DMTs did not alter CSF GAP-43. Interestingly, in RRMS CSF GAP-43 levels were higher in patients with signs of active inflammatory disease than in patients in remission (p = 0.042). According to CSF GAP-43 concentrations, regeneration seems reduced in progressive MS, increased during disease activity in RRMS but is unaffected by treatment of highly active DMTs.


Asunto(s)
Proteína GAP-43/líquido cefalorraquídeo , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Regeneración Nerviosa/inmunología , Adulto , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Proteína GAP-43/inmunología , Voluntarios Sanos , Humanos , Masculino , Esclerosis Múltiple Crónica Progresiva/líquido cefalorraquídeo , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Crónica Progresiva/terapia , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/terapia , Resultado del Tratamiento , Adulto Joven
17.
Cell Mol Immunol ; 16(6): 540-546, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30874626

RESUMEN

Inflammation of the nervous system (neuroinflammation) is now recognized as a hallmark of virtually all neurological disorders. In neuroinflammatory conditions such as multiple sclerosis, there is prominent infiltration and a long-lasting representation of various leukocyte subsets in the central nervous system (CNS) parenchyma. Even in classic neurodegenerative disorders, where such immense inflammatory infiltrates are absent, there is still evidence of activated CNS-intrinsic microglia. The consequences of excessive and uncontrolled neuroinflammation are injury and death to neural elements, which manifest as a heterogeneous set of neurological symptoms. However, it is now readily acknowledged, due to instructive studies from the peripheral nervous system and a large body of CNS literature, that aspects of the neuroinflammatory response can be beneficial for CNS outcomes. The recognized benefits of inflammation to the CNS include the preservation of CNS constituents (neuroprotection), the proliferation and maturation of various neural precursor populations, axonal regeneration, and the reformation of myelin on denuded axons. Herein, we highlight the benefits of neuroinflammation in fostering CNS recovery after neural injury using examples from multiple sclerosis, traumatic spinal cord injury, stroke, and Alzheimer's disease. We focus on CNS regenerative responses, such as neurogenesis, axonal regeneration, and remyelination, and discuss the mechanisms by which neuroinflammation is pro-regenerative for the CNS. Finally, we highlight treatment strategies that harness the benefits of neuroinflammation for CNS regenerative responses.


Asunto(s)
Encéfalo/inmunología , Sistema Nervioso Central/fisiología , Macrófagos/inmunología , Microglía/inmunología , Regeneración Nerviosa/inmunología , Neuroprotección/inmunología , Animales , Humanos , Vaina de Mielina/inmunología , Neuroinmunomodulación
18.
Neurotherapeutics ; 16(2): 381-393, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30843154

RESUMEN

Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB) are two common receptors of various myelin-associated inhibitors (MAIs) and, thus, play an important role in MAIs-induced inhibitory signalling of regeneration following spinal cord injury (SCI). Based on the concept of protective autoimmunity, vaccine approaches could induce the production of antibodies against inhibitors in myelin, such as using purified myelin, spinal cord homogenates, or MAIs receptor NgR, in order to block the inhibitory effects and promote functional recovery in SCI models. However, due to the complication of the molecules and the mechanisms involved in MAIs-mediated inhibitory signalling, these immunotherapy strategies have yielded inconsistent outcomes. Therefore, we hypothesized that the choice and modification of self-antigens, and co-regulating multiple targets, may be more effective in repairing the injured spinal cord and improving functional recovery. In this study, NgR and PirB were selected to construct a double-targeted granulocyte-macrophage colony stimulating factor-NgR-PirB (GMCSF-NgR-PirB) nucleic acid vaccine, and investigate the efficacy of this immunotherapy in a spinal cord injury model in rats. The results showed that this vaccination could stimulate the production of antibodies against NgR and PirB, block the inhibitory effects mediated by various MAIs, and promote nerve regeneration and functional recovery after spinal cord injury. These findings suggest that nucleic acid vaccination against NgR and PirB can be a promising therapeutic strategy for SCI and other central nervous system diseases and injuries.


Asunto(s)
Inmunoterapia/métodos , Regeneración Nerviosa/inmunología , Receptor Nogo 1/inmunología , Traumatismos de la Médula Espinal/terapia , Vacunas de ADN/uso terapéutico , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/inmunología , Traumatismos de la Médula Espinal/inmunología , Vacunación
19.
Immunology ; 156(3): 235-248, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30418673

RESUMEN

This study focuses on investigating the role of interleukin-1ß (IL-1ß) in functional regeneration following nerve injury in mice. A microarray-based mRNA profiling study was used to analyze the expression level of IL-1ß in peripheral nerve regeneration. Quantitative real-time polymerase chain reaction and Western blot were applied to assess the IL-1ß expressions of C57BL/6J-crush and C57BL/6J-crush+IL-1ß mice at different post-injury time-points after the standard sciatic nerve crush injury. The outcomes of nerve regeneration were evaluated by behavioral tests. IL-1ß was found to be up-regulated in peripheral nerve regeneration and significantly raised on the 3rd day and returned to normal levels on the 14th day after nerve injury. Compared with C57BL/6J-crush+IL-1ß mice, the nerve regeneration of C57BL/6J-crush mice was worse after nerve crush injury. IL-1ß increased mechanical sensitivity and stimulated amplitude. IL-1ß could benefit the recovery of sciatic nerve crush injury by facilitating nerve regeneration.


Asunto(s)
Interleucina-1beta/inmunología , FN-kappa B/inmunología , Regeneración Nerviosa/inmunología , Enfermedades del Sistema Nervioso/inmunología , Transducción de Señal/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba/inmunología
20.
Am J Pathol ; 188(12): 2786-2799, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30470496

RESUMEN

Although antibiotics are useful, they can also bring negative effects. We found that antibiotic-treated mice exhibit an alteration in the gene expression profile of corneal tissues and a decrease in corneal nerve density. During corneal wound healing, antibiotic treatment was found to impair corneal nerve regeneration, an effect that could be largely reversed by reconstitution of the gut microbiota via fecal transplant. Furthermore, CCR2- corneal macrophages were found to participate in the repair of damaged corneal nerves, and a decrease in CCR2- corneal macrophages in antibiotic-treated mice, which could be reversed by fecal transplant, was observed. Adoptive transfer of CCR2- corneal macrophages promoted corneal nerve regeneration in antibiotic-treated mice. The application of probiotics after administration of antibiotics also restored the proportion of CCR2- corneal macrophages and increased the regeneration of corneal nerve fibers after epithelial abrasion. These results suggest that dysbiosis of the gut microbiota induced by antibiotic treatment impairs corneal nerve regeneration by affecting CCR2- macrophage distribution in the cornea. This study also indicates the potential of probiotics as a therapeutic strategy for promoting the regeneration of damaged corneal nerve fibers when the gut microbiota is in dysbiosis.


Asunto(s)
Antibacterianos/efectos adversos , Lesiones de la Cornea/etiología , Disbiosis/complicaciones , Microbioma Gastrointestinal/efectos de los fármacos , Macrófagos/inmunología , Regeneración Nerviosa/inmunología , Receptores CCR2/fisiología , Animales , Células Cultivadas , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Modelos Animales de Enfermedad , Disbiosis/inducido químicamente , Disbiosis/metabolismo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...