Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
J Math Biol ; 89(5): 50, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379537

RESUMEN

Understanding how genetically encoded rules drive and guide complex neuronal growth processes is essential to comprehending the brain's architecture, and agent-based models (ABMs) offer a powerful simulation approach to further develop this understanding. However, accurately calibrating these models remains a challenge. Here, we present a novel application of Approximate Bayesian Computation (ABC) to address this issue. ABMs are based on parametrized stochastic rules that describe the time evolution of small components-the so-called agents-discretizing the system, leading to stochastic simulations that require appropriate treatment. Mathematically, the calibration defines a stochastic inverse problem. We propose to address it in a Bayesian setting using ABC. We facilitate the repeated comparison between data and simulations by quantifying the morphological information of single neurons with so-called morphometrics and resort to statistical distances to measure discrepancies between populations thereof. We conduct experiments on synthetic as well as experimental data. We find that ABC utilizing Sequential Monte Carlo sampling and the Wasserstein distance finds accurate posterior parameter distributions for representative ABMs. We further demonstrate that these ABMs capture specific features of pyramidal cells of the hippocampus (CA1). Overall, this work establishes a robust framework for calibrating agent-based neuronal growth models and opens the door for future investigations using Bayesian techniques for model building, verification, and adequacy assessment.


Asunto(s)
Teorema de Bayes , Simulación por Computador , Conceptos Matemáticos , Modelos Neurológicos , Método de Montecarlo , Neuronas , Procesos Estocásticos , Animales , Neuronas/citología , Neuronas/fisiología , Calibración , Células Piramidales/citología , Células Piramidales/fisiología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/citología , Neurogénesis/fisiología , Ratones , Humanos
2.
Science ; 385(6713): 1120-1127, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236189

RESUMEN

New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.


Asunto(s)
Región CA1 Hipocampal , Memoria , Optogenética , Ritmo Teta , Animales , Masculino , Potenciales de Acción , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Memoria/fisiología , Neuronas/fisiología , Células Piramidales/fisiología
3.
Cell Rep ; 43(9): 114702, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39217613

RESUMEN

Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single-cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we find that CA1 population vectors decorrelate gradually within a session. In contrast, individual neurons exhibit predominantly step-like emergence and disappearance of place fields or sustained changes in within-field firing. The changes are not restricted to particular parts of the maze or trials and do not require apparent behavioral changes. The same place fields emerge, disappear, and reappear across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally driven perpetual step-like reorganization of the neuronal assemblies.


Asunto(s)
Hipocampo , Animales , Hipocampo/fisiología , Hipocampo/citología , Neuronas/fisiología , Masculino , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Ratones , Modelos Neurológicos , Potenciales de Acción/fisiología , Red Nerviosa/fisiología , Ratones Endogámicos C57BL
4.
PLoS One ; 19(9): e0308809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231135

RESUMEN

Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.


Asunto(s)
Envejecimiento , Región CA1 Hipocampal , Células Piramidales , Células Piramidales/metabolismo , Células Piramidales/fisiología , Animales , Envejecimiento/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Modelos Neurológicos , Potenciales de Acción/fisiología , Canales de Calcio Tipo L/metabolismo , Fenómenos Biofísicos
5.
J Neurosci ; 44(38)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39137997

RESUMEN

Navigation requires integrating sensory information with a stable schema to create a dynamic map of an animal's position using egocentric and allocentric coordinate systems. In the hippocampus, place cells encode allocentric space, but their firing rates may also exhibit directional tuning within egocentric or allocentric reference frames. We compared experimental and simulated data to assess the prevalence of tuning to egocentric bearing (EB) among hippocampal cells in rats foraging in an open field. Using established procedures, we confirmed egocentric modulation of place cell activity in recorded data; however, simulated data revealed a high false-positive rate (FPR). When we accounted for false positives by comparing with shuffled data that retain correlations between the animal's direction and position, only a very low number of hippocampal neurons appeared modulated by EB. Our study highlights biases affecting FPRs and provides insights into the challenges of identifying egocentric modulation in hippocampal neurons.


Asunto(s)
Región CA1 Hipocampal , Ratas Long-Evans , Animales , Ratas , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Masculino , Neuronas/fisiología , Potenciales de Acción/fisiología , Percepción Espacial/fisiología , Células de Lugar/fisiología , Navegación Espacial/fisiología
6.
Science ; 385(6710): 776-784, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146428

RESUMEN

The entorhinal cortex represents allocentric spatial geometry and egocentric speed and heading information required for spatial navigation. However, it remains unclear whether it contributes to the prediction of an animal's future location. We discovered grid cells in the medial entorhinal cortex (MEC) that have grid fields representing future locations during goal-directed behavior. These predictive grid cells represented prospective spatial information by shifting their grid fields against the direction of travel. Predictive grid cells discharged at the trough phases of the hippocampal CA1 theta oscillation and, together with other types of grid cells, organized sequences of the trajectory from the current to future positions across each theta cycle. Our results suggest that the MEC provides a predictive map that supports forward planning in spatial navigation.


Asunto(s)
Región CA1 Hipocampal , Corteza Entorrinal , Células de Red , Navegación Espacial , Ritmo Teta , Corteza Entorrinal/fisiología , Corteza Entorrinal/citología , Animales , Navegación Espacial/fisiología , Células de Red/fisiología , Ratas , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Masculino , Ratas Long-Evans
7.
Cell Rep ; 43(8): 114519, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39018243

RESUMEN

Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.


Asunto(s)
Región CA1 Hipocampal , Células Piramidales , Animales , Células Piramidales/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Potenciales de Acción/fisiología , Masculino , Red Nerviosa/fisiología
8.
Nat Commun ; 15(1): 5968, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013846

RESUMEN

Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of facing direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that male mice learn to combine both featural and geometric cues to recover heading. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells remaps coherently in a context-sensitive manner, which serves to predict context. Efficient heading retrieval and context recognition correlate with rate changes reflecting integration of featural and geometric information in the active ensemble. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.


Asunto(s)
Región CA1 Hipocampal , Señales (Psicología) , Animales , Masculino , Ratones , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Neuronas/fisiología , Orientación Espacial/fisiología , Ratones Endogámicos C57BL , Hipocampo/fisiología , Hipocampo/citología , Reconocimiento en Psicología/fisiología , Orientación/fisiología , Percepción Espacial/fisiología
9.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39016432

RESUMEN

Sound is an important navigational cue for mammals. During spatial navigation, hippocampal place cells encode spatial representations of the environment based on visual information, but to what extent audiospatial information can enable reliable place cell mapping is largely unknown. We assessed this by recording from CA1 place cells in the dark, under circumstances where reliable visual, tactile, or olfactory information was unavailable. Male rats were exposed to auditory cues of different frequencies that were delivered from local or distal spatial locations. We observed that distal, but not local cue presentation, enables and supports stable place fields, regardless of the sound frequency used. Our data suggest that a context dependency exists regarding the relevance of auditory information for place field mapping: whereas locally available auditory cues do not serve as a salient spatial basis for the anchoring of place fields, auditory cue localization supports spatial representations by place cells when available in the form of distal information. Furthermore, our results demonstrate that CA1 neurons can effectively use auditory stimuli to generate place fields, and that hippocampal pyramidal neurons are not solely dependent on visual cues for the generation of place field representations based on allocentric reference frames.


Asunto(s)
Estimulación Acústica , Señales (Psicología) , Células de Lugar , Ratas Long-Evans , Percepción Espacial , Animales , Masculino , Células de Lugar/fisiología , Percepción Espacial/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Ratas , Percepción Auditiva/fisiología , Potenciales de Acción/fisiología , Navegación Espacial/fisiología
10.
Nat Commun ; 15(1): 6295, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060234

RESUMEN

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Células Piramidales , Animales , Dendritas/fisiología , Dendritas/metabolismo , Células Piramidales/fisiología , Células Piramidales/metabolismo , Ratones , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Potenciales de la Membrana/fisiología , Masculino , Ratones Endogámicos C57BL , Hipocampo/fisiología , Hipocampo/citología , Navegación Espacial/fisiología , Locomoción/fisiología
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000499

RESUMEN

General anesthetics may accelerate the neuropathological changes related to Alzheimer's disease (AD), of which amyloid beta (Aß)-induced toxicity is one of the main causes. However, the interaction of general anesthetics with different Aß-isoforms remains unclear. In this study, we investigated the effects of sevoflurane (0.4 and 1.2 maximal alveolar concentration (MAC)) on four Aß species-induced changes on dendritic spine density (DSD) in hippocampal brain slices of Thy1-eGFP mice and multiple epidermal growth factor-like domains 10 (MEGF10)-related astrocyte-mediated synaptic engulfment in hippocampal brain slices of C57BL/6 mice. We found that both sevoflurane and Aß downregulated CA1-dendritic spines. Moreover, compared with either sevoflurane or Aß alone, pre-treatment with Aß isoforms followed by sevoflurane application in general further enhanced spine loss. This enhancement was related to MEGF10-related astrocyte-dependent synaptic engulfment, only in AßpE3 + 1.2 MAC sevoflurane and 3NTyrAß + 1.2 MAC sevoflurane condition. In addition, removal of sevoflurane alleviated spine loss in Aß + sevoflurane. In summary, these results suggest that both synapses and astrocytes are sensitive targets for sevoflurane; in the presence of 3NTyrAß, 1.2 MAC sevoflurane alleviated astrocyte-mediated synaptic engulfment and exerted a lasting effect on dendritic spine remodeling.


Asunto(s)
Péptidos beta-Amiloides , Astrocitos , Región CA1 Hipocampal , Espinas Dendríticas , Ratones Endogámicos C57BL , Sevoflurano , Sinapsis , Sevoflurano/farmacología , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Ratones , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/citología , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Anestésicos por Inhalación/farmacología
12.
Nature ; 630(8018): 935-942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867049

RESUMEN

Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.


Asunto(s)
Hipocampo , Privación de Sueño , Sueño de Onda Lenta , Animales , Femenino , Masculino , Ratas , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/fisiopatología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Células Piramidales/fisiología , Ratas Long-Evans , Privación de Sueño/fisiopatología , Sueño de Onda Lenta/fisiología , Vigilia/fisiología , Factores de Tiempo , Hipocampo/citología , Hipocampo/fisiología , Hipocampo/fisiopatología
13.
Cell Rep ; 43(7): 114361, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900634

RESUMEN

Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 µm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.


Asunto(s)
Sinapsis , Animales , Sinapsis/metabolismo , Sinapsis/fisiología , Dendritas/metabolismo , Dendritas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Hipocampo/citología , Femenino
14.
STAR Protoc ; 5(2): 103110, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38843398

RESUMEN

The hippocampus has a major role in processing spatial information but has been found to encode non-spatial information from multisensory modalities in recent studies. Here, we present a protocol for recording non-spatial stimuli (visual, auditory, and a combination) that evoked calcium activity of hippocampal CA1 neuronal ensembles in C57BL/6 mice using a miniaturized fluorescence microscope. We describe steps for experimental apparatus setup, surgical procedures, software development, and neuronal population activity analysis. For complete details on the use and execution of this protocol, please refer to Sun et al.1.


Asunto(s)
Región CA1 Hipocampal , Calcio , Ratones Endogámicos C57BL , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Ratones , Calcio/metabolismo , Calcio/análisis , Microscopía Fluorescente/métodos , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Masculino
15.
Adv Sci (Weinh) ; 11(29): e2401670, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828784

RESUMEN

Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.


Asunto(s)
Región CA1 Hipocampal , Microelectrodos , Neuronas , Animales , Neuronas/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Ratas , Masculino , Diseño de Equipo/métodos
16.
Neuron ; 112(15): 2645-2658.e4, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38917804

RESUMEN

The hippocampus receives sequences of sensory inputs from the cortex during exploration and encodes the sequences with millisecond precision. We developed a predictive autoencoder model of the hippocampus including the trisynaptic and monosynaptic circuits from the entorhinal cortex (EC). CA3 was trained as a self-supervised recurrent neural network to predict its next input. We confirmed that CA3 is predicting ahead by analyzing the spike coupling between simultaneously recorded neurons in the dentate gyrus, CA3, and CA1 of the mouse hippocampus. In the model, CA1 neurons signal prediction errors by comparing CA3 predictions to the next direct EC input. The model exhibits the rapid appearance and slow fading of CA1 place cells and displays replay and phase precession from CA3. The model could be learned in a biologically plausible way with error-encoding neurons. Similarities between the hippocampal and thalamocortical circuits suggest that such computation motif could also underlie self-supervised sequence learning in the cortex.


Asunto(s)
Hipocampo , Aprendizaje , Animales , Ratones , Hipocampo/fisiología , Hipocampo/citología , Aprendizaje/fisiología , Modelos Neurológicos , Corteza Entorrinal/fisiología , Corteza Entorrinal/citología , Neuronas/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Ratones Endogámicos C57BL , Redes Neurales de la Computación , Masculino , Potenciales de Acción/fisiología , Giro Dentado/fisiología , Giro Dentado/citología
17.
Nat Commun ; 15(1): 4053, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744848

RESUMEN

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Asunto(s)
Callithrix , Hipocampo , Navegación Espacial , Animales , Callithrix/fisiología , Navegación Espacial/fisiología , Hipocampo/fisiología , Masculino , Locomoción/fisiología , Visión Ocular/fisiología , Células Piramidales/fisiología , Movimientos de la Cabeza/fisiología , Interneuronas/fisiología , Femenino , Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología
18.
Nat Commun ; 15(1): 4122, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750027

RESUMEN

Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.


Asunto(s)
Corteza Entorrinal , Neuronas , Navegación Espacial , Corteza Visual , Animales , Corteza Entorrinal/fisiología , Corteza Visual/fisiología , Navegación Espacial/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Vías Visuales/fisiología , Percepción Visual/fisiología
19.
Elife ; 122024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695551

RESUMEN

Recent studies show that, even in constant environments, the tuning of single neurons changes over time in a variety of brain regions. This representational drift has been suggested to be a consequence of continuous learning under noise, but its properties are still not fully understood. To investigate the underlying mechanism, we trained an artificial network on a simplified navigational task. The network quickly reached a state of high performance, and many units exhibited spatial tuning. We then continued training the network and noticed that the activity became sparser with time. Initial learning was orders of magnitude faster than ensuing sparsification. This sparsification is consistent with recent results in machine learning, in which networks slowly move within their solution space until they reach a flat area of the loss function. We analyzed four datasets from different labs, all demonstrating that CA1 neurons become sparser and more spatially informative with exposure to the same environment. We conclude that learning is divided into three overlapping phases: (i) Fast familiarity with the environment; (ii) slow implicit regularization; and (iii) a steady state of null drift. The variability in drift dynamics opens the possibility of inferring learning algorithms from observations of drift statistics.


Asunto(s)
Neuronas , Animales , Neuronas/fisiología , Aprendizaje Automático , Redes Neurales de la Computación , Aprendizaje , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Ratas
20.
Nat Commun ; 15(1): 4100, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773091

RESUMEN

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Hipocampo , Aprendizaje , Potenciación a Largo Plazo , Optogenética , Área Tegmental Ventral , Animales , Potenciación a Largo Plazo/fisiología , Área Tegmental Ventral/fisiología , Masculino , Dopamina/metabolismo , Ratones , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Hipocampo/fisiología , Hipocampo/metabolismo , Aprendizaje/fisiología , Ratones Transgénicos , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Memoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...