Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Curr Biol ; 34(9): 2011-2019.e7, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38636511

RESUMEN

Environmental enrichment (EE) improves memory, particularly the ability to discriminate similar past experiences.1,2,3,4,5,6 The hippocampus supports this ability via pattern separation, the encoding of similar events using dissimilar memory representations.7 This is carried out in the dentate gyrus (DG) and CA3 subfields.8,9,10,11,12 Upregulation of adult neurogenesis in the DG improves memory through enhanced pattern separation.1,2,3,4,5,6,11,13,14,15,16 Adult-born granule cells (abGCs) in DG are suggested to contribute to pattern separation by driving inhibition in regions such as CA3,13,14,15,16,17,18 leading to sparser, nonoverlapping representations of similar events (although a role for abGCs in driving excitation in the hippocampus has also been reported16). Place cells in the hippocampus contribute to pattern separation by remapping to spatial and contextual alterations to the environment.19,20,21,22,23,24,25,26,27 How spatial responses in CA3 are affected by EE and input from increased numbers of abGCs in DG is, however, unknown. Here, we investigate the neural mechanisms facilitating improved memory following EE using associative recognition memory tasks that model the automatic and integrative nature of episodic memory. We find that EE-dependent improvements in difficult discriminations are related to increased neurogenesis and sparser memory representations across the hippocampus. Additionally, we report for the first time that EE changes how CA3 place cells discriminate similar contexts. CA3 place cells of enriched rats show greater spatial tuning, increased firing rates, and enhanced remapping to contextual changes. These findings point to more precise and flexible CA3 memory representations in enriched rats, which provides a putative mechanism for EE-dependent improvements in fine memory discrimination.


Asunto(s)
Región CA3 Hipocampal , Ambiente , Animales , Ratas , Región CA3 Hipocampal/fisiología , Masculino , Neurogénesis/fisiología , Ratas Long-Evans , Memoria/fisiología , Giro Dentado/fisiología
2.
Neural Comput ; 36(4): 501-548, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38457750

RESUMEN

The hippocampus plays a critical role in the compression and retrieval of sequential information. During wakefulness, it achieves this through theta phase precession and theta sequences. Subsequently, during periods of sleep or rest, the compressed information reactivates through sharp-wave ripple events, manifesting as memory replay. However, how these sequential neuronal activities are generated and how they store information about the external environment remain unknown. We developed a hippocampal cornu ammonis 3 (CA3) computational model based on anatomical and electrophysiological evidence from the biological CA3 circuit to address these questions. The model comprises theta rhythm inhibition, place input, and CA3-CA3 plastic recurrent connection. The model can compress the sequence of the external inputs, reproduce theta phase precession and replay, learn additional sequences, and reorganize previously learned sequences. A gradual increase in synaptic inputs, controlled by interactions between theta-paced inhibition and place inputs, explained the mechanism of sequence acquisition. This model highlights the crucial role of plasticity in the CA3 recurrent connection and theta oscillational dynamics and hypothesizes how the CA3 circuit acquires, compresses, and replays sequential information.


Asunto(s)
Región CA3 Hipocampal , Hipocampo , Región CA3 Hipocampal/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Ritmo Teta/fisiología
3.
Proc Natl Acad Sci U S A ; 121(6): e2312281120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289953

RESUMEN

The hippocampal formation is crucial for learning and memory, with submodule CA3 thought to be the substrate of pattern completion. However, the underlying synaptic and computational mechanisms of this network are not well understood. Here, we perform circuit reconstruction of a CA3 module using three dimensional (3D) electron microscopy data and combine this with functional connectivity recordings and computational simulations to determine possible CA3 network mechanisms. Direct measurements of connectivity schemes with both physiological measurements and structural 3D EM revealed a high connectivity rate, multi-fold higher than previously assumed. Mathematical modelling indicated that such CA3 networks can robustly generate pattern completion and replay memory sequences. In conclusion, our data demonstrate that the connectivity scheme of the hippocampal submodule is well suited for efficient memory storage and retrieval.


Asunto(s)
Hipocampo , Aprendizaje , Hipocampo/fisiología , Aprendizaje/fisiología , Modelos Teóricos , Región CA3 Hipocampal/fisiología
4.
Nat Commun ; 14(1): 8312, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097535

RESUMEN

The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval. 2- Plasticity blockade during sleep results in apparent forgetting of the encoded rule. 3- In vivo ripple recordings show a strong effect of AMPAR immobilisation when a rule has been recently encoded. 4- In situ investigation suggests that plasticity at CA3-CA3 recurrent synapses supports ripple generation. We thus propose that post-synaptic AMPAR mobility at CA3 recurrent synapses is necessary for ripple-dependent rule consolidation.


Asunto(s)
Consolidación de la Memoria , Ratones , Masculino , Animales , Consolidación de la Memoria/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Sueño/fisiología , Memoria Espacial , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología
5.
Cell Rep ; 42(12): 113467, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37979171

RESUMEN

The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.


Asunto(s)
Región CA1 Hipocampal , Región CA2 Hipocampal , Región CA3 Hipocampal , Colecistoquinina , Corteza Entorrinal , Plasticidad Neuronal , Aprendizaje Espacial , Colecistoquinina/genética , Colecistoquinina/metabolismo , Corteza Entorrinal/metabolismo , Región CA3 Hipocampal/fisiología , Región CA1 Hipocampal/fisiología , Región CA2 Hipocampal/fisiología , Sinapsis/fisiología , Aprendizaje Espacial/fisiología , Animales , Ratones , Ratones Noqueados , Potenciación a Largo Plazo
6.
Neuron ; 111(19): 2984-2994.e4, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37689058

RESUMEN

Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.


Asunto(s)
Región CA3 Hipocampal , Hipocampo , Región CA3 Hipocampal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Región CA1 Hipocampal/fisiología
7.
PLoS One ; 18(4): e0281458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075035

RESUMEN

Hippocampus is known to be important for episodic memories. Measuring of hippocampal neural ensembles is therefore important for observing hippocampal cognitive processes such as pattern completion. Previous studies on pattern completion had a limitation because the activities of CA3 were not simultaneously observed with the activities of the entorhinal cortex that project to the CA3. In addition, in previous research and modelling, distinct concepts such as pattern completion and pattern convergence have not been considered separately. Here, I used a molecular analysis technique that enables comparison of neural ensembles that evoked two successive events and evaluated neural ensembles in the hippocampal CA3 region and entorhinal cortex. By comparing neural ensembles in hippocampus and entorhinal cortex, I could obtain evidence that suggests pattern completion occurring in the CA3 region was induced by the partial input from EC. Use of the molecular-based ensemble measurement allows measuring two or more brain regions simultaneously, which can lead to insights into the cognitive functions of neural circuits.


Asunto(s)
Señales (Psicología) , Memoria Episódica , Hipocampo/fisiología , Región CA3 Hipocampal/fisiología , Corteza Entorrinal/fisiología
8.
Curr Biol ; 33(9): 1689-1703.e5, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37023753

RESUMEN

Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.


Asunto(s)
Región CA1 Hipocampal , Región CA3 Hipocampal , Ratas , Animales , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Optogenética , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología
9.
Cell Rep ; 42(2): 112119, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807137

RESUMEN

Hippocampal subfield CA3 is thought to stably store memories in assemblies of recurrently connected cells functioning as a collective. However, the collective hippocampal coding properties that are unique to CA3 and how such properties facilitate the stability or precision of the neural code remain unclear. Here, we performed large-scale Ca2+ imaging in hippocampal CA1 and CA3 of freely behaving mice that repeatedly explored the same, initially novel environments over weeks. CA3 place cells have more precise and more stable tuning and show a higher statistical dependence with their peers compared with CA1 place cells, uncovering a cell assembly organization in CA3. Surprisingly, although tuning precision and long-term stability are correlated, cells with stronger peer dependence exhibit higher stability but not higher precision. Overall, our results expose the three-way relationship between tuning precision, long-term stability, and peer dependence, suggesting that a cell assembly organization underlies long-term storage of information in the hippocampus.


Asunto(s)
Hipocampo , Células de Lugar , Ratas , Ratones , Animales , Ratas Long-Evans , Hipocampo/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología
10.
Hippocampus ; 33(3): 241-251, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36575880

RESUMEN

The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp-wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.


Asunto(s)
Hipocampo , Células Piramidales , Hipocampo/fisiología , Células Piramidales/fisiología , Neuronas , Cognición , Conducta Social , Región CA3 Hipocampal/fisiología , Región CA1 Hipocampal/fisiología
11.
Proc Natl Acad Sci U S A ; 119(40): e2201657119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161912

RESUMEN

High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories. Analyzing electrophysiological MTL recordings from 245 neurosurgical participants performing episodic recall tasks, we find that the rate of hippocampal ripples rises just prior to the free recall of recently formed memories. This prerecall ripple effect (PRE) is stronger in the CA1 and CA3/dentate gyrus (CA3/DG) subfields of the hippocampus than the neighboring MTL regions entorhinal and parahippocampal cortex. PRE is also stronger prior to the retrieval of temporally and semantically clustered, as compared with unclustered, recalls, indicating the involvement of ripples in contextual reinstatement, which is a hallmark of episodic memory.


Asunto(s)
Región CA1 Hipocampal , Región CA3 Hipocampal , Giro Dentado , Memoria Episódica , Recuerdo Mental , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Humanos , Imagen por Resonancia Magnética , Recuerdo Mental/fisiología , Lóbulo Temporal/fisiología
12.
PLoS Comput Biol ; 18(4): e1010071, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35452457

RESUMEN

The transformation of synaptic input into action potential output is a fundamental single-cell computation resulting from the complex interaction of distinct cellular morphology and the unique expression profile of ion channels that define the cellular phenotype. Experimental studies aimed at uncovering the mechanisms of the transfer function have led to important insights, yet are limited in scope by technical feasibility, making biophysical simulations an attractive complementary approach to push the boundaries in our understanding of cellular computation. Here we take a data-driven approach by utilizing high-resolution morphological reconstructions and patch-clamp electrophysiology data together with a multi-objective optimization algorithm to build two populations of biophysically detailed models of murine hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise this region. We evaluated the performance of these models and find that our approach quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic population-level variability in the data. Moreover, we confirm that the conductance values found by the optimization algorithm are consistent with differentially expressed ion channel genes in single-cell transcriptomic data for the two cell types. We then use these models to investigate the cell type-specific biophysical properties involved in the generation of complex-spiking output driven by synaptic input through an information-theoretic treatment of their respective transfer functions. Our simulations identify a host of cell type-specific biophysical mechanisms that define the morpho-functional phenotype to shape the cellular transfer function and place these findings in the context of a role for bursting in CA3 recurrent network synchronization dynamics.


Asunto(s)
Hipocampo , Neuronas , Potenciales de Acción/fisiología , Animales , Biofisica , Región CA3 Hipocampal/fisiología , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Células Piramidales/fisiología
13.
Elife ; 112022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35040779

RESUMEN

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA3 Hipocampal/fisiología , Aprendizaje/fisiología , Células de Lugar/fisiología , Animales , Hipocampo/fisiología , Interneuronas/fisiología , Memoria/fisiología , Ratones , Modelos Teóricos , Sueño/fisiología , Vigilia/fisiología
14.
Prog Neurobiol ; 210: 102213, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954329

RESUMEN

Gamma oscillations (γ-oscillations) in hippocampal area CA3 are essential for memory function. Particularly, CA3 is involved in the memory related process pattern completion, which is linked with the γ-oscillations in human hippocampus. Recent studies suggest that heterogeneity in the functional properties of pyramidal cells (PCs) in CA3 plays an important role in hippocampal function. By performing concomitant recordings of PC activity and network γ-oscillations in CA3 we found three functionally-different PC subpopulations. PCs with high spike-frequency adaptation (hAPC) have the strongest action potential gamma phase-coupling, PCs with low adaptation (lAPC) show lower phase-coupling and PCs displaying a burst-firing pattern (BPC) remained quiescent. In addition, we discovered that hAPC display the highest excitatory/inhibitory drive, followed by lAPC, and lastly BPC. In conclusion, our data advance the hypothesis that PCs in CA3 are organized into subpopulations with distinct functional roles for cognition-relevant network dynamics and provide new insights in the physiology of hippocampus.


Asunto(s)
Región CA3 Hipocampal , Células Piramidales , Potenciales de Acción/fisiología , Animales , Región CA3 Hipocampal/fisiología , Hipocampo , Humanos , Interneuronas/fisiología , Ratones
15.
Cell Rep ; 37(13): 110159, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965435

RESUMEN

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Somatostatina/metabolismo , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Giro Dentado/citología , Corteza Entorrinal/citología , Femenino , Neuronas GABAérgicas/citología , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL
16.
PLoS Biol ; 19(12): e3001127, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928938

RESUMEN

The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.


Asunto(s)
Región CA3 Hipocampal/fisiología , Memoria/fisiología , Aprendizaje Espacial/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/metabolismo , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Corteza Perirrinal/fisiología
17.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948401

RESUMEN

Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer's disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/farmacología , Hipocampo/efectos de los fármacos , Lamotrigina/farmacología , Ritmo Teta/efectos de los fármacos , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Hipocampo/citología , Hipocampo/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo
18.
PLoS Comput Biol ; 17(11): e1009199, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767548

RESUMEN

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.


Asunto(s)
Neuronas GABAérgicas/fisiología , Modelos Neurológicos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Biología Computacional , Simulación por Computador , Dendritas/fisiología , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Receptores AMPA/fisiología , Receptores de Glutamato/fisiología , Análisis Espacio-Temporal , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología
19.
PLoS Comput Biol ; 17(10): e1009435, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597293

RESUMEN

In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.


Asunto(s)
Acetilcolina/farmacología , Región CA3 Hipocampal , Memoria , Norepinefrina/farmacología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Biología Computacional , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos
20.
Nat Commun ; 12(1): 6114, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671042

RESUMEN

In the hippocampal circuit CA3 input plays a critical role in the organization of CA1 population activity, both during learning and sleep. While integrated spatial representations have been observed across the two hemispheres of CA1, these regions lack direct connectivity and thus the circuitry responsible remains largely unexplored. Here we investigate the role of CA3 in organizing bilateral CA1 activity by blocking synaptic transmission at CA3 terminals through the inducible transgenic expression of tetanus toxin. Although the properties of single place cells in CA1 were comparable bilaterally, we find a decrease of ripple synchronization between left and right CA1 after silencing CA3. Further, during both exploration and rest, CA1 neuronal ensemble activity is less coordinated across hemispheres. This included degradation of the replay of previously explored spatial paths in CA1 during rest, consistent with the idea that CA3 bilateral projections integrate activity between left and right hemispheres and orchestrate bilateral hippocampal coding.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Lateralidad Funcional/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Vías Nerviosas/fisiología , Células de Lugar/fisiología , Descanso/fisiología , Transmisión Sináptica/genética , Toxina Tetánica/genética , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA