Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.694
Filtrar
1.
Physiol Plant ; 176(5): e14558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360434

RESUMEN

In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.


Asunto(s)
Brasinoesteroides , Giberelinas , Ácidos Indolacéticos , Luz , Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Giberelinas/metabolismo , Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz Roja
2.
Proc Natl Acad Sci U S A ; 121(42): e2320187121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39382994

RESUMEN

Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Especies Reactivas de Oxígeno , Ubiquitina-Proteína Ligasas , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Óxido Nítrico/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxidación-Reducción , Transducción de Señal
3.
Nat Commun ; 15(1): 8489, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353942

RESUMEN

Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulación de la Expresión Génica de las Plantas , Luz , Nitratos , Fitocromo , Raíces de Plantas , Transducción de Señal , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Nitratos/metabolismo , Citocininas/metabolismo , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fitocromo/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Zeatina/metabolismo , Zeatina/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
PeerJ ; 12: e18199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39421417

RESUMEN

Anthocyanins are the most valuable pigments in Lycium ruthenicum Murray (L. ruthenicum). Although ultraviolet-B (UV-B) irradiation is a key environmental factor influencing anthocyanin biosynthesis in L. ruthenicum, the deep molecular mechanism remains unclear. Herein, we examined the changes in the total anthocyanin content and transcriptomic characteristics of L. ruthenicum leaves following UV-B irradiation treatment. The results showed a twofold increase in anthocyanin content in the leaves of L. ruthenicum after the treatment. The transcriptome analysis showed that the expression of 24 structural genes identified in the anthocyanin synthesis pathway was up-regulated. In particular, F3'H (Unigene0009145) and C4H (Unigene0046607) exhibit notable up-regulation, suggesting their potential roles in anthocyanin synthesis. Protein interaction network results revealed that MYB1 (Unigene0047706) had the highest connectivity, followed by bHLH (Unigene0014085). Additionally, UVR8 (Unigene0067978) and COP1 (Unigene0008780) were found to be highly involved in UV-B signal transduction. These findings provide new insights into the genetic and biochemical mechanisms that regulate anthocyanin production, and could guide agricultural practices to reduce environmental impacts and improve crop yield and quality.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Lycium , Hojas de la Planta , Rayos Ultravioleta , Antocianinas/biosíntesis , Lycium/metabolismo , Lycium/genética , Lycium/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Perfilación de la Expresión Génica , Transcriptoma/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Physiol Plant ; 176(5): e14512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221518

RESUMEN

Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.


Asunto(s)
Líquenes , Transcriptoma , Rayos Ultravioleta , Líquenes/fisiología , Líquenes/efectos de la radiación , Líquenes/genética , Líquenes/metabolismo , Melaninas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación
6.
Physiol Plant ; 176(5): e14541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39293994

RESUMEN

The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down-regulated than up-regulated genes. Comparison between roots of the leaf-stressed plants and whole cold-treated or control plants revealed that nitrogen metabolism and nitric oxide-related signalling, as well as the phenylpropanoid-related processes, were specifically affected. Real-time PCR results focusing on the COLD1 and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Luz , Oryza , Raíces de Plantas , Brotes de la Planta , Transducción de Señal , Estrés Fisiológico , Oryza/genética , Oryza/efectos de la radiación , Oryza/fisiología , Oryza/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/genética , Brotes de la Planta/efectos de la radiación , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Brotes de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Frío , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Nat Commun ; 15(1): 8032, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271649

RESUMEN

Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation. The transcriptional regulator PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and the histone H3K27-demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) are identified as being required for this shade avoidance memory. RNA-sequencing analysis reveals that shade induction of shade-memory-related genes is impaired in the pif7 and ref6 mutants. Based on the analyses of enrichments of H3K27me3, REF6 and PIF7, we find that priming shade treatment induces PIF7 accumulation, which further recruits REF6 to demethylate H3K27me3 on the chromatin of certain shade-memory-related genes, leading to a state poised for their transcription. Upon a second shade treatment, enhanced shade-mediated inductions of these genes result in stronger hypocotyl growth responses. We conclude that the transcriptional memory mediated by epigenetic modification plays a key role in the ability of primed plants to remember previously experienced shade and acquire enhanced responses to recurring shade conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutación , Factores de Transcripción/metabolismo
8.
Plant Mol Biol ; 114(5): 107, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333431

RESUMEN

Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.


Asunto(s)
Cucumis sativus , Rayos gamma , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas , Plantones , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/genética , Cucumis sativus/efectos de la radiación , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Radioisótopos de Cobalto , Relación Dosis-Respuesta en la Radiación , Ácidos Indolacéticos/metabolismo , Clorofila/metabolismo , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/genética , Perfilación de la Expresión Génica
9.
Physiol Plant ; 176(4): e14471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129657

RESUMEN

UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a. Compared to wild-type (WT) plants, uvr8b and uvr8a uvr8b rice mutants exposed to UV-B showed reduced UV-B-induced growth inhibition and upregulation of CHS and HY5 transcripts alongside UV-B acclimation. However, uvr8a mutant was similar to WT plants and exhibited changes comparable with WT. Overexpressing OsUVR8a/b enhanced UV-B-induced growth inhibition and acclimation to UV-B. UV-B was able to enhance the interaction between E3 ubiquitin ligase OsCOP1 and OsUVR8a/b, whereas the interaction of the homologous protein of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS2 (AtRUP2) in rice with OsUVR8a/b was independent of UV-B. Additionally, OsUVR8a/b proteins were also found in the nucleus and cytoplasm even in the absence of UV-B. The abundance of OsUVR8 monomer showed an invisible change in the leaves of rice seedlings transferred from white light to that supplemented with UV-B, even though UV-B was able to weaken the interactions between OsUVR8a and OsUVR8b homo and heterodimers. Therefore, both OsUVR8a and OsUVR8b, which have different localization and response patterns compared with AtUVR8, function in the response of rice to UV-B radiation, whereas OsUVR8b plays a predominant role in this process.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Rayos Ultravioleta , Oryza/genética , Oryza/efectos de la radiación , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Mutación
10.
Plant Cell Rep ; 43(9): 224, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215829

RESUMEN

KEY MESSAGE: This study, using multi-omics combined with physiologic assays, found that calcium-ion signaling can regulate phenolic acid accumulation in R. chrysanthum leaves in response to UV-B stress. UV-B stress is a severe abiotic stress capable of destroying cellular structures and affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that has been exposed to high levels of UV-B radiation for an extended period, leading to the development of adaptive responses to mitigate UV-B stress. As such, it serves as a valuable experimental material for studying plant resilience to UV-B stress. We utilized R. chrysanthum as the experimental material and subjected it to UV-B stress. We conducted a comprehensive analysis of the changes in R. chrysanthum under both control and UV-B stress conditions using multi-omic and physiologic assays. Our aim was to investigate the molecular mechanism underlying R. chrysanthum's resistance to UV-B stress, with a focus on calcium-ion signaling. UV-B stress was found to impact the photosynthesis of R. chrysanthum by decreasing the maximum photosynthetic efficiency of photosystem II, reducing Fm, and increasing F0. In addition, the composition of numerous phenolic acid compounds was significantly altered. Genes and proteins related to calcium signaling showed significant differences, with some proteins (CML, CPK1, CRK3, ATP2C, ERG3, CAR7) being modified by acetylation. The correlation between genes and proteins involved in calcium signaling and phenolic compounds suggested that calcium signaling may play a role in regulating the accumulation of phenolic compounds under UV-B stress to help R. chrysanthum adapt. This study examines the impact of calcium-ion signaling on the accumulation of phenolic acid compounds, offering insights for future research on the molecular mechanisms underlying plant resilience to UV-B stress.


Asunto(s)
Señalización del Calcio , Hidroxibenzoatos , Rhododendron , Estrés Fisiológico , Rayos Ultravioleta , Hidroxibenzoatos/metabolismo , Señalización del Calcio/efectos de la radiación , Rhododendron/metabolismo , Rhododendron/efectos de la radiación , Rhododendron/genética , Rhododendron/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Fotosíntesis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Nature ; 633(8031): 872-877, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198644

RESUMEN

Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio , Channelrhodopsins , Luz , Optogenética , Aniones/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Calcio/metabolismo , Señalización del Calcio/efectos de la radiación , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Citosol/metabolismo , Sequías , Conductividad Eléctrica , Transporte Iónico/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación
12.
Genes (Basel) ; 15(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202430

RESUMEN

Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Oryza/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transcriptoma , Luz , Empalme Alternativo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos
13.
Plant Signal Behav ; 19(1): 2389496, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39132719

RESUMEN

Arabidopsis EARLY LIGH-INDUCIBLE PROTEIN 2 (ELIP2) is a chlorophyll- and carotenoid-binding protein and is involved in photoprotection under stress conditions. Because its expression is induced through high light, cold, or UV-B stressors, its mechanism of induction has been studied. It is known that a functional unit found in the promoter, which is composed of Element B and Element A, is required and sufficient for full activation by these stressors. In this study, the role of each element in the unit was analyzed by introducing weak mutations in each element as synthetic promoters in addition to intensive repeat constructs of each single element. The results suggest that a stressor like cold stress generates two parallel signals in plant cells, and they merge at the promoter region for the activation of ELIP2 expression, which constitutes an "AND" gate and has a potential to realize strong response with high specificity by an environmental trigger.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frío , Regulación de la Expresión Génica de las Plantas , Luz , Regiones Promotoras Genéticas , Estrés Fisiológico , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
14.
Physiol Plant ; 176(4): e14504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39191700

RESUMEN

Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.


Asunto(s)
Botrytis , Regulación de la Expresión Génica de las Plantas , Luz , Enfermedades de las Plantas , Solanum lycopersicum , Botrytis/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Salicílico/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz Roja
15.
Planta ; 260(3): 69, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127837

RESUMEN

MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.


Asunto(s)
Antocianinas , Frutas , Luz , Vitis , Vitis/efectos de la radiación , Vitis/metabolismo , Vitis/genética , Antocianinas/metabolismo , Frutas/efectos de la radiación , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pigmentación/efectos de la radiación
16.
Nat Commun ; 15(1): 6396, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080288

RESUMEN

In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.


Asunto(s)
Arabidopsis , Núcleo Celular , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Rayos Ultravioleta , Oryza/metabolismo , Oryza/genética , Oryza/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Plantones/efectos de la radiación , Plantones/metabolismo , Plantones/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación , Plantas Modificadas Genéticamente , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética
17.
Appl Radiat Isot ; 212: 111423, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38981165

RESUMEN

The dose effect of radiation has long been a topic of concern, but the molecular mechanism behind it is still unclear. In this study, dried pea seeds were irradiated with 252Cf fission neutron source. Through analyzing the transcriptome and proteome of M1 generation pea (Pisum sativum L.) leaves, we studied the molecular rule and mechanism of neutron dose effect. Our results showed three important rules of global gene expression in the studied dose range. The rule closely related to the neutron absorbed dose at the transcription and translation levels is: the greater the difference in neutron absorbed dose between two radiation treatment groups, the greater the difference in differential expression between the two groups and the control group. We also obtained important sensitive metabolic pathways of neutron radiation, as well as related key genes. Furthermore, the overall molecular regulation mechanism of dose effect was revealed based on the main functional items obtained. Our research results can be applied to appropriate radiation dose estimation and agricultural production practice.


Asunto(s)
Neutrones , Pisum sativum , Pisum sativum/efectos de la radiación , Pisum sativum/genética , Relación Dosis-Respuesta en la Radiación , Transcriptoma/efectos de la radiación , Dosis de Radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Semillas/efectos de la radiación , Proteoma/efectos de la radiación , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación
18.
J Agric Food Chem ; 72(28): 15498-15511, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950542

RESUMEN

UV can serve as an effective light spectrum for regulating plant secondary metabolites, while relevant studies on UV-A are much less extensive than those on UV-B. A comprehensive understanding of the selective effects of UV-A on different secondary metabolites and the specific features of primary metabolism that drive these effects is still lacking. To address this knowledge gap, we conducted a study to analyze the dynamic changes in the metabolome and transcriptome of lettuce leaves irradiated with red plus UV-A light (monochromatic red light as control). Generally, UV-A promoted the synthesis of most phenylpropanoids and terpenoids originating from the shikimate and methylerythritol phosphate (MEP) pathway in plastids but sacrificed the synthesis of terpenoids derived from the mevalonate (MVA) pathway, particularly sesquiterpenes. Increased precursors supply for the shikimate and MEP pathway under UV-A was directly supported by the activation of the Calvin-Benson cycle and phosphoenolpyruvate transport. Whereas, along with phosphoenolpyruvate transport, the TCA cycle was restrained, causing deprivation of the MVA pathway precursor. In addition, UV-A also activated the plastidic oxidative branch of the pentose phosphate pathway, photorespiration, and malate shuttle, to ensure a sufficient supply of nitrogen, circulation homeostasis of the Calvin-Benson cycle, and energy balance, thus indirectly supporting UV-A-induced specific secondary metabolic output. This study provides a comprehensive framework for understanding the flexible primary-secondary metabolism interactions that are able to produce specific metabolites favorable for adaptation to environmental stimuli.


Asunto(s)
Lactuca , Hojas de la Planta , Metabolismo Secundario , Rayos Ultravioleta , Lactuca/metabolismo , Lactuca/efectos de la radiación , Lactuca/química , Lactuca/genética , Lactuca/crecimiento & desarrollo , Metabolismo Secundario/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Metaboloma/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Multiómica
19.
Plant Physiol Biochem ; 214: 108872, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964087

RESUMEN

Bletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 µmol m-2·s-1), middle light (ML) (200 µmol m-2·s-1), and high light (HL) (400 µmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.


Asunto(s)
Carbono , Luz , Orchidaceae , Fotosíntesis , Hojas de la Planta , Polisacáridos , Orchidaceae/metabolismo , Orchidaceae/efectos de la radiación , Orchidaceae/crecimiento & desarrollo , Orchidaceae/genética , Polisacáridos/metabolismo , Polisacáridos/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Carbono/metabolismo , Fotosíntesis/efectos de la radiación , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Multiómica
20.
Sci Rep ; 14(1): 13484, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866836

RESUMEN

Current study is the first ever storage cum market trial of radiation processed (28 tons) of potato conducted in India at a commercial scale. The objective was to affirm the efficacy of very low dose of gamma radiation processing of potato for extended storage with retained quality and to understand the plausible mechanism at the gene modulation level for suppression of potato sprouting. Genes pertaining to abscisic acid (ABA) biosynthesis were upregulated whereas its catabolism was downregulated in irradiated potatoes. Additionally, genes related to auxin buildup were downregulated in irradiated potatoes. The change in the endogenous phytohormone contents in irradiated potato with respect to the control were found to be correlated well with the differential expression level of certain related genes. Irradiated potatoes showed retention of processing attributes including cooking and chip-making qualities, which could be attributed to the elevated expression of invertase inhibitor in these tubers. Further, quality retention in radiation treated potatoes may also be related to inhibition in the physiological changes due to sprout inhibition. Ecological and economical analysis of national and global data showed that successful adoption of radiation processing may gradually replace sprout suppressants like isopropyl N-(3-chlorophenyl) carbamate (CIPC), known to leave residue in the commodity, stabilize the wholesale annual market price, and provide a boost to the industries involved in product manufacturing.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/efectos de la radiación , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Almacenamiento de Alimentos/métodos , Rayos gamma , Reguladores del Crecimiento de las Plantas/metabolismo , Irradiación de Alimentos/métodos , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...