Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.784
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727302

RESUMEN

We have previously shown that the transmembrane protein ODZ1 promotes cytoskeletal remodeling of glioblastoma (GBM) cells and invasion of the surrounding parenchyma through the activation of a RhoA-ROCK pathway. We also described that GBM cells can control the expression of ODZ1 through transcriptional mechanisms triggered by the binding of IL-6 to its receptor and a hypoxic environment. Epidermal growth factor (EGF) plays a key role in the invasive capacity of GBM. However, the molecular mechanisms that enable tumor cells to acquire the morphological changes to migrate out from the tumor core have not been fully characterized. Here, we show that EGF is able to induce the expression of ODZ1 in primary GBM cells. We analyzed the levels of the EGF receptor (EGFR) in 20 GBM primary cell lines and found expression in 19 of them by flow cytometry. We selected two cell lines that do or do not express the EGFR and found that EGFR-expressing cells responded to the EGF ligand by increasing ODZ1 at the mRNA and protein levels. Moreover, blockade of EGF-EGFR binding by Cetuximab, inhibition of the p38 MAPK pathway, or Additionally, the siRNA-mediated knockdown of MAPK11 (p38ß MAPK) reduced the induction of ODZ1 in response to EGF. Overall, we show that EGF may activate an EGFR-mediated signaling pathway through p38ß MAPK, to upregulate the invasion factor ODZ1, which may initiate morphological changes for tumor cells to invade the surrounding parenchyma. These data identify a new candidate of the EGF-EGFR pathway for novel therapeutic approaches.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Glioblastoma , Regulación hacia Arriba , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Receptores ErbB/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Invasividad Neoplásica
2.
Cells ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38727313

RESUMEN

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Asunto(s)
Antígeno AC133 , Anfirregulina , Proliferación Celular , Melanoma , Regulación hacia Arriba , Anfirregulina/metabolismo , Anfirregulina/genética , Humanos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Receptores ErbB/metabolismo
3.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583827

RESUMEN

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Asunto(s)
Células Epiteliales , Cabras , Metabolismo de los Lípidos , Glándulas Mamarias Animales , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Metabolismo de los Lípidos/genética , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Regulación hacia Arriba/genética , Gotas Lipídicas/metabolismo , Regulación de la Expresión Génica , Triglicéridos/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 237-241, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678599

RESUMEN

We aimed to illustrate the regulatory effect of miR-18 on the onset of non-alcoholic fatty liver disease (NAFLD). MiR-18 level in liver tissues collected from NAFLD patients and mice was detected. In vivo and in vitro influences of miR-18 on biochemical indexes, glucose tolerance and insulin resistance (IR) in NAFLD were determined. H&E staining was conducted to observe hepatic steatosis in NAFLD mice. The downstream target of miR-18 was finally detected by luciferase assay. MiR-18 was upregulated in liver tissues collected from NAFLD patients and mice. Knockdown of miR-18 reduced levels of AST, ALT, TG and TC in NAFLD mice and culture medium of FFA-induced LO2 cells. Meanwhile, knockdown of miR-18 alleviated hepatic steatosis and IR in NAFLD mice. IGF1 was the target of miR-18, and it was negatively regulated by miR-18. MiR-18 is upregulated in NAFLD patients and mice. Knockdown of miR-18 alleviates HFD-induced hepatic steatosis and IR through interacting with IGF1 to regulate to lipid metabolism and insulin signals.


Asunto(s)
Resistencia a la Insulina , Factor I del Crecimiento Similar a la Insulina , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Humanos , Metabolismo de los Lípidos/genética , Resistencia a la Insulina/genética , Masculino , Hígado/metabolismo , Hígado/patología , Ratones , Insulina/metabolismo , Dieta Alta en Grasa , Regulación hacia Arriba/genética , Línea Celular , Secuencia de Bases , Transducción de Señal , Técnicas de Silenciamiento del Gen
5.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674017

RESUMEN

The mainstays of lung cancer pathogenesis are cell cycle progression dysregulation, impaired apoptosis, and unregulated cell proliferation. While individual microRNA (miR) targeting or delivering is a promising approach that has been extensively studied, combination of miR targeting can enhance therapeutic efficacy and overcome limitations present in individual miR regulations. We previously reported on the use of a miR-143 and miR-506 combination via transient transfections against lung cancer. In this study, we evaluated the effect of miR-143 and miR-506 under stable deregulations in A549 lung cancer cells. We used lentiviral transductions to either up- or downregulate the two miRs individually or in combination. The cells were sorted and analyzed for miR deregulation via qPCR. We determined the miR deregulations' effects on the cell cycle, cell proliferation, cancer cell morphology, and cell motility. Compared to the individual miR deregulations, the combined miR upregulation demonstrated a miR-expression-dependent G2 cell cycle arrest and a significant increase in the cell doubling time, whereas the miR-143/506 dual downregulation demonstrated increased cellular motility. Furthermore, the individual miR-143 and miR-506 up- and downregulations exhibited cellular responses lacking an apparent miR-expression-dependent response in the respective analyses. Our work here indicates that, unlike the individual miR upregulations, the combinatorial miR treatment remained advantageous, even under prolonged miR upregulation. Finally, our findings demonstrate potential advantages of miR combinations vs. individual miR treatments.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Regulación hacia Arriba , MicroARNs/genética , Humanos , Proliferación Celular/genética , Células A549 , Movimiento Celular/genética , Regulación hacia Arriba/genética , Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Apoptosis/genética
6.
Cells ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38607073

RESUMEN

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Asunto(s)
Glioblastoma , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/genética , Regulación hacia Arriba/genética , Glioblastoma/genética , Microambiente Tumoral , Receptores de Superficie Celular/metabolismo , Receptor de Prorenina
7.
Clin Transl Med ; 14(4): e1628, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572589

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) is a haematological malignancy with unfavourable prognosis. Despite the effectiveness of chemotherapy and targeted therapy, relapse or drug resistance remains a major threat to AML patients. N6-methyladenosine (m6A) RNA methylation and super-enhancers (SEs) are extensively involved in the leukaemogenesis of AML. However, the potential relationship between m6A and SEs in AML has not been elaborated. METHODS: Chromatin immunoprecipitation (ChIP) sequencing data from Gene Expression Omnibus (GEO) cohort were analysed to search SE-related genes. The mechanisms of m6 A-binding proteins IGF2BP2 and IGF2BP3 on DDX21 were explored via methylated RNA immunoprecipitation (MeRIP) assays, RNA immunoprecipitation (RIP) assays and luciferase reporter assays. Then we elucidated the roles of DDX21 in AML through functional assays in vitro and in vivo. Finally, co-immunoprecipitation (Co-IP) assays, RNA sequencing and ChIP assays were performed to investigate the downstream mechanisms of DDX21. RESULTS: We identified two SE-associated transcripts IGF2BP2 and IGF2BP3 in AML. High enrichment of H3K27ac, H3K4me1 and BRD4 was observed in IGF2BP2 and IGF2BP3, whose expression were driven by SE machinery. Then IGF2BP2 and IGF2BP3 enhanced the stability of DDX21 mRNA in an m6A-dependent manner. DDX21 was highly expressed in AML patients, which indicated a poor survival. Functionally, knockdown of DDX21 inhibited cell proliferation, promoted cell apoptosis and led to cell cycle arrest. Mechanistically, DDX21 recruited transcription factor YBX1 to cooperatively trigger ULK1 expression. Moreover, silencing of ULK1 could reverse the promoting effects of DDX21 overexpression in AML cells. CONCLUSIONS: Dysregulation of SE-IGF2BP2/IGF2BP3-DDX21 axis facilitated the progression of AML. Our findings provide new insights into the link between SEs and m6A modification, elucidate the regulatory mechanisms of IGF2BP2 and IGF2BP3 on DDX21, and reveal the underlying roles of DDX21 in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , ARN Helicasas DEAD-box , Leucemia Mieloide Aguda/genética , Recurrencia Local de Neoplasia , ARN , Proteínas de Unión al ARN/genética , Factores de Transcripción , Regulación hacia Arriba/genética
8.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672481

RESUMEN

Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Glycine max , Fotoperiodo , Proteínas de Plantas , Regiones Promotoras Genéticas , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente/genética , Regulación hacia Arriba/genética
9.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 176-180, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678610

RESUMEN

Recently, the progression of gastric cancer (GC), as one of the most ordinary malignant tumors, has been reported to be associated with circular RNAs. This study aimed to identify the role of circular RNA_LARP4 in GC. We performed real-time quantitative polymerase chain reaction (RT-qPCR) in 46 paired GC patients and GC cell lines to detect the expression of circular RNA_LARP4. Moreover, the role of circular RNA_LARP4 in GC proliferation was identified through proliferation assay and colony formation assay, while the role of circular RNA_LARP4 in GC metastasis was measured through scratch wound assay and transwell assay. Furthermore, the potential targets of circular RNA_LARP4 were predicted through bioinformatics methods and further identified by western blot assay and RT-qPCR. Circular RNA_LARP4 expression was remarkably lower in GC tissues compared with that in adjacent samples. Besides, cell proliferation of GC was inhibited after overexpression of circular RNA_LARP4, while cell migration and invasion of GC was inhibited after overexpression of circular RNA_LARP4. Furthermore, Upstream frameshift 1 (UPF1) was predicted as the potential target of circular RNA_LARP4 and was upregulated via overexpression of circular RNA_LARP4 in GC. Circular RNA_LARP4 inhibits GC cell proliferation and metastasis via targeting UPF1 in vitro, which might provide a new tumor suppressor in GC development.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , ARN Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Antígeno SS-B , Transactivadores/genética , Transactivadores/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Femenino , Masculino , ARN/genética , ARN/metabolismo , Invasividad Neoplásica/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Regulación hacia Arriba/genética
10.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664711

RESUMEN

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Asunto(s)
Factor de Transcripción Activador 3 , Axones , Roturas del ADN de Doble Cadena , Ganglios Espinales , Células Madre Mesenquimatosas , Mitocondrias , Regeneración Nerviosa , Especies Reactivas de Oxígeno , Nervio Ciático , Regulación hacia Arriba , Animales , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Axones/metabolismo , Regeneración Nerviosa/genética , Regulación hacia Arriba/genética , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Nervio Ciático/lesiones , Nervio Ciático/patología , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Masculino
11.
Ann Clin Lab Sci ; 54(1): 47-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514065

RESUMEN

OBJECTIVE: To investigate the clinical significance of miR-499a expression in the serum of ischemic stroke patients and its potential mechanism in regulating astrocytes to promote ischemic stroke. METHODS: Serum samples from 99 ischemic stroke patients and 99 healthy individuals were collected and analyzed for miR-499a expression through RT-PCR. Statistical analysis was performed to compare the expression differences between the two groups, and correlation between miR-499a expression and clinical pathological indices in stroke patients was analyzed. MiR-499a mimic, inhibitor, and negative control vectors were constructed and transfected into astrocyte SVGp12 cells. Afterward, miR-499a expression was validated by RT-PCR, cell viability was assessed by CCK8 assay, and apoptosis was detected using flow cytometry. The binding sites of miR-499a and Beclin1 were predicted by the Target-scan database and confirmed by dual luciferase assay. After overexpressing Beclin1, co-transfection with miR-499a mimic or negative control was conducted to observe the reverse effect of miR-499a mimic on Beclin1 overexpression. RESULTS: MiR-499a was significantly upregulated in the stroke group (p<0.001), it was positively correlated with TC (Total Cholesterol), LDL-C (Low-density lipoprotein cholesterol), and APO-A1 (Apolipoprotein A1) (R2>0.3, p<0.001). MiR-499a mimics promoted cell viability while inhibiting apoptosis of astrocytes. MiR-499a targeted Beclin 1 and inhibited its mRNA and protein expression, as well as the expression of autophagy-related proteins LC-3 and p62. MiR-499a could reverse the impact of Beclin1 overexpression on SVGp12 astrocyte proliferation and apoptosis. CONCLUSION: Serum miR-499a in stroke patients may serve as a potential diagnostic indicator. MiR-499a-mediated inhibition of Beclin 1, subsequently leading to suppression of astrocytic autophagy and viability, may represent a pivotal mechanism underlying its promotion of IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Humanos , Beclina-1/genética , Beclina-1/metabolismo , Regulación hacia Arriba/genética , MicroARNs/genética , MicroARNs/metabolismo , Astrocitos , Accidente Cerebrovascular Isquémico/genética , Apoptosis/genética , Accidente Cerebrovascular/genética , Autofagia/genética , Colesterol
12.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429900

RESUMEN

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulación hacia Arriba/genética
13.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
14.
Cell Cycle ; 23(2): 218-231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38466946

RESUMEN

Cholangiocarcinoma (CCA) is a common gastrointestinal malignancy characterized by a poor prognosis. Considering its prevalence, exploring its underlying molecular biological mechanisms is of paramount clinical importance. In this study, bioinformatics techniques were utilized to analyze CCA sample data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The analysis revealed a notable upregulation in FUT4 expression in CCA samples. To further investigate the functional implications of FUT4, in vivo and in vitro experiments were conducted, which demonstrated that FUT4 overexpression significantly enhances the proliferative and migratory capabilities of tumor cells. Subsequent sequencing analysis unveiled a correlation between FUT4 and epithelial-mesenchymal transition (EMT). Indeed, the pioneering discovery of elevated FUT4 expression in CCA was highlighted in this study. Further investigations into the function of FUT4 in CCA provided initial insights into its role in driving cancer progression via EMT. These findings present promising avenues for the diagnosis and treatment of CCA.[Figure: see text].


Asunto(s)
Neoplasias de los Conductos Biliares , Movimiento Celular , Proliferación Celular , Colangiocarcinoma , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Fucosiltransferasas , Regulación Neoplásica de la Expresión Génica , Transición Epitelial-Mesenquimal/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Humanos , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Animales , Proliferación Celular/genética , Movimiento Celular/genética , Ratones Desnudos , Ratones , Ratones Endogámicos BALB C , Regulación hacia Arriba/genética , Masculino
15.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 200-206, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372094

RESUMEN

As a common neurodegenerative disorder, Alzheimer's disease (AD) seriously threatens human life. Long non-coding RNAs (lncRNAs) exhibit essential functions in AD development. Nevertheless, the detailed effects and possible mechanisms of lncRNA Wilms tumor 1 Antisense RNA (WT1-AS) in AD are largely unknown. In our studies, a total of 30 serum samples from AD patients were collected, and WT1-AS expressions were detected through qRT-PCR analysis. Additionally, an in vitro AD model was constructed by treating Aß1-42 in human neuroblastoma cells. Functional assays were implemented to assess the impacts of WT1-AS on Aß1-42-stimulated human neuroblastoma cell proliferation together with apoptosis. Moreover, relationship of WT1-AS, microRNA (miR)-186-5p as well as cyclin D2 (CCND2) could be predicted through bioinformatics tools as well as proved via dual-luciferase reporter experiments. Our results showed that WT1-AS together with CCND2 were low-expressed, while miR-186-5p presented high expression in AD serum samples together with Aß1-42-stimulated human neuroblastoma cells. WT1-AS over-expression or miR-186-5p depletion notably promoted the proliferation, reduced the apoptosis, and decreased the p-Tau protein expressions of human neuroblastoma cells induced with Aß1-42. Moreover, miR-186-5p combined with WT1-AS, and CCND2 was modulated by miR-186-5p. Furthermore, CCND2 elevation partially offsets the impacts of miR-186-5p elevation on Aß1-42-stimulated cell proliferation as well as apoptosis mediated with WT1-AS up-regulation. Our results indicated that up-regulation of lncRNA WT1-AS ameliorated Aß-stimulated neuronal damage through modulating miR-186-5p/CCND2 axis, offering a novel direction for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Ciclina D2 , MicroARNs , Neuroblastoma , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , Apoptosis/genética , Ciclina D2/genética , Ciclina D2/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genética
16.
Genet Test Mol Biomarkers ; 28(2): 65-69, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416663

RESUMEN

Background: Long noncoding RNAs (lncRNAs) as critical molecules play an essential role in the development of cancers. In colorectal cancer (CRC), various lncRNAs are related to cell proliferation, apoptosis, migration, and invasion. LncRNA prostate cancer-associated transcript 1 (PCAT-1), as an oncogenic factor, is a diagnostic biomarker that regulates cell proliferation, migration, invasion, and apoptosis. Methods: This study evaluated the relationship between PCAT-1, CRC occurrence, and pathological features of Iranian patients. The studied samples included 100 colorectal tumor tissues and 100 adjacent healthy tissues of Iranian CRC patients. RNAs were extracted from cancerous and noncancerous tissues to synthesize complementary DNA. The expression level of PCAT-1 was assessed using the real-time PCR method, and the data analysis was assessed using SPSS software. Results: In this study, expression level of PCAT-1 in tumor tissue was significantly increased in Iranian patients, and pathological studies of the patients had no significant relationship with the PCAT-1 expression profile. Conclusion: Our results suggested that the high expression of PCAT-1 resulted in the occurrence of colorectal tumor tissues in Iranian patients, which can be considered a diagnostic biomarker in CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Masculino , Apoptosis/genética , Biomarcadores , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Irán , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genética
17.
Exp Cell Res ; 437(1): 113977, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373588

RESUMEN

Serine metabolic reprogramming is known to be associated with oncogenesis and tumor development. The key metabolic enzyme PSAT1 has been identified as a potential prognostic marker for various cancers, but its role in ccRCC remains unkown. In this study, we investigated expression of PSAT1 in ccRCC using the TCGA database and clinical specimens. Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT1 increased the susceptibility of sunitinib-resistant cells. Inhibition of PSAT1 increased the sensitivity of drug-resistant tumors to sunitinib in vivo. Collectively, our investigation identifies PSAT1 as an independent prognostic biomarker for advanced ccRCC patients and as a prospective therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Medicamentos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Sunitinib , Regulación hacia Arriba/genética
18.
Cell Death Dis ; 15(2): 126, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341417

RESUMEN

Huntington disease (HD) is a neurodegenerative disease caused by the abnormal expansion of a polyglutamine tract resulting from a mutation in the HTT gene. Oxidative stress has been identified as a significant contributing factor to the development of HD and other neurodegenerative diseases, and targeting anti-oxidative stress has emerged as a potential therapeutic approach. CHCHD2 is a mitochondria-related protein involved in regulating cell migration, anti-oxidative stress, and anti-apoptosis. Although CHCHD2 is highly expressed in HD cells, its specific role in the pathogenesis of HD remains uncertain. We postulate that the up-regulation of CHCHD2 in HD models represents a compensatory protective response against mitochondrial dysfunction and oxidative stress associated with HD. To investigate this hypothesis, we employed HD mouse striatal cells and human induced pluripotent stem cells (hiPSCs) as models to examine the effects of CHCHD2 overexpression (CHCHD2-OE) or knockdown (CHCHD2-KD) on the HD phenotype. Our findings demonstrate that CHCHD2 is crucial for maintaining cell survival in both HD mouse striatal cells and hiPSCs-derived neurons. Our study demonstrates that CHCHD2 up-regulation in HD serves as a compensatory protective response against oxidative stress, suggesting a potential anti-oxidative strategy for the treatment of HD.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Animales , Ratones , Humanos , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Regulación hacia Arriba/genética , Células Madre Pluripotentes Inducidas/metabolismo , Estrés Oxidativo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Transl Med ; 22(1): 148, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351014

RESUMEN

Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Humanos , Regulación hacia Arriba/genética , Neoplasias Gástricas/patología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transformación Celular Neoplásica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
20.
Funct Plant Biol ; 512024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326233

RESUMEN

Plants have certain adaptation mechanisms to combat temperature extremes and fluctuations. The heat shock protein (HSP90A) plays a crucial role in plant defence mechanisms under heat stress. In silico analysis of the eight TaHSP90A transcripts showed diverse structural patterns in terms of intron/exons, domains, motifs and cis elements in the promoter region in wheat. These regions contained cis elements related to hormones, biotic and abiotic stress and development. To validate these findings, two contrasting wheat genotypes E-01 (thermo-tolerant) and SHP-52 (thermo-sensitive) were used to evaluate the expression pattern of three transcripts TraesCS2A02G033700.1, TraesCS5B02G258900.3 and TraesCS5D02G268000.2 in five different tissues at five different temperature regimes. Expression of TraesCS2A02G033700.1 was upregulated (2-fold) in flag leaf tissue after 1 and 4h of heat treatment in E-01. In contrast, SHP-52 showed downregulated expression after 1h of heat treatment. Additionally, it was shown that under heat stress, the increased expression of TaHSP90A led to an increase in grain production. As the molecular mechanism of genes involved in heat tolerance at the reproductive stage is mostly unknown, these results provide new insights into the role of TaHSP90A transcripts in developing phenotypic plasticity in wheat to develop heat-tolerant cultivars under the current changing climate scenario.


Asunto(s)
Termotolerancia , Termotolerancia/genética , Triticum/genética , Regulación hacia Arriba/genética , Respuesta al Choque Térmico/genética , Grano Comestible/genética , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA