Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.083
Filtrar
1.
J Virol ; 98(9): e0102824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194247

RESUMEN

Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE: Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.


Asunto(s)
Carpas , Evasión Inmune , Infecciones por Reoviridae , Reoviridae , Proteínas no Estructurales Virales , Replicación Viral , Reoviridae/genética , Reoviridae/fisiología , Animales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Carpas/virología , Infecciones por Reoviridae/virología , Cuerpos de Inclusión Viral/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Citoplasma/virología , Citoplasma/metabolismo , Genoma Viral , Línea Celular , ARN Viral/genética , Separación de Fases
2.
BMC Genomics ; 25(1): 736, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080552

RESUMEN

Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.


Asunto(s)
Insectos Vectores , Oryza , Enfermedades de las Plantas , Virus de Plantas , Animales , Oryza/virología , Oryza/genética , Insectos Vectores/virología , Insectos Vectores/genética , Virus de Plantas/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Hemípteros/virología , Hemípteros/genética , Variación Genética , RNA-Seq , Transcriptoma , Reoviridae/genética , Zea mays/virología , Zea mays/genética , Polimorfismo de Nucleótido Simple , Mutación , Perfilación de la Expresión Génica , Sistemas de Lectura Abierta/genética
3.
Cell Host Microbe ; 32(6): 945-946, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870904

RESUMEN

In this issue of Cell Host & Microbe, Shang et al. identify murine neuropilin 1 as a host factor that binds reovirus particles, directing cell entry and contributing to viral dissemination and neurovirulence. This study highlights the reovirus model system to investigate host receptors and their significance in viral pathogenesis.


Asunto(s)
Neuronas , Neuropilina-1 , Reoviridae , Internalización del Virus , Animales , Ratones , Neuronas/virología , Neuropilina-1/metabolismo , Reoviridae/fisiología , Reoviridae/genética , Reoviridae/patogenicidad , Humanos , Interacciones Huésped-Patógeno , Infecciones por Reoviridae/virología , Receptores Virales/metabolismo
4.
Viruses ; 16(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38932213

RESUMEN

The mode and outcome of fish-virus interactions are influenced by many abiotic factors, among which water temperature is especially important in poikilothermic fish. Rare minnow Gobiocypris rarus is a eurythermal small cyprinid fish that is sensitive to infection with genotype II grass carp reovirus (GCRV). HSP70, a conservative and key player in heat shock response, is previously identified as an induced pro-viral factor during GCRV infection in vitro. Here, rare minnow was subjected to heat shock treatment (HST), 1 h treatment at 32 °C followed by reverting to a normal temperature of 24 °C, and subsequently challenged with GCRV-II at a dosage of 1 × LD50. The effect of HST on GCRV virulence in vivo was evaluated by calculating virus-associated mortality and viral load in both dead and survival fish. The results revealed that HST enhanced the mortality of rare minnow infected with GCRV; the fact that viral loads in the tissue samples of HST-treated fish were significantly higher than those in samples of the control group at 6, 8 d p.i. reflected a faster infection process due to HST. Quantitative gene expression analysis was further employed to show that the expression levels of Hsp70 in intestine and liver tissues from the HST group declined faster than muscle tissue after HST. HST W/O GCRV challenge upregulated proinflammatory cytokines such as MyD88 and Nf-κB, which was in consistence with the inflammation observed in histopathological analysis. This study shed light on the complexity of the interaction between fish abiotic and biotic stress response, which suggested that HST, an abiotic stress, could enhance the virulence of GCRV in Gobiocypris rarus that involved modulating the gene expression of host heat shock, as well as a pro-inflammatory response.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Enfermedades de los Peces/virología , Reoviridae/patogenicidad , Reoviridae/genética , Reoviridae/fisiología , Virulencia , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/veterinaria , Cyprinidae/virología , Carga Viral , Carpas/virología , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Calor
5.
Virus Res ; 346: 199413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848818

RESUMEN

The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.


Asunto(s)
Adenosina Desaminasa , Fibroblastos , Inosina , Edición de ARN , Transcriptoma , Animales , Ratones , Fibroblastos/virología , Fibroblastos/metabolismo , Inosina/metabolismo , Inosina/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Adenosina/genética , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/genética , Interacciones Huésped-Patógeno , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reoviridae/genética , Reoviridae/fisiología
6.
Plant Dis ; 108(9): 2845-2854, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38736149

RESUMEN

Rice black-streaked dwarf virus is transmitted by small brown planthoppers, which causes maize rough dwarf disease and rice black-streaked dwarf disease. This virus leads to slow growth or death of the host plants. During the coevolutionary arms race between viruses and plants, virus-derived small interfering RNAs (vsiRNAs) challenge the plant's defense response and inhibit host immunity through the RNA silencing system. However, it is currently unknown if rice black-streaked dwarf virus can produce the same siRNAs to mediate the RNA silencing in different infected species. In this study, four small RNA libraries and four degradome libraries were constructed by extracting total RNAs from the leaves of the maize (Zea mays) inbred line B73 and japonica rice (Oryza sativa) variety Nipponbare exposed to feeding by viruliferous and nonviruliferous small brown planthoppers. We analyzed the characteristics of small RNAs and explored virus-derived siRNAs in small RNA libraries through high-throughput sequencing. On analyzing the characteristics of small RNA, we noted that the size distributions of small RNAs were mainly 24 nt (19.74 to 62.00%), whereas those of vsiRNAs were mostly 21 nt (41.06 to 41.87%) and 22 nt (39.72 to 42.26%). The 5'-terminal nucleotides of vsiRNAs tended to be adenine or uracil. Exploring the distribution of vsiRNA hot spots on the viral genome segments revealed that the frequency of hotspots in B73 was higher than those in Nipponbare. Meanwhile, hotspots in the S9 and S10 virus genome segments were distributed similarly in both hosts. In addition, the target genes of small RNA were explored by degradome sequencing. Analyses of the regulatory pathway of these target genes unveiled that viral infection affected the ribosome-related target genes in maize and the target genes in the metabolism and biosynthesis pathways in rice. Here, 562 and 703 vsiRNAs were separately obtained in maize and rice and 73 vsiRNAs named as coexisting vsiRNAs (co-vsiRNAs) were detected in both hosts. Stem-loop PCR and real-time quantitative PCR confirmed that co-vsiRNA 3.1 and co-vsiRNA 3.5, derived from genome segment S3, simultaneously play a role in maize and rice and inhibited host gene expression. The study revealed that rice black-streaked dwarf virus can produce the same siRNAs in different species and provides a new direction for developing new antiviral strategies.


Asunto(s)
Oryza , Enfermedades de las Plantas , ARN Interferente Pequeño , Zea mays , Zea mays/virología , ARN Interferente Pequeño/genética , Oryza/virología , Enfermedades de las Plantas/virología , Hemípteros/virología , Hemípteros/genética , ARN Viral/genética , Virus de Plantas/genética , Virus de Plantas/fisiología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Reoviridae/genética , Reoviridae/fisiología
7.
J Invertebr Pathol ; 204: 108118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679369

RESUMEN

Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.


Asunto(s)
Braquiuros , Genoma Viral , Filogenia , Reoviridae , Animales , Braquiuros/virología , Reoviridae/genética , Reoviridae/clasificación , Orthobunyavirus/genética , Acuicultura
8.
Vector Borne Zoonotic Dis ; 24(8): 532-539, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38683642

RESUMEN

Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.


Asunto(s)
Genoma Viral , Filogenia , Animales , China , Culicidae/virología , Reoviridae/genética , Reoviridae/aislamiento & purificación , Reoviridae/clasificación , Línea Celular , Aedes/virología , Culex/virología , Mosquitos Vectores/virología , ARN Viral/genética
9.
Virology ; 594: 110060, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537391

RESUMEN

Southern rice black-streaked dwarf virus disease (SRBSDVD) is the most destructive viral disease in rice. In order to breeding resistant cultivars, Insertion-Deletion (InDel) markers were developed linked to OsAP47, the first isolated major resistance gene against SRBSDVD. Marker-assisted selection (MAS) was conducted to introduce this gene into the commercial variety. A rice line carrying homozygous resistance allele of OsAP47 was selected and named Kanghei No. 201 (KH201). Evaluated by artificial inoculation, KH201 showed significantly higher resistance than the recurrent parent Suxiu No.867 (SX867). And no significant differences were detected for KH201 in the yield-related components, including spikelets per panicle (SPP), ripened grains per panicle (RGPP), 1000-grain weight (TGW) and panicles per square meter (PPSM), leading to stable theoretical yield. The results indicated that introgression of OsAP47 improved rice resistance and can avoid yield losses produced by SRBSDVD. KH201 was demonstrated as a resistance material that could be used in rice breeding.


Asunto(s)
Oryza , Reoviridae , Reoviridae/genética , Alelos , Oryza/genética , Resistencia a la Enfermedad/genética
10.
Nat Commun ; 15(1): 2460, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503747

RESUMEN

The mammalian orthoreovirus (reovirus) σNS protein is required for formation of replication compartments that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of a σNS mutant that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure shows that dimers interact with each other using N-terminal arms to form a helical assembly resembling WT σNS filaments in complex with RNA observed using cryo-EM. The interior of the helical assembly is of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same site as the N-terminal arm. This finding suggests that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS, which is supported by the structure of σNS lacking an N-terminal arm. We further observed that σNS has RNA chaperone activity likely essential for presenting mRNA to the viral polymerase for genome replication. This activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.


Asunto(s)
Orthoreovirus , Reoviridae , Animales , Orthoreovirus/genética , Replicación Viral , Reoviridae/genética , ARN/metabolismo , Ácidos y Sales Biliares , ARN Viral/genética , Mamíferos/genética
11.
J Fish Dis ; 47(6): e13938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462942

RESUMEN

Channel catfish (Ictalurus punctatus) are a food fish extensively reared in aquaculture facilities throughout the world and are also among the most abundant wild catfish species in North America, making them a popular target of anglers. Furthermore, channel catfish are important members of aquatic ecosystems; for example, they serve as a glochidial host for the endangered winged mapleleaf mussel (Quadrula fragosa), making them critical for conserving this species through hatchery-based restoration efforts. During a routine health inspection, a novel aquareovirus was isolated from channel catfish used in mussel propagation efforts at a fish hatchery in Wisconsin. This virus was isolated on brown bullhead cells (ATCC CCL-59) and identified through metagenomic sequencing as a novel member of the family Spinareoviridae, genus Aquareovirus. The virus genome consists of 11 segments, as is typical of the aquareoviruses, with phylogenetic relationships based on RNA-dependent RNA polymerase and major outer capsid protein amino acid sequences showing it to be most closely related to golden shiner virus (aquareovirus C) and aquareovirus C/American grass carp reovirus (aquareovirus G) respectively. The potential of the new virus, which we name genictpun virus 1 (GNIPV-1), to cause disease in channel catfish or other species remains unknown.


Asunto(s)
Enfermedades de los Peces , Genoma Viral , Ictaluridae , Filogenia , Animales , Ictaluridae/virología , Wisconsin , Enfermedades de los Peces/virología , Reoviridae/aislamiento & purificación , Reoviridae/genética , Reoviridae/clasificación , Reoviridae/fisiología , Bivalvos/virología , Acuicultura
12.
Virology ; 593: 110027, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417251

RESUMEN

During the field surveys in Jiangsu Province, China, contiguous patches of rice plants with varying degrees of dwarfing, wax-white or dark brown enations at the base of stems, and abnormal heading symptoms were observed in the fields located in Jiangning District in Nanjing City, Jurong County in Zhenjiang City, and Zhangjiagang County in Suzhou City. Through molecular analyses, the presence of southern rice black-streaked dwarf virus was confirmed in symptomatic rice plants. The infections of other rice viruses that cause dwarfing were also ruled out. Additionally, Koch's postulates were fulfilled, further validating SRBSDV as the causal agent for the observed dwarfing disease epidemic. Furthermore, the phylogenetic analyses revealed that the SRBSDV prevalent in Jiangsu in 2023 may originate from multiple regions in Vietnam. Our study has documented the emergence of an SRBSDV epidemic in Jiangsu in 2023, marking the first incidence of southern rice black-streaked dwarf disease in this region.


Asunto(s)
Oryza , Reoviridae , Filogenia , Reoviridae/genética , China/epidemiología , Enfermedades de las Plantas
13.
PLoS Pathog ; 20(1): e1011637, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206991

RESUMEN

Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.


Asunto(s)
Vesículas Extracelulares , Orthoreovirus Mamífero 3 , Orthoreovirus de los Mamíferos , Orthoreovirus , Reoviridae , Animales , Ratones , Humanos , Células CACO-2 , Reoviridae/genética , Orthoreovirus Mamífero 3/genética , Mamíferos
14.
J Virol Methods ; 324: 114857, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029971

RESUMEN

A multiplex polymerase chain reaction (PCR) method was developed to detect and distinguish goose parvovirus (GPV), waterfowl reovirus (WRV), and goose astrovirus (GAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of these enteric viruses and were used to specifically amplify targeted fragments of 493 bp from the viral protein 3 (VP3) gene of GPV, 300 bp from the sigma A-encoding gene of WRV, and 156 bp from the capsid protein-encoding gene of GAstV. The results showed that the primers can specifically amplify target fragments, without any cross-amplification with other viruses, indicating that the method had good specificity. A sensitivity test showed that the detection limit of the multiplex PCR method was 1 × 103 viral copies. A total of 102 field samples from Muscovy ducks with clinically suspected diseases were evaluated using the newly developed multiplex PCR method. The ratio of positive samples to total samples for GPV, WRV, and GAstV was 73.53% (75/102) for multiplex PCR and was 73.53% (75/102) for routine PCR. Seventy-five positive samples were detected by both methods, for a coincidence ratio of 100%. This multiplex PCR method can simultaneously detect GPV, WRV, and GAstV, which are associated with viral enteritis, thereby providing a specific, sensitive, efficient, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus , Enfermedades de las Aves de Corral , Virus ARN , Reoviridae , Animales , Patos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Parvoviridae/diagnóstico , Infecciones por Parvoviridae/veterinaria , Enfermedades de las Aves de Corral/diagnóstico , Reoviridae/genética , Virus ARN/genética , Anticuerpos Antivirales , Gansos , Parvovirus/genética
15.
Pest Manag Sci ; 80(4): 1849-1858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38050810

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play a key role in various biological processes by influencing the translation of target messenger RNAs (mRNAs) through post-transcriptional regulation. The miR-184-3p has been identified as an abundant conserved miRNA in insects. However, less is known about its functions in insect-plant virus interactions. RESULTS: The function of miR-184-3p in regulation of plant viral infection in insects was investigated using a rice black-streaked dwarf virus (RBSDV) and Laodelphax striatellus (Fallén) interaction system. We found that the expression of miR-184-3p increased in L. striatellus after RBSDV infection. Injection of miR-184-3p mimics increased RBSDV accumulation, while treatment with miR-184-3p antagomirs inhibits the viral accumulation in L. striatellus. Ken, a zinc finger protein, was identified as a target of miR-184-3p. Knockdown of Ken increased the virus accumulation and promoted RBSDV transmission by L. striatellus. CONCLUSION: This study demonstrates that RBSDV infection induces the expression of miR-184-3p in its insect vector L. striatellus. The miR-184-3p targets Ken to promote RBSDV accumulation and transmission. These findings provide a new insight into the function of the miRNAs in regulating plant viral infection in its insect vector. © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Virus de Plantas , Reoviridae , Virosis , Animales , Reoviridae/genética , Virus de Plantas/fisiología , Hemípteros/genética , MicroARNs/genética , Oryza/genética , Enfermedades de las Plantas
16.
Virology ; 589: 109949, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041992

RESUMEN

In this century, a disease caused by southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Asia. Aside from infecting rice plants, SRBSDV is transmitted by white-backed planthopper (WBPH) in a persistent propagative manner. Recent studies showed that SRBSDV can dynamically modulate the host cells throughout the infection progress. However, the expression dynamics of the SRBSDV genes during infection remain unclear. Here we established an absolute real-time quantitative PCR method to assess the dynamic of the SRBSDV genes expression in rice plants and planthoppers. Apart from displaying the expression levels of viral genes, we discovered that the expression level of viral genes in insects significantly surpasses that in plant cells. In addition, we identified two nonstructural proteins with unknown functions that exhibit the highest expression levels in plant and insect cells, respectively, which provide possible targets for restraining the disease outbreaks.


Asunto(s)
Hemípteros , Oryza , Reoviridae , Animales , Insectos Vectores , Enfermedades de las Plantas , Insectos , Reoviridae/genética , Reoviridae/metabolismo , Expresión Génica
17.
PLoS Pathog ; 19(12): e1011184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048361

RESUMEN

Polymerases encoded by segmented negative-strand RNA viruses cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching") to generate chimeric RNA, and trans-splicing occurs between viral and cellular transcripts. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an RNA virus belonging to Reoviridae, is a major pathogen of silkworm (B. mori). The genome of BmCPV consists of 10 segmented double-stranded RNAs (S1-S10) from which viral RNAs encoding a protein are transcribed. In this study, chimeric silkworm-BmCPV RNAs, in which the sequence derived from the silkworm transcript could fuse with both the 5' end and the 3' end of viral RNA, were identified in the midgut of BmCPV-infected silkworms by RNA_seq and further confirmed by RT-PCR and Sanger sequencing. A novel chimeric RNA, HDAC11-S4 RNA 4, derived from silkworm histone deacetylase 11 (HDAC11) and the BmCPV S4 transcript encoding viral structural protein 4 (VP4), was selected for validation by in situ hybridization and Northern blotting. Interestingly, our results indicated that HDAC11-S4 RNA 4 was generated in a BmCPV RNA-dependent RNA polymerase (RdRp)-independent manner and could be translated into a truncated BmCPV VP4 with a silkworm HDAC11-derived N-terminal extension. Moreover, it was confirmed that HDAC11-S4 RNA 4 inhibited BmCPV proliferation, decreased the level of H3K9me3 and increased the level of H3K9ac. These results indicated that during infection with BmCPV, a novel mechanism, different from that described in previous reports, allows the genesis of chimeric silkworm-BmCPV RNAs with biological functions.


Asunto(s)
Bombyx , Reoviridae , Animales , Bombyx/genética , Interacciones Huésped-Patógeno , Reoviridae/genética , ARN Viral/genética , ARN Viral/metabolismo , Proliferación Celular
18.
Arch Virol ; 168(10): 259, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770801

RESUMEN

Oat sterile dwarf virus (OSDV) is a fijivirus whose genome segments 7 to 10 were sequenced earlier. In the current study, the complete genome was sequenced. To confirm the genome ends, rapid amplification and sequencing of cDNA ends were performed. The complete OSDV genome consists of 10 double-stranded RNA (dsRNA) segments with a total size of 28,686 bp. The sense strand sequence of all segments has the terminal consensus sequence motif 5'-AACGA(5-7)… U(6-8)(A/U)GUC-3', in which the length of the stretches of A and U varies, being slightly shorter for segments 1-4 and longer for segments 5-10. The 3' end of segment 3 is …UGUC, not AGUC as in the other segments. Segments 5, 7, and 10 contain two small ORFs, while each of the other segments contains one long ORF. ORF7-2 and ORF9 are slightly longer than annotated before. Phylogenetic analysis based on amino acid sequences of the RNA-directed RNA polymerase (RdRP) placed OSDV between the plant fijiviruses and Nilaparvata lugens reovirus (NLRV), an insect fijivirus that does not replicate in plants. OSDV RdRP shares 48-49% sequence identity with other plant-infecting fijivirus RdRPs and 30% identity with that of NLRV. OSDV has earlier been reported in several Northern and Central European countries. The sequencing of the complete genome serves as a reference for identifying all segments in future high-throughput sequencing datasets, enabling the investigation of the molecular epidemiology and evolution of OSDV.


Asunto(s)
Reoviridae , Reoviridae/genética , Avena/genética , Genoma Viral , Filogenia , ARN Polimerasa Dependiente del ARN/genética , ARN Viral/genética
19.
Virus Genes ; 59(6): 868-873, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698740

RESUMEN

Clanis bilineata Walker, soybean hawkmoth, belongs to the subfamily Ambulicinae (Sphingidae, Lepidoptera) and is an edible insect that usually grows on soybean leaves. In this study, we isolated a new cypovirus from naturally diseased Clanis bilineata larvae (named CbCPV), scanned its structure, sequenced its genome, and studied its phylogenetic relationship to other cypoviruses. Microscopy showed that CbCPV polyhedral occlusion bodies were about 1.878 µm on average and contained many virions in the ultrathin sections. The complete genome sequence of CbCPV is 22,812 bp comprising 10 segmented double-stranded RNAs. Apart from segment 1 containing one open reading frame (ORF) and one sub-ORF, the other nine segments all contain one open reading frame and encoded one putative protein. The non-coding regions contained conserved sequences at 5' termini (AGUCAAA) and 3' termini (AGC), except segment 4 containing a different 5' termini (AUGUUUA). The whole sequence of the polyhedrin gene in CbCPV contained 892 nucleotides, encoding a protein of 246 amino acids. Based on amino acid sequences of polyhedrin or RNA dependent RNA polymerase (RdRp), the phylogenetic analysis indicated that CbCPV was closely related to DnCPV-23. The putative function of all segments differed from each other, but the most closely related species of segments were DnCPV-23 with 98.2-99.8% nucleotide identity. Overall, the evidence of morphology, protein analysis and nucleic acids (genomic pattern) showed that CbCPV is a new isolate in the cypovirus-23 type and can be termed Clanis bilineata cypovirus type 23 (CbCPV-23).


Asunto(s)
Mariposas Nocturnas , Reoviridae , Animales , Reoviridae/genética , Filogenia , Genoma Viral/genética , Proteínas Virales/genética , Genómica , ARN Viral/genética
20.
J Virol ; 97(10): e0082823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37747236

RESUMEN

IMPORTANCE: Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.


Asunto(s)
Adaptación Fisiológica , Aptitud Genética , Genoma Viral , Interacciones Microbiota-Huesped , Péptido Hidrolasas , Reoviridae , Desencapsidación Viral , Animales , Ratones , Genoma Viral/genética , Genómica , Células L , Péptido Hidrolasas/metabolismo , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/metabolismo , Pase Seriado , Aguas del Alcantarillado/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...