Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.538
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 121, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39420008

RESUMEN

The cell cycle of budding yeast is governed by an intricate protein regulatory network whose dysregulation can lead to lethal mistakes or aberrant cell division cycles. In this work, we model this network in a Boolean framework for stochastic simulations. Our model is sufficiently detailed to account for the phenotypes of 40 mutant yeast strains (83% of the experimentally characterized strains that we simulated) and also to simulate an endoreplicating strain (multiple rounds of DNA synthesis without mitosis) and a strain that exhibits 'Cdc14 endocycles' (periodic transitions between metaphase and anaphase). Because our model successfully replicates the observed properties of both wild-type yeast cells and many mutant strains, it provides a reasonable, validated starting point for more comprehensive stochastic-Boolean models of cell cycle controls. Such models may provide a better understanding of cell cycle anomalies in budding yeast and ultimately in mammalian cells.


Asunto(s)
Ciclo Celular , Modelos Biológicos , Saccharomycetales , Procesos Estocásticos , Ciclo Celular/genética , Ciclo Celular/fisiología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mutación/genética , Simulación por Computador , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética
2.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39408850

RESUMEN

Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5'-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.


Asunto(s)
Morus , Nicotiana , Proteínas Virales , Replicación Viral , Morus/genética , Morus/virología , Replicación Viral/genética , Nicotiana/virología , Nicotiana/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Genoma Viral , ADN Viral/genética , ADN Viral/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Replicación del ADN/genética , Carmovirus/genética , Solanum lycopersicum/virología , Solanum lycopersicum/genética
3.
Nat Commun ; 15(1): 8512, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353885

RESUMEN

Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in  >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.


Asunto(s)
Aneuploidia , Proliferación Celular , Variaciones en el Número de Copia de ADN , Momento de Replicación del ADN , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Proliferación Celular/genética , Neoplasias/genética , Neoplasias/patología , Fase S/genética , Animales , Línea Celular Tumoral , Secuenciación Completa del Genoma , Ciclo Celular/genética , Análisis de Secuencia de ADN/métodos , Replicación del ADN/genética , Ratones
4.
Nat Commun ; 15(1): 8730, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39379399

RESUMEN

Finalization of eukaryotic nuclear DNA replication relies on DNA ligase 1 (LIG1) to seal DNA nicks generated during Okazaki Fragment Maturation (OFM). Using a mutational reporter in Saccharomyces cerevisiae, we previously showed that mutation of the high-fidelity magnesium binding site of LIG1Cdc9 strongly increases the rate of single-base insertions. Here we show that this rate is increased across the nuclear genome, that it is synergistically increased by concomitant loss of DNA mismatch repair (MMR), and that the additions occur in highly specific sequence contexts. These discoveries are all consistent with incorporation of an extra base into the nascent lagging DNA strand that can be corrected by MMR following mutagenic ligation by the Cdc9-EEAA variant. There is a strong preference for insertion of either dGTP or dTTP into 3-5 base pair mononucleotide sequences with stringent flanking nucleotide requirements. The results reveal unique LIG1Cdc9-dependent mutational motifs where high fidelity DNA ligation of a subset of OFs is critical for preventing mutagenesis across the genome.


Asunto(s)
ADN Ligasa (ATP) , Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN de Hongos , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparación de la Incompatibilidad de ADN/genética , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Replicación del ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Mutagénesis Insercional , Mutación , ADN Ligasas/metabolismo , ADN Ligasas/genética
5.
Cell Rep Med ; 5(10): 101758, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39368479

RESUMEN

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a metastatic castration-resistant prostate cancer (mCRPC) subtype. It remains unclear, however, whether CDK12 loss drives prostate cancer (PCa) development or uncovers pharmacologic vulnerabilities. Here, we show Cdk12 ablation in murine prostate epithelium is sufficient to induce preneoplastic lesions with lymphocytic infiltration. In allograft-based CRISPR screening, Cdk12 loss associates positively with Trp53 inactivation but negatively with Pten inactivation. Moreover, concurrent Cdk12/Trp53 ablation promotes proliferation of prostate-derived organoids, while Cdk12 knockout in Pten-null mice abrogates prostate tumor growth. In syngeneic systems, Cdk12/Trp53-null allografts exhibit luminal morphology and immune checkpoint blockade sensitivity. Mechanistically, Cdk12 inactivation mediates genomic instability by inducing transcription-replication conflicts. Strikingly, CDK12-mutant organoids and patient-derived xenografts are sensitive to inhibition or degradation of the paralog kinase, CDK13. We therein establish CDK12 as a bona fide tumor suppressor, mechanistically define how CDK12 inactivation causes genomic instability, and advance a therapeutic strategy for CDK12-mutant mCRPC.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias de la Próstata , Mutaciones Letales Sintéticas , Masculino , Animales , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Ratones , Mutaciones Letales Sintéticas/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Progresión de la Enfermedad , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Inestabilidad Genómica , Transcripción Genética , Organoides/patología , Organoides/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proliferación Celular/genética , Replicación del ADN/genética , Ratones Noqueados , Línea Celular Tumoral , Ratones Endogámicos C57BL , Proteína Quinasa CDC2
6.
Nat Commun ; 15(1): 9091, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39433731

RESUMEN

Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging. We hereby emulate in liposome compartments the principles according to which life propagates information and evolves. Using two different experimental configurations supporting intermittent or semi-continuous evolution (i.e., with or without DNA extraction, PCR, and re-encapsulation), we demonstrate sustainable replication of a linear DNA template - encoding the DNA polymerase and terminal protein from the Phi29 bacteriophage - expressed in the 'protein synthesis using recombinant elements' (PURE) system. The self-replicator can survive across multiple rounds of replication-coupled transcription-translation reactions in liposomes and, within only ten evolution rounds, accumulates mutations conferring a selection advantage. Combined data from next-generation sequencing with reverse engineering of some of the enriched mutations reveal nontrivial and context-dependent effects of the introduced mutations. The present results are foundational to build up genetic complexity in an evolving synthetic cell, as well as to study evolutionary processes in a minimal cell-free system.


Asunto(s)
Células Artificiales , Replicación del ADN , Células Artificiales/metabolismo , Replicación del ADN/genética , Evolución Molecular , Liposomas/metabolismo , Mutación , ADN/genética , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular Dirigida/métodos , Biología Sintética/métodos
7.
Genes (Basel) ; 15(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39336752

RESUMEN

R-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.


Asunto(s)
Replicación del ADN , ADN , Estructuras R-Loop , ARN , Estructuras R-Loop/genética , Replicación del ADN/genética , Humanos , ADN/genética , ARN/genética , Ribonucleasa H/metabolismo , Ribonucleasa H/genética
8.
Cell Rep ; 43(9): 114700, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39235941

RESUMEN

Genomic imprinting involves differential DNA methylation and gene expression between homologous paternal and maternal loci. It remains unclear, however, whether DNA replication also shows parent-of-origin-specific patterns at imprinted or other genomic regions. Here, we investigate genome-wide asynchronous DNA replication utilizing uniparental human embryonic stem cells containing either maternal-only (parthenogenetic) or paternal-only (androgenetic) DNA. Four clusters of imprinted genes exhibited differential replication timing based on parent of origin, while the remainder of the genome, 99.82%, showed no significant replication asynchrony between parental origins. Active alleles in imprinted gene clusters replicated earlier than their inactive counterparts. At the Prader-Willi syndrome locus, replication asynchrony spanned virtually the entirety of S phase. Replication asynchrony was carried through differentiation to neuronal precursor cells in a manner consistent with gene expression. This study establishes asynchronous DNA replication as a hallmark of large imprinted gene clusters.


Asunto(s)
Momento de Replicación del ADN , Impresión Genómica , Humanos , Metilación de ADN/genética , Diferenciación Celular/genética , Replicación del ADN/genética , Células Madre Embrionarias Humanas/metabolismo , Familia de Multigenes , Síndrome de Prader-Willi/genética , Alelos
9.
Nucleic Acids Res ; 52(18): 11394-11407, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271106

RESUMEN

Chromosomal DNA replication is a fundamental process of life, involving the assembly of complex machinery and dynamic regulation. In this study, we reconstructed a bacterial replication module (pRC) by artificially clustering 23 genes involved in DNA replication and sequentially deleting these genes from their naturally scattered loci on the chromosome of Escherichia coli. The integration of pRC into the chromosome, moving from positions farther away to close to the replication origin, leads to an enhanced efficiency in DNA synthesis, varying from lower to higher. Strains containing replication modules exhibited increased DNA replication by accelerating the replication fork movement and initiating chromosomal replication earlier in the replication cycle. The minimized module pRC16, containing only replisome and elongation encoding genes, exhibited chromosomal DNA replication efficiency comparable to that of pRC. The replication module demonstrated robust and rapid DNA replication, regardless of growth conditions. Moreover, the replication module is plug-and-play, and integrating it into Mb-sized extrachromosomal plasmids improves their genetic stability. Our findings indicate that DNA replication, being a fundamental life process, can be artificially reconstructed into replication functional modules. This suggests potential applications in DNA replication and the construction of synthetic modular genomes.


Asunto(s)
Cromosomas Bacterianos , Replicación del ADN , ADN Bacteriano , Escherichia coli , Plásmidos , Origen de Réplica , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Origen de Réplica/genética , Cromosomas Bacterianos/genética , Plásmidos/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
10.
Mol Biol Rep ; 51(1): 1009, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316168

RESUMEN

BACKGROUND: Resolving genomic insults is essential for the survival of any species. In the case of eukaryotes, several pathways comprise the DNA damage repair network, and many components have high evolutionary conservation. These pathways ensure that DNA damage is resolved which prevents disease associated mutations from occurring in a de novo manner. In this study, we investigated the role of the Eyes Absent (EYA) homologue in Caenorhabditis elegans and its role in DNA damage repair. Current understanding of mammalian EYA1 suggests that EYA1 is recruited in response to H2AX signalling to dsDNA breaks. C. elegans do not possess a H2AX homologue, although they do possess homologues of the core DNA damage repair proteins. Due to this, we aimed to determine if eya-1 contributes to DNA damage repair independent of H2AX. METHODS AND RESULTS: We used a putative null mutant for eya-1 in C. elegans and observed that absence of eya-1 results in abnormal chromosome morphology in anaphase embryos, including chromosomal bridges, missegregated chromosomes, and embryos with abnormal nuclei. Additionally, inducing different types of genomic insults, we show that eya-1 mutants are highly sensitive to induction of DNA damage, yet show little change to induced DNA replication stress and display a mortal germline resulting in sterility over successive generations. CONCLUSIONS: Collectively, this study suggests that the EYA family of proteins may have a greater involvement in maintaining genomic integrity than previously thought and unveils novel roles of EYA associated DNA damage repair.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Daño del ADN , Reparación del ADN , Histonas , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Transducción de Señal/genética , Histonas/metabolismo , Histonas/genética , Mutación/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Replicación del ADN/genética
11.
Nat Commun ; 15(1): 7640, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223139

RESUMEN

Genetic parasites, including viruses and transposons, exploit components from the host for their own replication. However, little is known about virus-transposon interactions within host cells. Here, we discover a strategy where human cytomegalovirus (HCMV) hijacks L1 retrotransposon encoded protein during its replication cycle. HCMV infection upregulates L1 expression by enhancing both the expression of L1-activating transcription factors, YY1 and RUNX3, and the chromatin accessibility of L1 promoter regions. Increased L1 expression, in turn, promotes HCMV replicative fitness. Affinity proteomics reveals UL44, HCMV DNA polymerase subunit, as the most abundant viral binding protein of the L1 ribonucleoprotein (RNP) complex. UL44 directly interacts with L1 ORF2p, inducing DNA damage responses in replicating HCMV compartments. While increased L1-induced mutagenesis is not observed in HCMV for genetic adaptation, the interplay between UL44 and ORF2p accelerates viral DNA replication by alleviating replication stress. Our findings shed light on how HCMV exploits host retrotransposons for enhanced viral fitness.


Asunto(s)
Citomegalovirus , Replicación del ADN , Elementos de Nucleótido Esparcido Largo , Proteínas Virales , Replicación Viral , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiología , Replicación Viral/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación del ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/genética , Interacciones Huésped-Patógeno/genética , Retroelementos/genética , Proteínas de Unión al ADN
12.
Nucleic Acids Res ; 52(19): 11738-11752, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39268578

RESUMEN

Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN , Recombinasa Rad51 , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Replicación del ADN/genética , Unión Proteica , Mutación
13.
Nucleic Acids Res ; 52(19): 11519-11535, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39228370

RESUMEN

The cell cycle-regulated DNA methyltransferase CcrM is conserved in most Alphaproteobacteria, but its role in bacteria with complex or multicentric genomes remains unexplored. Here, we compare the methylome, the transcriptome and the phenotypes of wild-type and CcrM-depleted Agrobacterium tumefaciens cells with a dicentric chromosome with two essential replication origins. We find that DNA methylation has a pleiotropic impact on motility, biofilm formation and viability. Remarkably, CcrM promotes the expression of the repABCCh2 operon, encoding proteins required for replication initiation/partitioning at ori2, and represses gcrA, encoding a conserved global cell cycle regulator. Imaging ori1 and ori2 in live cells, we show that replication from ori2 is often delayed in cells with a hypo-methylated genome, while ori2 over-initiates in cells with a hyper-methylated genome. Further analyses show that GcrA promotes the expression of the RepCCh2 initiator, most likely through the repression of a RepECh2 anti-sense RNA. Altogether, we propose that replication at ori1 leads to a transient hemi-methylation and activation of the gcrA promoter, allowing repCCh2 activation by GcrA and contributing to initiation at ori2. This study then uncovers a novel and original connection between CcrM-dependent DNA methylation, a conserved epigenetic regulator and genome maintenance in an Alphaproteobacterial pathogen.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Metilación de ADN , Replicación del ADN , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Origen de Réplica , Agrobacterium tumefaciens/genética , Replicación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Origen de Réplica/genética , Regiones Promotoras Genéticas , Biopelículas/crecimiento & desarrollo , Operón/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)
14.
Nat Commun ; 15(1): 7776, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237529

RESUMEN

Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Estructuras R-Loop , Proteína Recombinante y Reparadora de ADN Rad52 , Transcripción Genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Replicación del ADN/genética , Estructuras R-Loop/genética , Humanos , Daño del ADN , Roturas del ADN de Doble Cadena , ADN/metabolismo , ADN/genética , Reparación del ADN , Mutación , Neoplasias/genética , Neoplasias/metabolismo
15.
Nucleic Acids Res ; 52(17): 10416-10430, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39119921

RESUMEN

Tn3 family transposons are a widespread group of replicative transposons, notorious for contributing to the dissemination of antibiotic resistance, particularly the global prevalence of carbapenem resistance. The transposase (TnpA) of these elements catalyzes DNA breakage and rejoining reactions required for transposition. However, the molecular mechanism for target site selection with these elements remains unclear. Here, we identify a QLxxLR motif in N-terminal of Tn3 TnpAs and demonstrate that this motif allows interaction between TnpA of Tn3 family transposon Tn1721 and the host ß-sliding clamp (DnaN), the major processivity factor of the DNA replication machinery. The TnpA-DnaN interaction is essential for Tn1721 transposition. Our work unveils a mechanism whereby Tn3 family transposons can bias transposition into certain replisomes through an interaction with the host replication machinery. This study further expands the diversity of mobile elements that use interaction with the host replication machinery to bias integration.


Asunto(s)
Replicación del ADN , Elementos Transponibles de ADN , Transposasas , Elementos Transponibles de ADN/genética , Transposasas/metabolismo , Transposasas/genética , Replicación del ADN/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Secuencias de Aminoácidos
16.
Nucleic Acids Res ; 52(17): 10370-10384, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39189458

RESUMEN

Impaired control of the G1/S checkpoint allows initiation of DNA replication under non-permissive conditions. Unscheduled S-phase entry is associated with DNA replication stress, demanding for other checkpoints or cellular pathways to maintain proliferation. Here, we uncovered a requirement for ADARp150 to sustain proliferation of G1/S-checkpoint-defective cells under growth-restricting conditions. Besides its well-established mRNA editing function in inversely oriented short interspersed nuclear elements (SINEs), we found ADARp150 to exert a critical function in mitosis. ADARp150 depletion resulted in tetraploidization, impeding cell proliferation in mitogen-deprived conditions. Mechanistically we show that ADAR1 depletion induced aberrant expression of Cyclin B3, which was causative for mitotic failure and whole-genome duplication. Finally, we find that also in vivo ADAR1-depletion-provoked tetraploidization hampers tumor outgrowth.


Asunto(s)
Adenosina Desaminasa , Proteínas de Unión al ARN , Humanos , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proliferación Celular/genética , Mitosis/genética , Animales , Replicación del ADN/genética , Tetraploidía , Genoma Humano , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Ratones , Edición de ARN , Línea Celular Tumoral
17.
Am J Hum Genet ; 111(9): 1970-1993, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106866

RESUMEN

The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.


Asunto(s)
Proteína de Replicación C , Humanos , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Masculino , Células HeLa , Femenino , Fenotipo , Replicación del ADN/genética , Adulto , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Alelos
18.
Nucleic Acids Res ; 52(19): 11659-11688, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39189450

RESUMEN

MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.


Asunto(s)
Replicación del ADN , Histonas , Nucleosomas , Origen de Réplica , Origen de Réplica/genética , Histonas/metabolismo , Histonas/genética , Humanos , Replicación del ADN/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Animales
19.
Nucleic Acids Res ; 52(19): 11689-11703, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193906

RESUMEN

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.


Asunto(s)
Sistemas CRISPR-Cas , Inestabilidad Cromosómica , Replicación del ADN , Telómero , Humanos , Telómero/genética , Replicación del ADN/genética , Daño del ADN , ARN Guía de Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética
20.
PLoS Genet ; 20(8): e1011366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102423

RESUMEN

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.


Asunto(s)
Cromatina , Replicación del ADN , Fase G1 , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fase G1/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fase S/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dominios Proteicos/genética , Sitios de Unión , Unión Proteica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Nucleosomas/metabolismo , Nucleosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...