Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.426
Filtrar
1.
Physiol Behav ; 284: 114616, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914214

RESUMEN

Sheng-ma is recorded in the Compendium of Materia Medica and mainly originates from the rhizomes of Cimicifuga dahurica (Turcz.) Maxim. (CD), Cimicifuga heracleifolia Kom. and Cimicifuga foetida L. The alcoholic extract of Cimicifuga foetida L. (Brand name: Ximingting®) has been approved for the treatment of perimenopausal symptoms accompanying hot flash, depression and anxiety in China. However, there's no further study about the antidepressant-like effects of C. dahurica (CD). The aim of this study is to investigate the antidepressant-like effect of CD extracted by 75% ethanol and its possible mechanisms.The neuro-protective effects of CD on injured PC12 cells induced by corticosterone was measured firstly. Then, forced swim test (FST), tail suspension test (TST), reserpine-induced hypothermia, 5-hydroxytryptophan (5-HTP) induced head twitch response in mice and chronic unpredictable mild stress (CUMS) on sucrose preference tests were executed. Moreover, the potential mechanisms were explored by measuring levels of monoamine neurotransmitter in mice frontal cortex and hippocampus, testing monoamine oxidase enzyme A (MAO-A) activities in the brains of CUMS-exposed mice. Results showed that CD (60, 120 mg/kg) can significantly decreased the immobility period in FST and TST in mice without affecting locomotor activity. CD (30 mg/kg, 60 mg/kg, 120 mg/kg) could significantly counteracted reserpine-induced hypothermia and increased the number of head-twitches in 5-HTP induced head twitch response. It was also found that the monoamine neurotransmitter levels in the hippocampus and frontal cortex were significantly increased in 60 mg/kg and 120 mg/kg CD treated mice. In addition, CD (60 and 120 mg/kg) significantly inhibited MAO-A after 6-week CUMS exposure. CD can effectively produce an antidepressant-like effect, which involved with modulation of monoamine regulatory pathways.


Asunto(s)
Antidepresivos , Cimicifuga , Depresión , Extractos Vegetales , Animales , Antidepresivos/farmacología , Ratones , Cimicifuga/química , Células PC12 , Ratas , Extractos Vegetales/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Masculino , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Monoaminas Biogénicas/metabolismo , Reserpina/farmacología , Ratones Endogámicos ICR , Natación/psicología , Suspensión Trasera , Corticosterona/sangre , 5-Hidroxitriptófano/farmacología , Relación Dosis-Respuesta a Droga , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Actividad Motora/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos
2.
Br J Pharmacol ; 181(18): 3445-3461, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38772415

RESUMEN

BACKGROUND AND PURPOSE: Fibromyalgia is a complex clinical disorder with an unknown aetiology, characterized by generalized pain and co-morbid symptoms such as anxiety and depression. An imbalance of oxidants and antioxidants is proposed to play a pivotal role in the pathogenesis of fibromyalgia symptoms. However, the precise mechanisms by which oxidative stress contributes to fibromyalgia-induced pain remain unclear. The transient receptor potential ankyrin 1 (TRPA1) channel, known as both a pain sensor and an oxidative stress sensor, has been implicated in various painful conditions. EXPERIMENTAL APPROACH: The feed-forward mechanism that implicates reactive oxygen species (ROS) driven by TRPA1 was investigated in a reserpine-induced fibromyalgia model in C57BL/6J mice employing pharmacological interventions and genetic approaches. KEY RESULTS: Reserpine-treated mice developed pain-like behaviours (mechanical/cold hypersensitivity) and early anxiety-depressive-like disorders, accompanied by increased levels of oxidative stress markers in the sciatic nerve tissues. These effects were not observed upon pharmacological blockade or global genetic deletion of the TRPA1 channel and macrophage depletion. Furthermore, we demonstrated that selective silencing of TRPA1 in Schwann cells reduced reserpine-induced neuroinflammation (NADPH oxidase 1-dependent ROS generation and macrophage increase in the sciatic nerve) and attenuated fibromyalgia-like behaviours. CONCLUSION AND IMPLICATIONS: Activated Schwann cells expressing TRPA1 promote an intracellular pathway culminating in the release of ROS and recruitment of macrophages in the mouse sciatic nerve. These cellular and molecular events sustain mechanical and cold hypersensitivity in the reserpine-evoked fibromyalgia model. Targeting TRPA1 channels on Schwann cells could offer a novel therapeutic approach for managing fibromyalgia-related behaviours.


Asunto(s)
Fibromialgia , Ratones Endogámicos C57BL , Estrés Oxidativo , Especies Reactivas de Oxígeno , Reserpina , Células de Schwann , Canal Catiónico TRPA1 , Animales , Reserpina/farmacología , Fibromialgia/inducido químicamente , Fibromialgia/metabolismo , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/genética , Estrés Oxidativo/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Dolor/metabolismo , Dolor/inducido químicamente , Nervio Ciático/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/genética
3.
Photodiagnosis Photodyn Ther ; 47: 104212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740317

RESUMEN

Efflux pumps are active transporters, which allow the cell to remove toxic substances from within the cell including antibiotics and photosensitizer complexes. Efflux pump inhibitors (EPIs), chemicals that prevent the passage of molecules through efflux pumps, play a crucial role in antimicrobial effectiveness against pathogen. In this work, we studied the effect of EPI, namely, reserpine, on photodeactivation rate of pathogens when used with Ag NPs and methylene blue (MB). Our results show that using reserpine led to a higher deactivation rate than Ag NPs and MB alone. The mechanism of this observation was investigated with singlet oxygen generation amount. Additionally, different sizes of Ag NPs were tested with reserpine. Molecular docking calculation shows that reserpine had higher affinity toward AcrB than MB. The improvement in bacterial deactivation rate is attributed to blockage of the AcrAB-TolC efflux pump preventing the removal of MB rather than enhanced singlet oxygen production. These results suggest that using reserpine with nanoparticles and photosynthesize is a promising approach in photodynamic therapy.


Asunto(s)
Nanopartículas del Metal , Azul de Metileno , Simulación del Acoplamiento Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes , Reserpina , Plata , Oxígeno Singlete , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Azul de Metileno/farmacología , Plata/farmacología , Plata/química , Reserpina/farmacología , Nanopartículas del Metal/química , Oxígeno Singlete/metabolismo , Escherichia coli/efectos de los fármacos
4.
Inflammopharmacology ; 32(4): 2601-2611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38662182

RESUMEN

Fibromyalgia is a potentially disabling idiopathic disease characterized by widespread chronic pain associated with comorbidities such as fatigue, anxiety, and depression. Current therapeutic approaches present adverse effects that limit adherence to therapy. Diosmetin, an aglycone of the flavonoid glycoside diosmin found in citrus fruits and the leaves of Olea europaea L., has antinociceptive, anti-inflammatory, and antioxidant properties. Here, we investigated the effect of diosmetin on nociceptive behaviors and comorbidities in an experimental fibromyalgia model induced by reserpine in mice. To induce the experimental fibromyalgia model, a protocol of subcutaneous injections of reserpine (1 mg/kg) was used once a day for three consecutive days in adult male Swiss mice. Mice received oral diosmetin on the fourth day after the first reserpine injection. Nociceptive (mechanical allodynia, muscle strength, and thermal hyperalgesia) and comorbid (depressive-like and anxiety behavior) parameters were evaluated. Potential adverse effects associated with diosmetin plus reserpine (locomotor alteration, cataleptic behavior, and body weight and temperature changes) were also evaluated. Oral diosmetin (0.015-1.5 mg/kg) reduced the mechanical allodynia, thermal hyperalgesia, and loss of muscle strength induced by reserpine. Diosmetin (0.15 mg/kg) also attenuated depressive-like and anxiety behaviors without causing locomotor alteration, cataleptic behavior, and alteration in weight and body temperature of mice. Overall, diosmetin can be an effective and safe therapeutic alternative to treat fibromyalgia symptoms, such as pain, depression and anxiety.


Asunto(s)
Modelos Animales de Enfermedad , Fibromialgia , Flavonoides , Hiperalgesia , Reserpina , Animales , Reserpina/farmacología , Fibromialgia/tratamiento farmacológico , Fibromialgia/inducido químicamente , Ratones , Masculino , Flavonoides/farmacología , Hiperalgesia/tratamiento farmacológico , Analgésicos/farmacología , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Conducta Animal/efectos de los fármacos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38636702

RESUMEN

BACKGROUND: Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS: Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS: Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS: The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones , Ratas Sprague-Dawley , Reserpina , Animales , Reserpina/farmacología , Masculino , Ratas , Depresión/inducido químicamente , Depresión/metabolismo , Conducta Animal/efectos de los fármacos , Receptores Dopaminérgicos/metabolismo , Relación Dosis-Respuesta a Droga , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Actividad Motora/efectos de los fármacos
6.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572960

RESUMEN

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Asunto(s)
Antibacterianos , Levofloxacino , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus , Reserpina , Levofloxacino/farmacología , Antibacterianos/farmacología , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/genética , Reserpina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Farmacorresistencia Bacteriana/genética , Humanos , Verapamilo/farmacología
7.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499659

RESUMEN

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Asunto(s)
Modelos Animales de Enfermedad , Trastornos Parkinsonianos , Reserpina , Privación de Sueño , Animales , Masculino , Reserpina/farmacología , Privación de Sueño/complicaciones , Ratones , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Catalepsia/inducido químicamente , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Actividad Motora/fisiología , Actividad Motora/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Anhedonia/fisiología , Anhedonia/efectos de los fármacos
8.
Nature ; 629(8010): 235-243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499039

RESUMEN

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Asunto(s)
Monoaminas Biogénicas , Interacciones Farmacológicas , Proteínas de Transporte Vesicular de Monoaminas , Humanos , 1-Metil-4-fenilpiridinio/química , 1-Metil-4-fenilpiridinio/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , Anfetamina/química , Anfetamina/farmacología , Anfetamina/metabolismo , Sitios de Unión , Monoaminas Biogénicas/química , Monoaminas Biogénicas/metabolismo , Microscopía por Crioelectrón , Dopamina/química , Dopamina/metabolismo , Modelos Moleculares , Norepinefrina/química , Norepinefrina/metabolismo , Unión Proteica , Protones , Reserpina/farmacología , Reserpina/química , Reserpina/metabolismo , Serotonina/química , Serotonina/metabolismo , Especificidad por Sustrato , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/ultraestructura
9.
Planta Med ; 90(6): 426-439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452806

RESUMEN

Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.


Asunto(s)
Alcaloides , Oftalmopatías , Humanos , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Oftalmopatías/tratamiento farmacológico , Atropina/farmacología , Pilocarpina , Plantas Medicinales/química , Cafeína/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Reserpina/farmacología
10.
Viruses ; 16(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38257782

RESUMEN

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Asunto(s)
Megacariocitos , Fenoles , Reserpina , SARS-CoV-2 , Humanos , COVID-19 , Megacariocitos/virología , Fenoles/farmacología , Síndrome Post Agudo de COVID-19 , Reserpina/análogos & derivados , Reserpina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-37839537

RESUMEN

Reserpine is a drug that is commonly used as an antihypertensive and antipsychotic drug in clinical practice. During our previous research, we found that reserpine treatment in zebrafish larvae can cause depression-like behaviors, but the corresponding mechanisms are still unclear. In this study, we aimed to investigate the molecular mechanism by which reserpine exposure affects locomotor behaviors in larval zebrafish through transcriptome analysis. The gene enrichment results showed that the differentially highly expressed genes of zebrafish are mainly enriched in voltage-gated ion channels, dopaminergic synapses and wnt signaling pathways. Selected genes (apc2, cacna1aa, drd2b, dvl1a, fzd1, wnt1, wnt3a, wnt9a and wnt10a) by transcriptomic results was validated by real-time PCR. Consistently, Wnt signaling pathway inhibitor XAV939 may induce reduced behavioral changes in zebrafish larvae, while the Wnt signaling pathway agonist SB415286 reversed the reserpine-induced depressive effects. Our study provides gene transcriptional profile data for future research on reserpine-induced locomotor behavioral changes.


Asunto(s)
Transcriptoma , Pez Cebra , Animales , Pez Cebra/metabolismo , Reserpina/farmacología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Perfilación de la Expresión Génica
12.
Nature ; 626(7998): 427-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081299

RESUMEN

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Sitios de Unión , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacología , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacología , Serotonina/química , Serotonina/metabolismo , Especificidad por Sustrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/ultraestructura
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4381-4401, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38103060

RESUMEN

For several decades, reserpine was used to treat hypertension and, to a limited extent, psychoses. Over time, however, the indication became more and more restricted to the point of obsolescence. This study examines the extent to which textbooks are up to date in their content and oriented towards therapeutic guidelines, using the obsolete drug reserpine as a paradigm. Three German pharmacology textbook series were examined for the coverage of reserpine from 1964-2023: Allgemeine und Spezielle Pharmakologie und Toxikologie (Aktories), Allgemeine und Spezielle Pharmakologie und Toxikologie (Karow) and Pharmakologie und Toxikologie (Lüllmann). We compared the textbook content with data on reserpine prescriptions and hypertension guidelines and analysed the relevance of reserpine in examinations using German federal exam questions by the Institute for medical and pharmaceutical exam questions (IMPP). The textbooks differ conceptually from each other. The indication of reserpine for hypertension has become more restricted over time in all three textbooks, yet they partially show discrepancies with hypertension guidelines. The reserpine prescription figures show a strong decline , and reserpine has not been queried by the IMPP, which underlines the obsolescence of the drug. Overall, our study shows that the presentation of a representative obsolete drug in pharmacology textbooks lags current medical practice. We also unmasked more differences in the presentation of an obsolete drug in standard textbooks than anticipated. In conclusion, the analysis of obsolete drugs in pharmacology textbooks is an informative way of assessing how up-to-date they are.


Asunto(s)
Reserpina , Libros de Texto como Asunto , Reserpina/farmacología , Humanos , Alemania , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Farmacología/educación , Lenguaje
14.
Brain Res ; 1825: 148723, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101693

RESUMEN

Neuroplasticity and inflammation represent a common final pathway for effective antidepressant treatment. SSRIs are the most commonly prescribed medications for depression and have demonstrated efficacy in reducing depressive symptoms. However, the precise impact of SSRIs on neuroplasticity and inflammation remains unclear. In this study, we aimed to investigate the influence of long-term treatment with SSRIs on hippocampal neuron, inflammation, synaptic function and morphology. Our findings revealed that fluoxetine treatment significantly alleviated behavioral despair, anhedonia, and anxiety in reserpine-treated mice. Moreover, fluoxetine mitigated hippocampal neuron impairment, inhibited inflammatory release, and increased the expression of synaptic proteins markers (SYP and PSD95) in mice. Notably, fluoxetine also suppressed reserpine-induced synapse loss in the hippocampus. Based on these results, fluoxetine has been demonstrated effectively to ameliorate depressive mood and cognitive dysfunction, possibly through the enhancement of synaptic plasticity. Overall, our study contributes to a further understanding of the mechanisms underlying the therapeutic effects of fluoxetine and its potential role in improving depressive symptoms and cognitive impairments.


Asunto(s)
Fluoxetina , Inhibidores Selectivos de la Recaptación de Serotonina , Ratones , Animales , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Reserpina/metabolismo , Reserpina/farmacología , Depresión/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Plasticidad Neuronal , Hipocampo/metabolismo
15.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914936

RESUMEN

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Asunto(s)
Neurotransmisores , Reserpina , Serotonina , Tetrabenazina , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Inhibidores de Captación Adrenérgica/química , Inhibidores de Captación Adrenérgica/farmacología , Transporte Biológico/efectos de los fármacos , Microscopía por Crioelectrón , Neurotransmisores/química , Neurotransmisores/farmacología , Reserpina/química , Reserpina/farmacología , Serotonina/metabolismo , Transmisión Sináptica , Tetrabenazina/química , Tetrabenazina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/ultraestructura , Especificidad por Sustrato/efectos de los fármacos
16.
Photochem Photobiol Sci ; 22(12): 2891-2904, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917308

RESUMEN

Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.


Asunto(s)
Terapia por Luz de Baja Intensidad , Trastornos Parkinsonianos , Ratas , Masculino , Animales , Reserpina/farmacología , Ratas Wistar , Serotonina , Acetilcolinesterasa , Mesencéfalo , Dopamina , Adenosina Trifosfatasas , Modelos Animales de Enfermedad
17.
Cells ; 12(21)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947607

RESUMEN

The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um2, p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.


Asunto(s)
Enfermedad de Parkinson , Temblor , Humanos , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Temblor/inducido químicamente , Reserpina/farmacología , Encéfalo , Norepinefrina
18.
J Psychopharmacol ; 37(11): 1132-1148, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37593958

RESUMEN

BACKGROUND: Nicotine cessation leads to anxiety and depression. AIMS: The suitability of the zebrafish model of anhedonia using reserpine and fluoxetine was evaluated. Fluoxetine was also used to reduce nicotine withdrawal-induced anhedonic state. METHODS: Zebrafish were exposed to reserpine (40 mg/l) and then to fluoxetine (0.1 mg/l) for 1 week. Anhedonia was evaluated in the Novel Tank Diving and Compartment Preference tests. Another group was exposed to nicotine (1 mg/l/2 weeks) and then exposed to fluoxetine. Anxiety and anhedonia were evaluated 2-60 days after. Tyrosine hydroxylase (TH) immunoreactivity and microglial morphology (labelled by 4C4 monoclonal antibody) in the parvocellular pretectal nucleus (PPN), dorsal part, and of calcitonin gene-related peptide (CGRP) in the hypothalamus were also analysed. RESULTS: Less time in the top and increased latency to the top in reserpine compared to a drug-free group was found. Fluoxetine rescued reserpine-induced the reduced time in the top. Seven and 30 days after nicotine withdrawal more time in the bottom and similar time in the Compartment Preference test, rescued by fluoxetine, were shown. In the PPN, 30-day withdrawal induced an increase in TH immunoreactivity, but fluoxetine induced a further significant increase. No changes in PPN microglia morphology and hypothalamic CGRP were detected. CONCLUSIONS: Our findings validate the suitability of the zebrafish model of anhedonia using the reserpine-induced depression-like behaviour and the predictivity using fluoxetine. Fluoxetine rescued nicotine withdrawal-induced anhedonic state, opening the possibility to screen new drugs to alleviate anxiety and depression in smokers during abstinence.


Asunto(s)
Nicotina , Síndrome de Abstinencia a Sustancias , Animales , Nicotina/farmacología , Fluoxetina/farmacología , Pez Cebra , Reserpina/farmacología , Tirosina 3-Monooxigenasa , Anhedonia , Péptido Relacionado con Gen de Calcitonina , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/psicología
19.
Neuroscience ; 528: 37-53, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37532013

RESUMEN

Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.


Asunto(s)
Fibromialgia , Oxitocina , Ratas , Humanos , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Reserpina/farmacología , Reserpina/metabolismo , Fibromialgia/inducido químicamente , Fibromialgia/metabolismo , Proteínas Luminiscentes/genética , Dolor/metabolismo , Ratas Transgénicas , Neuronas/metabolismo , Receptores de Oxitocina/metabolismo
20.
Biochim Biophys Acta Biomembr ; 1865(7): 184197, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37394027

RESUMEN

Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining. High [K+]o depolarization caused FFN511 release, which was augmented by reserpine, an inhibitor of neurotransmitter uptake. However, reserpine lost the ability to increase depolarization-induced FFN511 unloading after depletion of ready releasable pool with hyperosmotic sucrose. Cholesterol oxidase and sphingomyelinase modified atrial membranes, changing in opposite manner fluorescence of lipid ordering-sensitive probe. Plasmalemmal cholesterol oxidation increased FFN511 release upon K+-depolarization and more markedly potentiated FFN511 unloading in the presence of reserpine. Hydrolysis of plasmalemmal sphingomyelin profoundly enhanced the rate of FFN511 loss due to K+-depolarization, but completely prevented potentiating action of reserpine on FFN511 unloading. If cholesterol oxidase or sphingomyelinase got access to membranes of recycling synaptic vesicles, then the enzyme effects were suppressed. Hence, a fast neurotransmitter reuptake dependent on exocytosis of vesicles from ready releasable pool occurs during presynaptic activity. This reuptake can be enhanced or inhibited by plasmalemmal cholesterol oxidation or sphingomyelin hydrolysis, respectively. These modifications of plasmalemmal (but not vesicular) lipids increase the evoked neurotransmitter release.


Asunto(s)
Fibrilación Atrial , Reserpina , Ratones , Animales , Reserpina/farmacología , Esfingomielina Fosfodiesterasa , Colesterol Oxidasa/farmacología , Esfingomielinas/farmacología , Terminaciones Nerviosas , Neurotransmisores/farmacología , Colesterol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...