Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.857
Filtrar
1.
Environ Monit Assess ; 196(8): 720, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985219

RESUMEN

Managing e-waste involves collecting it, extracting valuable metals at low costs, and ensuring environmentally safe disposal. However, monitoring this process has become challenging due to e-waste expansion. With IoT technology like LoRa-LPWAN, pre-collection monitoring becomes more cost-effective. Our paper presents an e-waste collection and recovery system utilizing the LoRa-LPWAN standard, integrating intelligence at the edge and fog layers. The system incentivizes WEEE holders, encouraging participation in the innovative collection process. The city administration oversees this process using innovative trucks, GPS, LoRaWAN, RFID, and BLE technologies. Analysis of IoT performance factors and quantitative assessments (latency and collision probability on LoRa, Sigfox, and NB-IoT) demonstrate the effectiveness of our incentive-driven IoT solution, particularly with LoRa standard and Edge AI integration. Additionally, cost estimates show the advantage of LoRaWAN. Moreover, the proposed IoT-based e-waste management solution promises cost savings, stakeholder trust, and long-term effectiveness through streamlined processes and human resource training. Integration with government databases involves data standardization, API development, security measures, and functionality testing for efficient management.


Asunto(s)
Residuos Electrónicos , Administración de Residuos , Administración de Residuos/métodos , Inteligencia Artificial , Monitoreo del Ambiente/métodos , Internet de las Cosas , Conservación de los Recursos Naturales/métodos
2.
J Environ Manage ; 365: 121521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959774

RESUMEN

As part of electronic waste (e-waste), the fastest growing solid waste stream in the world, discarded liquid crystal displays (LCDs) contain substantial amounts of both valuable and potentially harmful metal, offering valuable opportunities for resource extraction but posing environmental threats. The present comprehensive study is an investigation into the bioleaching of indium from discarded LCD panels, with a particular focus on high pulp density shredded (Sh-LCDs) and powdered (P-LCDs) materials. This study involved an acidophilic consortium, with two pathways, namely the mixed sulfur-iron pathways and sulfur pathways, being explored to understand the bioleaching mechanisms. Indium bioleaching efficiencies through the mixed sulfur-iron pathway were approximately 60% and 100% for Sh-LCDs and P-LCDs, respectively. Three mechanisms were involved in the extraction of indium from LCD samples: acidolysis, complexolysis, and redoxolysis. The microbial community adapted to a pulp density of 32.5 g/L was streak-plated and it was revealed that sulfur-oxizing bacteria dominated, resulting in the minimum indium extraction of 10% and 55% for both Sh-LCDs and P-LCDs samples, respectively. It was generally accepted that ferric ions as oxidants were effective for indium bioleaching from both the Sh-LCDs and P-LCDs. This implies that the cooperation or interaction within the microbial community used in the bioleaching process had a beneficial impact, enhancing the overall effectiveness of extracting indium from LCD panels. The adapted consortium utilizes a combination of microbial transformation, efflux systems, and chelation through extracellular substances to detoxify heavy metals. The adapted microbial community demonstrated better indium leaching efficiency (50%) compared to the non-adapted microbial community which achieved a maximum of 29% and 5% respectively from Sh-LCDs and P-LCDs at a pulp density of 32.5 g/L. The advantages of an adapted microbial community for indium leaching efficiency, attributing this advantage to factors such as high metabolic activity and improved tolerance to heavy metals. Additionally, the protective role of the biofilm formed by the adapted microbial community is particularly noteworthy, as it contributes to the community's resilience in the presence of inhibitory substances. This information is valuable for understanding and optimizing bioleaching processes for indium recovery, and by extension to possibly other metals.


Asunto(s)
Residuos Electrónicos , Indio , Cristales Líquidos
3.
Environ Geochem Health ; 46(8): 296, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980420

RESUMEN

Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.


Asunto(s)
COVID-19 , Residuos Electrónicos , Exposición a Riesgos Ambientales , Resistencia a la Insulina , Plomo , Material Particulado , Humanos , Niño , Plomo/sangre , COVID-19/sangre , COVID-19/epidemiología , Preescolar , Masculino , Femenino , Glucemia/análisis , Inflamación/sangre , Reciclaje , Proteína HMGB1/sangre , Insulina/sangre , Contaminantes Atmosféricos , SARS-CoV-2
4.
Environ Geochem Health ; 46(8): 279, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958829

RESUMEN

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.


Asunto(s)
Residuos Electrónicos , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Metales Pesados/análisis , Pakistán , Contaminantes del Suelo/análisis , Medición de Riesgo , Humanos , Monitoreo del Ambiente/métodos , Instalaciones de Eliminación de Residuos , Suelo/química
5.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970741

RESUMEN

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Asunto(s)
Antimonio , Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Antimonio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Espectrofotometría Atómica/métodos , Residuos Electrónicos/análisis , Residuos Industriales/análisis
6.
J Hazard Mater ; 474: 134810, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850936

RESUMEN

Feathers are regarded as important nondestructive biomonitoring tools for bird pollutants. However, external contamination of feathers by different pollutants in different bird species remains unclear. In the present study, the feathers of 16 bird species, including terrestrial, freshwater, and marine birds, were analyzed for persistent organic pollutants (POPs). Bird feathers from an abandoned e-waste recycling site had higher POP concentrations and were more correlated with the POP muscle concentrations than those from the less polluted areas. The significant and positive POP correlations between the feathers and muscles of different species indicate that feathers are a good indicator of inter-species and spatial pollution. For individual species, the most hydrophobic POPs in feathers, such as hepta- to deca-polybrominated diphenyl ethers, had higher proportions than in muscles and worse correlations with muscle POPs compared with other POPs. Results of the chemical mass balance (CMB) model revealed that the gaseous phase, internal pollution, and atmospheric particle phase were the main contributors to low-, medium-, and high-hydrophobicity POPs in feathers, respectively. Overall, this study provides a preliminary but meaningful framework for distinguishing between internal and external contamination in feathers and gives information concerning the fitness of feathers as POP indicators with specific physicochemical properties.


Asunto(s)
Aves , Monitoreo del Ambiente , Plumas , Contaminantes Orgánicos Persistentes , Animales , Plumas/química , Especificidad de la Especie , Músculos/química , Residuos Electrónicos/análisis
7.
BMC Res Notes ; 17(1): 180, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926863

RESUMEN

OBJECTIVE: Germanium, an important component of electronics, is considered by many global economies as a critical raw material. Therefore, investigating its potential new sources is crucial for prospective technology development. This paper presents the investigation results on the leaching of liquation-feeding furnace dross using sulfuric and oxalic acid solutions. RESULTS: The dross contained mostly zinc (68.0% wt.) but also elevated germanium concentration (0.68% wt.). The influence of temperature, time, initial acid concentration, and liquid-to-solid phase ratio (L:S) was examined. It was found that germanium availability via leaching is limited-maximum leaching yields using aqueous solutions of sulfuric and oxalic acids were 60% (80 °C, 2 h, 15% wt. H2SO4, L:S 25:1) and 57% (80 °C, 3 h, 12.5% wt. H2C2O4, L:S 10:1), respectively.


Asunto(s)
Germanio , Ácidos Sulfúricos , Germanio/química , Ácidos Sulfúricos/química , Ácido Oxálico/química , Temperatura , Residuos Electrónicos/análisis
8.
Sci Total Environ ; 945: 173991, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901601

RESUMEN

Polybrominated diphenyl ethers (PBDEs) and their substitutes, novel brominated flame retardants (NBFRs), are ubiquitously present in the aquatic environment of electronic waste (e-waste) dismantling region, leading to their inevitable absorption and accumulation by aquatic organisms, which can be transferred to human via directly aquatic product consumption or through food chain, thereby posing potential health risks. This study focused on fish samples from Guiyu and its surrounding areas, and found the total PBDEs concentrations were 24-7400 ng/g lw (mean: 1800 ng/g lw) and the total NBFRs concentrations were 14 to 2300 ng/g lw (mean: 310 ng/g lw). Significant positive correlations were found among PBDE congeners, among different NBFRs, and between NBFRs and commercial PBDEs that they replace. ΣPBDEs and ΣNBFRs in the intestine were 620-350,000 and 91-81,000 ng/g lw (mean: 83000 and 12,000 ng/g lw, respectively), significantly exceeding those in the gills, where ΣPBDEs and ΣNBFRs were 14-37,000 and 39-45,000 ng/g lw (mean: 9200 and 2400 ng/g lw, respectively). The ΣPBDEs and ΣNBFRs showed no non-carcinogenic risks to the target population through dietary intake. Despite the significantly higher daily intake of decabromodiphenyl ethane (DBDPE) compared to decabromodiphenyl ether (BDE209), the non-carcinogenic risk associated with BDE209 remained higher than that of DBDPE. Our findings can assist researchers in understanding the presence of BFRs in aquatic organisms, inhabiting e-waste dismantling areas, and in evaluating the associated health risks posed to humans through dietary exposure.


Asunto(s)
Exposición Dietética , Residuos Electrónicos , Monitoreo del Ambiente , Peces , Retardadores de Llama , Éteres Difenilos Halogenados , Contaminantes Químicos del Agua , Retardadores de Llama/análisis , China , Éteres Difenilos Halogenados/análisis , Animales , Contaminantes Químicos del Agua/análisis , Exposición Dietética/estadística & datos numéricos , Humanos , Medición de Riesgo , Contaminación de Alimentos/análisis
9.
Environ Sci Pollut Res Int ; 31(30): 42931-42947, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38880846

RESUMEN

E-waste, a global environmental concern resulting from supply chain inefficiency, also offers the opportunity to recover valuable materials, including general and rare earth metals. Waste printed circuit boards (WPCBs) are integral components of e-waste that contains substantial amounts of precious metals, making them a valuable waste category. Pyrolysis has emerged as a promising method for material recovery from WPCBs. Hence, pyrolytic urban mining of WPCBs offers an excellent avenue for resource recovery, redirecting valuable materials back into the supply chain. Under the current study, experimental investigation has been conducted to explore the recovery of materials from WPCBs through pyrolysis followed by process simulation, economic analysis, and life cycle assessment (LCA). An Aspen Plus simulation was conducted to model the pyrolysis of WPCBs and subsequent product recovery using a non-equilibrium kinetic model, which represents a unique approach in this study. Another distinct aspect is the comprehensive assessment of environmental and economic sustainability. The economic analysis has been carried out using Aspen economic analyzer whereas the LCA of WPCB pyrolysis has been conducted using the SimaPro software. The experimental investigation reveals yield of solid residues are about 75-84 wt.%, liquid yields of 6-13 wt.%, and gas yields of 4-21 wt.%, which is in well agreement with the Aspen Plus simulation results. The economic analysis for an e-waste pyrolysis plant with an annual feed rate of 2000 t reveals that the total capital cost of a pyrolysis plant is nearly $51.3 million, whereas the total equipment cost is nearly $2.7 million and the total operating cost is nearly $25.6 million. The desired rate of return is 20% per year and the payback period is 6 years with a profitability index of 1.25. From the LCA, the major impact categories are global warming, fossil resource scarcity, ozone formation in human health, ozone formation in terrestrial ecosystems, fine particulate matter formation, and water consumption. The findings of this study can serve as a guideline for e-waste recyclers, researchers, and decision-makers in establishing circular economy.


Asunto(s)
Residuos Electrónicos , Minería , Pirólisis , Reciclaje
10.
J Environ Manage ; 363: 121384, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850922

RESUMEN

In the course of this investigation, we undertook the contemplation of a green chemistry paradigm with the express intent of procuring valuable metal, namely gold, from electronic waste (e-waste). In pursuit of this overarching objective, we conceived a procedural framework consisting of two pivotal stages. As an initial stage, we introduced a physical separation procedure relying on the utilization of the Eddy current separator, prior to embarking on the process of leaching from e-waste. Subsequent to the partitioning of metals from the non-metal constituents of waste printed circuit boards (PCB), we initiated an investigation into the hydrogel derived from basil seeds (Ocimum basilicum L.), utilizing it as a biogenic sorbent medium. The thorough characterization of hydrogel extracted from basil seeds involved the application of an array of analytical techniques, encompassing FTIR, XRD, SEM, and BET. The batch sorption experiments show more than 90% uptake in the pH range of 2-5. The sorption capacity of the hydrogel material was evaluated as 188.44 mg g-1 from the Langmuir Isotherm model. The potential interference stemming from a spectrum of other ions, encompassing Al, Cu, Ni, Zn, Co, Cr, Fe, Mn, and Pb was systematically examined. Notably, the sole instance of interference in the context of adsorption of gold ions was observed to be associated with the presence of lead. The application of the hydrogel demonstrated a commendable efficiency in the recovery of Au(III) from the leached solution derived from the waste PCB.


Asunto(s)
Residuos Electrónicos , Oro , Hidrogeles , Oro/química , Hidrogeles/química , Adsorción , Ocimum basilicum/química
11.
Environ Sci Pollut Res Int ; 31(27): 39690-39703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829502

RESUMEN

Printed circuit boards, which make up part of waste from electrical and electronic equipment, contain elements that can be economically reused, such as copper, silver, gold, and nickel, as well as metals that are harmful to the environment and health, such as lead, mercury, and cadmium. Thus, through recycling this scrap, materials that would otherwise be discarded can be reinserted as secondary raw materials to produce new consumer goods through urban mining. In this context, the synthesis of nanoparticles shows promise as it allows the reinsertion of these materials in the manufacture of new products. Therefore, this study used obsolete computer motherboards as a secondary material to obtain copper to produce nanoparticles of this metal. From a solution based on the leach liquor of this scrap, a purification route using solvent extraction was defined and applied to the real leach liquor. Applying the hydroxyoxime extractant at a dilution of 20% (v/v) in kerosene, A/O of 1/1, 298 K, and 0.25 h of contact during extraction, and stripping in H2SO4 (2 M), 298 K, 0.25 h, W/O ratio of 3/1, and two theoretical countercurrent stages, a solution containing more than 95% of the copper in the leach liquor could be obtained with less than 1% of contaminants. From this purified liquor, nanoparticles containing copper and metallic copper oxides and hydroxides were produced, with an average size of 84 nm, at pH 11, 3 h of hot stirring, volume of 0.015 L of ascorbic acid (0.50 M) and 0.015 L of precursor solution (0.03 M Cu), and temperature (343 K).


Asunto(s)
Cobre , Solventes , Cobre/química , Solventes/química , Reciclaje , Nanopartículas del Metal/química , Residuos Electrónicos , Nanopartículas/química
12.
J Hazard Mater ; 475: 134924, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880045

RESUMEN

Nanofiltration (NF) is a promising technology in the treatment of microelectronic wastewater. However, the treatment of concentrate derived from NF system remains a substantial technical challenge, impeding the achievement of the zero liquid discharge (ZLD) goal in microelectronic wastewater industries. Herein, a ZLD system, coupling a two-stage NF technology with anaerobic biotechnology was proposed for the treatment of tetramethylammonium hydroxide (TMAH)-contained microelectronic wastewater. The two-stage NF system exhibited favorable efficacy in the removal of conductivity (96 %), total organic carbon (TOC, 90 %), and TMAH (96 %) from microelectronic wastewater. The membrane fouling of this system was dominated by organic fouling, with the second stage NF membrane experiencing a more serious fouling compared to the first stage membrane. The anaerobic biotechnology achieved a near-complete removal of TMAH and an 80 % reduction in TOC for the first stage NF concentrate. Methyloversatilis was the key genus involved in the anaerobic treatment of the microelectronic wastewater concentrate. Specific genes, including dmd-tmd, mtbA, mttB and mttC were identified as significant players in mediating the dehydrogenase and methyl transfer pathways during the process of TMAH biodegradation. This study highlights the potential of anaerobic biodegradation to achieve ZLD in the treatment of TMAH-contained microelectronic wastewater by NF system.


Asunto(s)
Biodegradación Ambiental , Filtración , Compuestos de Amonio Cuaternario , Aguas Residuales , Aguas Residuales/química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/metabolismo , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Membranas Artificiales , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Reactores Biológicos , Residuos Electrónicos , Nanotecnología
13.
J Hazard Mater ; 475: 134862, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885585

RESUMEN

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.


Asunto(s)
Contaminantes Ambientales , Microbioma Gastrointestinal , Éteres Difenilos Halogenados , Bifenilos Policlorados , Humanos , Éteres Difenilos Halogenados/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Femenino , Masculino , Niño , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Polvo/análisis , Preescolar , Exposición a Riesgos Ambientales , Metabolómica , Residuos Electrónicos , China , Metales/metabolismo , Metales/toxicidad , Organofosfatos/toxicidad , Organofosfatos/metabolismo
14.
J Environ Manage ; 362: 121306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833918

RESUMEN

Integrated circuits (ICs) and central processing units (CPUs), essential components of electrical and electronic equipment (EEE), are complex composite materials rich in recyclable high-value strategic and critical metals, with many in concentrations higher than in their natural ores. With gold the most valuable metal present, increase in demand for gold for EEE and its limited availability have led to a steep rise in the market price of gold, making gold recycling a high priority to meet demand. To overcome the limitations associated with conventional technologies for recycling e-waste, the use of greener technologies (ionic liquids (ILs) as leaching agents), offers greater potential for the recovery of gold from e-waste components. While previous studies have demonstrated the efficiency and feasibility of using ILs for gold recovery, these works predominantly concentrate on the extraction stage and often utilise simulated solutions, lacking the implementation of a complete process validated with real samples to effectively assess its overall effectiveness. In this work, a simulated Model Test System was used to determine the optimal leaching and extraction conditions before application to real samples. With copper being the most abundant metal in the e-waste fractions, to access the gold necessitated a two-stage pre-treatment (nitric acid leaching followed by aqua regia leaching) to ensure complete removal of copper and deliver a gold-enriched leach liquor. Gold extraction from the leach liquor was achieved by liquid-liquid extraction using Cyphos 101 (0.1 M in toluene with an O:A = 1:1, 20 °C, 150 rpm, and 15 min) and as a second process by sorption extraction with loaded resins (Amberlite XAD-7 with 300 mg of Cyphos 101/g of resins at 20 °C, 150 rpm and 3 h). In both processes, complete stripping and desorption of gold was achieved (0.5 M thiourea in 0.5 M HCl) and gold recovered, as nanoparticles of purity ≥95%, via a reduction step using a sodium borohydride solution (0.1 M NaBH4 in 0.1 M NaOH). These two hydrometallurgical processes developed can achieve overall efficiencies of ≥95% for gold recovery from real e-waste components, permit the reuse of the IL and resins up to five consecutive times, and offer a promising approach for recovery from any e-waste stream rich in gold.


Asunto(s)
Oro , Líquidos Iónicos , Reciclaje , Líquidos Iónicos/química , Oro/química , Reciclaje/métodos , Residuos Electrónicos
15.
Waste Manag ; 186: 130-140, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878477

RESUMEN

The traditional pyrometallurgical recycling of nano-sized platinum group metals (PGMs) from spent automotive catalysts (SACs) is an energy-intensive process that requires the addition of large quantities of copper capture and slag-forming reagents. Similarly, pyro-recycling of valuable metals from waste printed circuit boards (WPCBs) is also an energy- and reagent-intensive process that and carries a risk of pollution emissions. Based on the complementarity of composition and similarity of recycling process, synergistic pyro-recycling of SACs and WPCBs allow copper in WPCBs to capture PGMs in SACs and oxides from two waste form slag jointly, which offers benefits of enhanced metal recovery, reduced reagent and energy consumption, and suppressed pollutant emissions. However, the mechanisms of PGMs capture and pollutant transformation in co-smelting remain unknown. Here, we investigated the sub-processes mechanisms of slag formation, brominates fixation, multi-metal distribution and kinetic settlement. Oxides in both wastes support SiO2-Al2O3-CaO slag formation with low melting point and viscosity, where CaO suppresses the emission of brominated pollutants. Copper (50-100 µm) from WPCBs facilitates nano-sized PGMs in SACs recovery through capture and settlement. The results of demonstration experiments indicated a recovery rate of 94.6 %, 96.8 %, 97.2 %, and 98.1 % for Cu, Pt, Pd, and Rh, respectively, with a debromination efficiency exceeding 98 %. The theoretical analysis provides support for the establishment of a synergistic pyro-recycling process for SACs and WPCBs and provides insights into the potential for a greener and more efficient co-recycling of multi urban mines.


Asunto(s)
Cobre , Residuos Electrónicos , Platino (Metal) , Reciclaje , Cobre/química , Reciclaje/métodos , Residuos Electrónicos/análisis , Catálisis , Platino (Metal)/química , Automóviles , Óxidos/química , Nanopartículas del Metal/química
16.
Environ Sci Pollut Res Int ; 31(23): 34282-34294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698096

RESUMEN

Waste printed circuit boards (WPCBs) can be bioleached for Cu recovery, but lack of substrate for the bioleaching culture. In this study, using pyrite as a bacterial substrate for bioleaching WPCBs and recovering Cu was explored. The results showed that the WPCBs bioleaching using pyrite as the bacterial substrate was feasible. Mechanical crushing was a suitable WPCBs pretreatment method. The optimal WPCBs and pyrite pulp densities were respectively found to be 1.25% (w/v) and 1.0% (w/v), and the suitable nitrogen source ratio ((NH4)2SO4: (NH4)2HPO4) was deemed as 2 g/L: 2 g/L, achieving a Cu2+ leaching efficiency of 95.60 ± 1.57% in 14 d. Copper in the bioleaching solution can be directly recovery via electrodeposition. The Cu recovery efficiency in 60 min was up to 92.19 ± 1.35% under the optimal condition that the initial Cu2+ concentration and pH were respectively set at 7.34 g/L and 2.75, and the current density was set at 200 A/m2. Copper was found as the dominant metal in the cathode deposits, existing in the form of Cu and Cu2O. This work provided a novel approach for bioleaching WPCBs and recovering Cu.


Asunto(s)
Cobre , Residuos Electrónicos , Cobre/química , Sulfuros/química , Hierro/química
17.
Sci Total Environ ; 932: 172987, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734084

RESUMEN

Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.


Asunto(s)
Residuos Electrónicos , Monitoreo del Ambiente , Cristales Líquidos , Contaminantes del Suelo , Pakistán , Residuos Electrónicos/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Medición de Riesgo
18.
Environ Monit Assess ; 196(6): 588, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816612

RESUMEN

The recent surge in electronic device usage has led to a notable rise in electronic waste (E-waste) generation, presenting significant environmental challenges. This study aims to quantify Kerala's E-waste inventory and formulate a comprehensive management plan. Utilizing sales data from 2017 to 2020 and estimating E-waste generation based on "average" or "end-of-life" durations of electrical and electronic equipment (EEE) items, the analysis forecasts substantial E-waste quantities. Key assumptions include correlating sales data with E-waste generation and utilizing guidelines for estimating E-waste quantities based on EEE item types and sales figures. The highest E-waste generation is predicted for the years 2028-2029, estimated at 97,541 tonnes, which is crucial for the state's management strategy. To address this challenge, the study proposes a comprehensive environmental management plan that integrates the principles of reduce, reuse, and recycle (3R) into its core strategies. The plan includes establishing 78 collection units across the state, strategically allocated based on the Taluk (a sub-division of a district) population, to ensure efficient E-waste collection and recovery of reusable items. Additionally, the study outlines the need for 273 recycling units statewide, with Malappuram district requiring the most units due to its high population density. The plan emphasizes efficient E-waste collection, segregation, and recycling, promoting responsible consumption and resource conservation. The study furnishes a "cradle-to-grave" framework for the management of E-waste at local, regional, and national levels, serving as a valuable resource for pollution control boards, regulatory bodies, statutory bodies, and research organizations alike.


Asunto(s)
Residuos Electrónicos , Reciclaje , Administración de Residuos , India , Administración de Residuos/métodos
19.
Environ Pollut ; 355: 124259, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810680

RESUMEN

The global increase in electronic waste (e-waste) has led to a rise in informal recycling, emitting hazardous heavy metals (HMs) that threaten human health and ecosystems. This study presents the first comprehensive assessment of HM levels in dry deposition and soils at proximity of forty (40) informal e-waste recycling sites across Pakistan, between September 2020 to December 2021. Findings reveal that Zn (1410), Pb (410) and Mn (231) exhibited the higher mean deposition fluxes (µg/m2.day), derived from air samples, particularly in Karachi. Similarly, soils showed higher mean concentrations (µg/g dw) of Mn (477), Cu (514) and Pb (172) in Faisalabad, Lahore, and Karachi, respectively. HMs concentrations were found higher in winter or autumn and lower in summer. In addition, HM levels were significantly (p = 0.05) higher at recycling sites compared to background sites year-round, highlighting the e-waste recycling operations as the major source of their emissions. The Igeo index indicated moderate to extremely contaminated levels of Cu, Pb, Cd, and Ni in Karachi, Lahore and Gujranwala. Ingestion was found as a leading human exposure route, followed by dermal and inhalation exposure, with Pb posing the greatest health risk. The Cumulative Incremental Lifetime Cancer Risk (ILCR) model suggested moderate to low cancer risks for workers. Strategic interventions recommend mitigating health and environmental risks, prioritizing human health and ecosystem integrity in Pakistan's e-waste management.


Asunto(s)
Ciudades , Residuos Electrónicos , Metales Pesados , Reciclaje , Contaminantes del Suelo , Pakistán , Humanos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Medición de Riesgo
20.
Chemosphere ; 360: 142406, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782132

RESUMEN

Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.


Asunto(s)
Daño del ADN , Residuos Electrónicos , Exposición Profesional , Organofosfatos , Humanos , Hong Kong , Organofosfatos/orina , Organofosfatos/análisis , Medición de Riesgo , Exposición Profesional/análisis , Adulto , Masculino , Persona de Mediana Edad , Ésteres/análisis , Femenino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...