Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.786
Filtrar
1.
Water Sci Technol ; 89(9): 2577-2592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747968

RESUMEN

This study undertakes a systematic analysis of the hydrological changes before and after the implementation of the Comprehensive Remediation Project in the lower reaches of the Ganjiang River. It focuses on changes in downstream inflow, ratios of flow distribution, and water levels, as well as water velocity near the gates. The results indicate a significant improvement in the spatial distribution of water resources in the lower reaches of the Ganjiang River. The project enhances the inflow from the northern and southern branches, positively influencing downstream water usage and the ecological environment. Building upon these findings, the study proposes operational recommendations tailored to different hydrological years, such as timely adjustments to the southern branch's water inflow and optimizing flow distribution ratios. This research provides a scientific basis for the implementation and dispatch of comprehensive remediation projects and offers insights into water resource management in similar regions.


Asunto(s)
Hidrología , Ríos , China , Restauración y Remediación Ambiental/métodos , Movimientos del Agua
2.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690765

RESUMEN

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Asunto(s)
Coloides , Restauración y Remediación Ambiental , Agua Subterránea , Agua Subterránea/química , Coloides/química , Restauración y Remediación Ambiental/métodos , Polímeros/química , Carbón Orgánico/química , Arena/química , Contaminantes Químicos del Agua/química , Carbono/química
3.
Sci Rep ; 14(1): 11369, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762699

RESUMEN

Demand for ecological restoration of Earth's degraded ecosystems has increased significantly since the adoption of The Kunming-Montreal Global Biodiversity Framework in December 2022, with target 2 aiming to ensure that at least 30% of degraded ecosystems are under effective restoration by 2030. More recently, in December 2023, the Australian Parliament introduced the Nature Repair Act, which establishes a framework for the world's first legislated, national, voluntary biodiversity market. How can the effectiveness of these ambitious targets be measured? Natural Capital Accounting (NCA) provides a framework to measure changes in ecosystem condition that is applicable across ecosystems and potentially catalogue effects of restoration interventions to drive investment, improvement to practice, and ultimately, to better protect the Earth's ecosystems. However, the framework has not been tested in this context. In this progressive approach, we populated the leading global NCA framework with ecological data to quantify changes in ecosystem condition after restoration. In principle, NCA is fit for purpose, however, methodological refinements and ecological expertise are needed to unlock its full potential. These tweaks will facilitate adoption and standardisation of reporting as efforts ramp up to meet ambitious global restoration targets.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Australia , Ecología
4.
Sci Prog ; 107(2): 368504241253720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715402

RESUMEN

Ecosystems, biodiversity, and the human population all depend on a quality or uncontaminated environment. Quality environment provides people and wildlife access to nutrition, medications, dietary supplements, and other ecosystem services. The conservation of biodiversity-that is, species richness, abundance, heredities, and diversity-as well as the control of climate change are facilitated by such an uncontaminated environment. However, these advantages are jeopardized by newly emerging environmental chemical contaminants (EECCs) brought on by increased industrialization and urbanization. In developing countries, inadequate or poor environmental policies, infrastructure, and national standards concerning the usage, recycling, remediation, control, and management of EECCs hasten their effects. EECCs in these countries negatively affect biodiversity, ecological services and functions, and human health. This review reveals that the most deprived or vulnerable local communities in developing countries are those residing near mining or industrial areas and cultivating their crops and vegetables on contaminated soils, as is wildlife that forages or drinks in EECC-contaminated water bodies. Yet, people in these countries have limited knowledge about EECCs, their threats to human well-being, ecosystem safety, and the environment, as well as remediation technologies. Besides, efforts to efficiently control, combat, regulate, and monitor EECCs are limited. Thus, the review aims to increase public knowledge concerning EECCs in developing countries and present a comprehensive overview of the current status of EECCs. It also explores the sources and advancements in remediation techniques and the threats of EECCs to humans, ecosystems, and biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Contaminantes Ambientales , Humanos , Conservación de los Recursos Naturales/métodos , Contaminantes Ambientales/análisis , Restauración y Remediación Ambiental/métodos , Animales , Contaminación Ambiental/prevención & control , Ecosistema
5.
Environ Monit Assess ; 196(6): 566, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775858

RESUMEN

Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.


Asunto(s)
Monitoreo del Ambiente , Microbiota , Ríos , Contaminantes Químicos del Agua , Ríos/microbiología , Ríos/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Argentina , ARN Ribosómico 16S/genética , Biodegradación Ambiental , Hidrocarburos/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Restauración y Remediación Ambiental/métodos
6.
Sci Total Environ ; 932: 172878, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697541

RESUMEN

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.


Asunto(s)
Eutrofización , Lantano , Microcystis , Fósforo , Lantano/química , Contaminantes Químicos del Agua/análisis , Hidróxido de Aluminio/química , Adsorción , Restauración y Remediación Ambiental/métodos
7.
Sci Total Environ ; 932: 172927, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719057

RESUMEN

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.


Asunto(s)
Arachis , Carbón Orgánico , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Arachis/microbiología , Contaminantes del Suelo/análisis , Suelo/química , Microbiota , Rizosfera , Restauración y Remediación Ambiental/métodos
8.
Ambio ; 53(7): 970-983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696060

RESUMEN

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Asunto(s)
Conservación de los Recursos Naturales , Unión Europea , Agricultura Forestal , Suelo , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Suelo/química , Bosques , Secuestro de Carbono , Restauración y Remediación Ambiental/métodos , Cambio Climático , Ecosistema , Humedales
9.
Sci Total Environ ; 931: 172899, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38692328

RESUMEN

Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.


Asunto(s)
Agricultura , Carbón Orgánico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Agricultura/métodos , Restauración y Remediación Ambiental/métodos , Suelo/química , Metales Pesados/análisis
10.
Sci Total Environ ; 931: 172958, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38714255

RESUMEN

Mining activities put the Brazilian savannas, a global biodiversity hotspot, in danger of species and soil carbon losses. Experiments employing biosolids have been applied to rejuvenate this degraded ecosystem, but a lingering question yet to be answered is whether the microbiota that inhabits these impoverished soils can be recovered towards its initial steady state after vegetation recovery. Here, we selected an 18-year-old restoration chronosequence of biosolids-treated, untreated mining and native soils to investigate the soil microbiota recovery based on composition, phylogeny, and diversity, as well as the potential factors responsible for ecosystem recovery. Our results revealed that the soil microbiota holds a considerable recovery potential in the degraded Cerrado biome. Biosolids application not only improved soil health, but also led to 41.7 % recovery of the whole microbial community, featuring significantly higher microbiota diversity and enriched groups (e.g., Firmicutes) that benefit carbon storage compared to untreated mining and native soils. The recovered community showed significant compositional distinctions from the untreated mining or native soils, rather than phylogenetic differences, with physiochemical properties explaining 55 % of the overall community changes. This study advances our understanding of soil microbiota dynamics in response to disturbance and restoration by shedding light on its recovery associated with biosolid application in a degraded biodiverse ecosystem.


Asunto(s)
Microbiota , Microbiología del Suelo , Suelo , Brasil , Suelo/química , Minería , Biodiversidad , Ecosistema , Restauración y Remediación Ambiental/métodos
11.
BMC Plant Biol ; 24(1): 357, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698319

RESUMEN

BACKGROUND: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION: The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.


Asunto(s)
Calendula , Tierra de Diatomeas , Metales Pesados , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Tierra de Diatomeas/metabolismo , Calendula/metabolismo , Calendula/química , Suelo/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos
12.
Curr Biol ; 34(9): R371-R379, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714168

RESUMEN

The global restoration agenda can help solve the biodiversity extinction crisis by regenerating biodiversity-rich ecosystems, maximising conservation benefits using natural regeneration. Yet, conservation is rarely the core objective of restoration, and biodiversity is often neglected in restoration projects targeted towards carbon sequestration or enhancing ecosystem services for improved local livelihoods. Here, we synthesise evidence to show that promoting biodiversity in restoration planning and delivery is integral to delivering other long-term restoration aims, such as carbon sequestration, timber production, enhanced local farm yields, reduced soil erosion, recovered hydrological services and improved human health. For each of these restoration goals, biodiversity must be a keystone objective to the entire process. Biodiversity integration requires improved evidence and action, delivered via a socio-ecological process operating at landscape scales and backed by supportive regulations and finance. Conceiving restoration and biodiversity conservation as synergistic, mutually reinforcing partners is critical for humanity's bids to tackle the global crises of climate change, land degradation and biodiversity extinction.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Cambio Climático , Ecosistema , Restauración y Remediación Ambiental/métodos , Secuestro de Carbono
13.
Curr Biol ; 34(9): R379-R387, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714169

RESUMEN

For decades, China has implemented restoration programs on a large scale, thanks to its capacity to set policy and mobilize funding resources. An understanding of China's restoration achievements and remaining challenges will help to guide future efforts to restore 30% of its diverse ecosystems under the Kunming-Montreal Global Biodiversity Framework. Here we summarize the major transitions in China's approach to ecosystem restoration since the 1970s, with a focus on the underlying motivations for restoration, approaches to ecosystem management, and financing mechanisms. Whereas China's restoration efforts were predominantly guided by the delivery of certain ecosystem functions and services in earlier decades, more recently it has come to emphasize the restoration of biodiversity and ecosystem integrity. Accordingly, the focal ecosystems, approaches, and financing mechanisms of restoration have also been considerably diversified. This evolution is largely guided by the accumulation of scientific evidence and past experiences. We highlight the key challenges facing China's restoration efforts and propose future directions to improve restoration effectiveness, with regard to goal setting, monitoring, stakeholder involvement, adaptive management, resilience under climate change, and financing.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , China , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos
14.
Curr Biol ; 34(9): R387-R393, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714170

RESUMEN

The global decade of restoration brings into sharp focus the need to rehabilitate lands damaged by mining, to provide safe, stable, and productive landscapes. For the majority of mines, the required final land use is some form of natural, semi-natural or managed ecosystem, such as agriculture, aquaculture or forestry. Mining activities lead to new highly altered landscapes that require rehabilitation. These comprise various on-land stores of waste material and mined land itself. The repair of damaged ecosystems is described by many terms including restoration, rehabilitation, revegetation, ecological restoration, and reclamation. These terms overlap in meaning, have regional biases, and all fall short of what is really required: ecosystem reconstruction. This requires a highly multidisciplinary approach drawing on many disciplines including geotechnical engineering, social science, soil science, law, hydrology, botany, geology, pollination biology, financial planning, alongside ecology. Ideally, mine rehabilitation should be progressive, start early in the life of the mine, and employ a strict regime of characterising and tracking waste materials for use in creating safe and stable post-mining landscapes. These actions will limit risks and optimise outcomes, especially when waste materials contain toxic metals or have high levels of acidity, alkalinity or salinity. Some mine sites are appropriate for the restoration of native ecosystems and biodiversity that existed pre-mining, but many, including landscape features created from waste materials, are not. Criteria for successful land rehabilitation are complex, multivariate, and highly contingent on the agreed final land use. Future advances in mine rehabilitation include the use of geomorphic landscape design and emerging thinking on cradle-to-cradle mining. This primer will discuss the complex factors that need to be considered in ecosystem reconstruction after mining and outlines approaches for optimising land rehabilitation outcomes.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Minería , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos
15.
Curr Biol ; 34(9): R356-R359, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714165

RESUMEN

The successful restoration of the river that used to be the dirtiest in Europe shows that any water course can be brought back to life. Around the world, different approaches and different goals are being pursued in a multitude of river restoration projects, with barrier removals showing a growing trend.


Asunto(s)
Ríos , Europa (Continente) , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos
16.
Curr Biol ; 34(9): R412-R417, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714174

RESUMEN

The global community has outlined ambitious ecosystem restoration targets. Yet implementation is slow, and a lack of funding is a key barrier to upscaling restoration activities. Most restoration projects are funded by public institutions and recent high-level initiatives have emphasised the need to scale private finance in restoration. Private finance can be channelled into restoration through various financial mechanisms but is held back by a lack of return-making investment opportunities. Various institutions have now been created to commodify previously non-market ecosystem services and make them investable, most prominently voluntary carbon markets and biodiversity compliance market-like mechanisms, such as biodiversity-offsetting systems targeting the achievement of 'no net loss' of biodiversity for a given regulated sector. However, attracting private finance into restoration comes with risks, as private finance objectives in restoration often are misaligned with wider social and ecological objectives. Private finance mechanisms to date have tended to underinvest in monitoring and impact evaluation mechanisms and to favour investments in cost-effective nature-based solutions such as plantation monocultures over naturally regenerated ecosystems. Many technological and institutional solutions have been proposed, but these cannot mitigate all risks. Therefore, scaling of ecosystem restoration through market-like mechanisms requires substantial fundamental investments in governance and civil society oversight to ensure that ecological integrity and social equity is safeguarded. Here, we outline the high-level policy landscape driving restoration finance and explore the roles and potential of both public and private investment in restoration. We explain how some common mechanisms for drawing private investment into restoration work in practice. Then, we discuss some of the shortcomings of past private finance initiatives for ecosystem restoration and highlight essential lessons for how to safeguard the ecological and social outcomes of private investments in ecosystem restoration.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Biodiversidad , Restauración y Remediación Ambiental/economía , Restauración y Remediación Ambiental/métodos
17.
Curr Biol ; 34(9): R418-R434, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714175

RESUMEN

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Restauración y Remediación Ambiental/métodos , Biodiversidad , Cambio Climático
18.
Curr Biol ; 34(9): R399-R406, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714172

RESUMEN

Coral reefs provide food and livelihoods for hundreds of millions of coastal people in over 100 countries. Recent global estimates for the total value of goods and services that they can generate indicate around US$ 105,000-350,000 per hectare per year, but local estimates of current total economic value can be one to two orders of magnitude lower. Unfortunately, coral reefs are under threat both from local human stressors (for example, sediment and nutrient run-off from agriculture, sewage discharges, dredging, destructive fishing, land 'reclamation', overfishing) and, increasingly, from stressors related to global climate change (not only El Niño Southern Oscillation-related marine heatwaves, which cause mass bleaching and mortality of corals, but also more frequent and powerful tropical cyclones and ocean acidification). Four successive mass-bleaching events on Australia's iconic Great Barrier Reef between 2016 and 2022 (plus another one currently underway) have focused world attention on the need for urgent action to protect coral reefs. It is clear that coral reef ecosystems will continue to decline unless anthropogenic greenhouse gas emissions are reduced and innovative management strategies are developed to assist adaptation.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Conservación de los Recursos Naturales/métodos , Animales , Antozoos/fisiología , Australia , Humanos , Restauración y Remediación Ambiental/métodos
19.
Curr Biol ; 34(9): R452-R472, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714177

RESUMEN

Forest restoration is being scaled up globally, carrying major expectations of environmental and societal benefits. Current discussions on ensuring the effectiveness of forest restoration are predominantly focused on the land under restoration per se. But this focus neglects the critical issue that land use and its drivers at larger spatial scales have strong implications for forest restoration outcomes, through the influence of landscape context and, importantly, potential off-site impacts of forest restoration that must be accounted for in measuring its effectiveness. To ensure intended restoration outcomes, it is crucial to integrate forest restoration into land-use planning at spatial scales large enough to account for - and address - these larger-scale influences, including the protection of existing native ecosystems. In this review, we highlight this thus-far neglected issue in conceptualizing forest restoration for the delivery of multiple desirable benefits regarding biodiversity and ecosystem services. We first make the case for the need to integrate forest restoration into large-scale land-use planning, by reviewing current evidence on the landscape-level influences and off-site impacts pertaining to forest restoration. We then discuss how science can guide the integration of forest restoration into large-scale land-use planning, by laying out key features of methodological frameworks required, reviewing the extent to which existing frameworks carry these features, and identifying methodological innovations needed to bridge the potential shortfall. Finally, we critically review the status of existing methods and data to identify future research efforts needed to advance these methodological innovations and, more broadly, the effective integration of forest restoration design into large-scale land-use planning.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Biodiversidad , Ecosistema , Restauración y Remediación Ambiental/métodos
20.
World J Microbiol Biotechnol ; 40(6): 189, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702568

RESUMEN

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.


Asunto(s)
Biodegradación Ambiental , Metales de Tierras Raras , Microalgas , Microalgas/metabolismo , Metales de Tierras Raras/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Restauración y Remediación Ambiental/métodos , Biotecnología/métodos , Residuos Industriales/análisis , Bioacumulación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA