Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.535
Filtrar
1.
Genes Immun ; 24(6): 295-302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925533

RESUMEN

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.


Asunto(s)
Inmunidad Adaptativa , Aminopeptidasas , Retículo Endoplásmico , Evolución Molecular , Humanos , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Retículo Endoplásmico/enzimología , Haplotipos , Antígenos de Histocompatibilidad Menor/genética , Inmunidad Adaptativa/genética
2.
J Virol ; 97(10): e0124523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792001

RESUMEN

IMPORTANCE: Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.


Asunto(s)
Aciltransferasas , Retículo Endoplásmico , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza B , Lipoilación , Ácido Palmítico , Replicación Viral , Humanos , Aciltransferasas/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/química , Virus de la Influenza A/metabolismo , Virus de la Influenza B/química , Virus de la Influenza B/crecimiento & desarrollo , Virus de la Influenza B/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Lipoilación/genética , Mutación , Ácido Palmítico/metabolismo
3.
J Biol Chem ; 299(12): 105346, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838170

RESUMEN

Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.


Asunto(s)
COVID-19 , Retículo Endoplásmico , Péptido Hidrolasas , SARS-CoV-2 , Humanos , COVID-19/virología , Retículo Endoplásmico/enzimología , Péptido Hidrolasas/metabolismo , SARS-CoV-2/enzimología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina/metabolismo , Células HeLa , Células HEK293 , Proteolisis , Estabilidad Proteica , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1867(9): 130412, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348823

RESUMEN

The remarkable structural diversity of glycans that is exposed at the cell surface and generated along the secretory pathway is tightly regulated by several factors. The recent identification of human glycosylation diseases related to metal transporter defects opened a completely new field of investigation, referred to herein as "metalloglycobiology", on how metal changes can affect the glycosylation and hence the glycan structures that are produced. Although this field is in its infancy, this review aims to go through the different glycosylation steps/pathways that are metal dependent and that could be impacted by metal homeostasis dysregulations.


Asunto(s)
Glicómica , Glicosilación , Metales , Polisacáridos , Humanos , Proteínas de Transporte de Catión/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Glicómica/tendencias , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Homeostasis , Magnesio/química , Magnesio/metabolismo , Metales/química , Metales/metabolismo , Oxidación-Reducción , Polisacáridos/química , Polisacáridos/metabolismo , Zinc/química , Zinc/metabolismo
5.
J Med Chem ; 66(4): 2744-2760, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36762932

RESUMEN

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 in vitro to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.


Asunto(s)
1-Desoxinojirimicina , Antivirales , COVID-19 , Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , Animales , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacología , alfa-Glucosidasas/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Retículo Endoplásmico/enzimología , Glicoproteínas , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , SARS-CoV-2/metabolismo , Relación Estructura-Actividad Cuantitativa
6.
Proc Natl Acad Sci U S A ; 119(35): e2205425119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994651

RESUMEN

Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.


Asunto(s)
Proteínas Portadoras , Membrana Celular , Lípidos , Proteínas de Transporte Vesicular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Humanos , Neuroacantocitosis/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Biochem Biophys Res Commun ; 608: 52-58, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35390672

RESUMEN

Sialylation, the final stage of post-translational modification of proteins, is achieved in the Golgi apparatus and is related to the malignant phenotype of cancer. Disialylation of ganglioside (GD3) by St8sia1 and polysialylation by St8sia2 and 4 have been shown to be related to malignant phenotypes; however, di/oligosialylation by St8sia6 is still unknown. In this study, we analyzed the malignant phenotype of St8sia6 and found that upregulation of St8sia6 in melanoma B16 cells increased anchorage-independent cell growth, which was not due to sialic acid cleavage by a sialidase. Moreover, unlike other sialyltransferases, St8sia6 localized to the endoplasmic reticulum (ER). We found that the localization to the Golgi apparatus could be regulated by swapping experiments using St8sia2; however, the malignant phenotype did not change. These data demonstrate that the enhancement of anchorage-independent cell growth by St8sia6 is not due to its localization of ER, but is due to the expression of the protein itself.


Asunto(s)
Retículo Endoplásmico , Neoplasias , Sialiltransferasas , Procesos de Crecimiento Celular , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Gangliósidos/metabolismo , Aparato de Golgi/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Sialiltransferasas/metabolismo
8.
ACS Chem Biol ; 17(1): 240-251, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35000377

RESUMEN

Many cellular processes are dependent on correct pH levels, and this is especially important for the secretory pathway. Defects in pH homeostasis in distinct organelles cause a wide range of diseases, including disorders of glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-sensitive mutant of green fluorescent protein, pHLuorin, has allowed for targeted pH measurements in various organelles, but the required sequential image acquisition is intrinsically slow and therefore the temporal resolution is unsuitable to follow the rapid transit of cargo between organelles. Therefore, we applied fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar pH with just a single excitation wavelength. We first validated this method by confirming the pH in multiple compartments along the secretory pathway and compared the pH values obtained by the FLIM-based measurements with those obtained by conventional ratiometric imaging. Then, we analyzed the dynamic pH changes within cells treated with Bafilomycin A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic reticulum (ER)-Golgi trafficking. Finally, we followed the pH changes of newly synthesized molecules of the inflammatory cytokine tumor necrosis factor-α while they were in transit from the ER via the Golgi to the plasma membrane. The toolbox we present here can be applied to measure intracellular pH with high spatial and temporal resolution and can be used to assess organellar pH in disease models.


Asunto(s)
Concentración de Iones de Hidrógeno , Imagen Óptica/métodos , Vías Secretoras , Adenosina Trifosfatasas/antagonistas & inhibidores , Brefeldino A/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Humanos , Macrólidos/farmacología , Microscopía Fluorescente/métodos , Transporte de Proteínas
9.
J Med Chem ; 64(24): 18010-18024, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34870992

RESUMEN

Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.


Asunto(s)
Antivirales/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Iminoazúcares/farmacología , Inositol/análogos & derivados , alfa-Glucosidasas/metabolismo , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Cristalografía por Rayos X , Virus del Dengue/efectos de los fármacos , Retículo Endoplásmico/enzimología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/metabolismo , Humanos , Iminoazúcares/síntesis química , Iminoazúcares/metabolismo , Inositol/síntesis química , Inositol/metabolismo , Inositol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Células Vero , alfa-Glucosidasas/química
10.
Mol Cell ; 81(24): 5052-5065.e6, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34847358

RESUMEN

Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen triggers an unfolded protein response (UPR) for stress adaptation, the failure of which induces cell apoptosis and tissue/organ damage. The molecular switches underlying how the UPR selects for stress adaptation over apoptosis remain unknown. Here, we discovered that accumulation of unfolded/misfolded proteins selectively induces N6-adenosine-methyltransferase-14 (METTL14) expression. METTL14 promotes C/EBP-homologous protein (CHOP) mRNA decay through its 3' UTR N6-methyladenosine (m6A) to inhibit its downstream pro-apoptotic target gene expression. UPR induces METTL14 expression by competing against the HRD1-ER-associated degradation (ERAD) machinery to block METTL14 ubiquitination and degradation. Therefore, mice with liver-specific METTL14 deletion are highly susceptible to both acute pharmacological and alpha-1 antitrypsin (AAT) deficiency-induced ER proteotoxic stress and liver injury. Further hepatic CHOP deletion protects METTL14 knockout mice from ER-stress-induced liver damage. Our study reveals a crosstalk between ER stress and mRNA m6A modification pathways, termed the ERm6A pathway, for ER stress adaptation to proteotoxicity.


Asunto(s)
Adenina/análogos & derivados , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Hepatopatías/enzimología , Hígado/enzimología , Metiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenina/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Células HEK293 , Células Hep G2 , Humanos , Hígado/patología , Hepatopatías/etiología , Hepatopatías/genética , Hepatopatías/patología , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células 3T3 NIH , Proteolisis , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/enzimología , Deficiencia de alfa 1-Antitripsina/genética
11.
Biol Pharm Bull ; 44(11): 1635-1644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719641

RESUMEN

Cytochrome P450 (P450) and uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) catalyze oxidation and glucuronidation in drug metabolism, respectively. It is believed that P450 and UGT work separately because they perform distinct reactions and exhibit opposite membrane topologies on the endoplasmic reticulum (ER). However, given that some chemicals are sequentially metabolized by P450 and UGT, it is reasonable to consider that the enzymes may interact and work cooperatively. Previous research by our team detected protein-protein interactions between P450 and UGT by analyzing solubilized rat liver microsomes with P450-immobilized affinity column chromatography. Although P450 and UGT have been known to form homo- and hetero-oligomers, this is the first report indicating a P450-UGT association. Based on our previous study, we focused on the P450-UGT interaction and reported lines of evidence that the P450-UGT association is a functional protein-protein interaction that can alter the enzymatic capabilities, including enhancement or suppression of the activities of P450 and UGT, helping UGT to acquire novel regioselectivity, and inhibiting substrate binding to P450. Biochemical and molecular bioscientific approaches suggested that P450 and UGT interact with each other at their internal hydrophobic domains in the ER membrane. Furthermore, several in vivo studies have reported the presence of a functional P450-UGT association under physiological conditions. The P450-UGT interaction is expected to function as a novel post-translational factor for inter-individual differences in the drug-metabolizing enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Retículo Endoplásmico/metabolismo , Glucuronosiltransferasa/metabolismo , Membranas Intracelulares/metabolismo , Animales , Retículo Endoplásmico/enzimología , Humanos , Individualidad , Membranas Intracelulares/enzimología , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
12.
Cell Rep ; 37(4): 109901, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706230

RESUMEN

The Wnt family contains conserved secretory proteins required for developmental patterning and tissue homeostasis. However, how Wnt is targeted to the endoplasmic reticulum (ER) for processing and secretion remains poorly understood. Here, we report that CATP-8/P5A ATPase directs neuronal migration non-cell autonomously in Caenorhabditis elegans by regulating EGL-20/Wnt biogenesis. CATP-8 likely functions as a translocase to translocate nascent EGL-20/Wnt polypeptide into the ER by interacting with the highly hydrophobic core region of EGL-20 signal sequence. Such regulation of Wnt biogenesis by P5A ATPase is common in C. elegans and conserved in human cells. These findings describe the physiological roles of P5A ATPase in neural development and identify Wnt proteins as direct substrates of P5A ATPase for ER translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Movimiento Celular , Neuronas/enzimología , Vía de Señalización Wnt , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Células HEK293 , Humanos
13.
Biosci Rep ; 41(10)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34677582

RESUMEN

The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomics tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum (ER), magnifying normally difficult to detect subsets of the protein of interest. For PAcP, this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wildtype PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.


Asunto(s)
Fosfatasa Ácida/metabolismo , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Retículo Endoplásmico/enzimología , Neoplasias de la Próstata/enzimología , Fosfatasa Ácida/genética , Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Detección Precoz del Cáncer , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Isoenzimas , Masculino , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Conformación Proteica , Relación Estructura-Actividad
14.
Protein Sci ; 30(11): 2346-2353, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34516042

RESUMEN

Phosphatidylserine (PS) synthase 1 (PSS1) of mammalian cells is a multiple membrane-spanning protein of the endoplasmic reticulum (ER) and regulated by inhibition with the product PS. Alanine-scanning mutagenesis of PSS1 has revealed eight amino acid residues as those crucial for its activity and six as those important for its regulation. Furthermore, three missense mutations in the human PSS1 gene, which lead to regulatory dysfunctions of PSS1 and are causative of Lenz-Majewski syndrome, have been identified. In this study, we investigated the membrane topology of PSS1 by means of epitope insertion and immunofluorescence. According to a 10-transmembrane segment model supported by topology analysis of PSS1, all the 8 amino acid residues crucial for the enzyme activity were localized to the luminal side of the lipid bilayer or the lumen of the ER, whereas all the 9 amino acid residues involved in the enzyme regulation were localized to the cytosol or the cytoplasmic side of the lipid bilayer of the ER. This localization of the functional amino acid residues suggests that PSS1 is regulated by inhibition with PS in the cytoplasmic leaflet of the ER membrane and synthesizes PS at the luminal leaflet.


Asunto(s)
Retículo Endoplásmico/enzimología , Membranas Intracelulares/enzimología , Membrana Dobles de Lípidos/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Transferasas de Grupos Nitrogenados/genética
15.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1216-1226, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34363072

RESUMEN

Glycosylation is a common posttranslational modification of proteins, which plays a role in the malignant transformation, growth, progression, chemoresistance, and immune response of tumors. Disulfide isomerase family A3 (PDIA3) specifically acts on newly synthesized glycoproteins to promote the correct folding of sugar chains. Studies have shown that PDIA3 participates in multidrug-resistant gastric cancer (MDR-GC). In this study, we performed western blot analysis and immunohistochemistry to identify PDIA3 expression. Cell proliferation was assessed by CCK-8 assay. Transwell assays were used to detect the migration and invasion abilities of cells. Immunoprecipitation coupled to mass spectrometry (IP-MS) analysis was employed to identify PDIA3-interacting proteins and the associated pathways in MDR-GC cells. Glycoprotein interactions and translocation were detected by immunofluorescence assay. The results showed that PDIA3 knockdown significantly inhibited the proliferation, invasion, and migration abilities of MDR-GC cells. Kyoto Encyclopedia of Genes and Genomes analysis of the IP-MS results showed that PDIA3 was closely associated with focal adhesion pathways in MDR-GC cells. Additionally, important components of focal adhesion pathways, including fibronectin-1 (FN1) and integrin α5 (ITGA5), were identified as pivotal PDIA3-binding glycoproteins. Knockdown of PDIA3 altered the cellular locations of FN1 and ITGA5, leading to abnormal accumulation. In conclusion, our results suggest that knockdown of PDIA3 inhibited the malignant behaviors of MDR-GC cells and influenced the translocation of FN1 and ITGA5.


Asunto(s)
Proliferación Celular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Retículo Endoplásmico/enzimología , Silenciador del Gen , Proteínas de Neoplasias/biosíntesis , Proteína Disulfuro Isomerasas/biosíntesis , Neoplasias Gástricas/enzimología , Línea Celular Tumoral , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteína Disulfuro Isomerasas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
16.
Cells ; 10(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440712

RESUMEN

Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than ß -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during ß-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over ß-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism.


Asunto(s)
Catalasa/metabolismo , Membrana Celular/enzimología , Chlamydomonas reinhardtii/enzimología , Retículo Endoplásmico/enzimología , Gotas Lipídicas/metabolismo , Ácido Palmítico/metabolismo , Peroxisomas/enzimología , Proteínas de Plantas/metabolismo , Catalasa/genética , Membrana Celular/genética , Chlamydomonas reinhardtii/genética , Peróxido de Hidrógeno/metabolismo , Isoenzimas , Microscopía Fluorescente , Oxidación-Reducción , Proteínas de Plantas/genética , Factores de Tiempo
17.
Mol Cell ; 81(19): 3934-3948.e11, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34388369

RESUMEN

The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. Molecular dynamics simulations indicate that this unique architecture generates specificity for SPs based on the length of their hydrophobic segments.


Asunto(s)
Retículo Endoplásmico/enzimología , Péptido Hidrolasas/metabolismo , Señales de Clasificación de Proteína , Serina Endopeptidasas/metabolismo , Células A549 , Dominio Catalítico , Microscopía por Crioelectrón , Células HEK293 , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Proteómica , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Células U937
18.
Int J Biol Macromol ; 186: 237-243, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34242650

RESUMEN

The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.


Asunto(s)
Proteínas Bacterianas/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Retículo Endoplásmico/enzimología , Intestino Delgado/enzimología , Glicoproteínas de Membrana/metabolismo , Complejo Sacarasa-Isomaltasa/deficiencia , alfa-Glucosidasas/metabolismo , Animales , Proteínas Bacterianas/genética , Células COS , Camelus , Errores Innatos del Metabolismo de los Carbohidratos/genética , Hipoxia de la Célula , Chlorocebus aethiops , Retículo Endoplásmico/genética , Estabilidad de Enzimas , Humanos , Glicoproteínas de Membrana/genética , Mutación , Unión Proteica , Pliegue de Proteína , Complejo Sacarasa-Isomaltasa/genética , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/genética
19.
Am J Respir Cell Mol Biol ; 65(6): 615-629, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34192507

RESUMEN

Acute respiratory distress syndrome is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane abundance of the transporter. Here, we investigated how hypercapnia affects the NKA ß-subunit (NKA-ß) in the ER. Exposing murine precision-cut lung slices and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-ß abundance in the ER and at the cell surface. Knockdown of ER mannosidase α class 1B member 1 and ER degradation-enhancing α-mannosidase like protein 1 by siRNA or treatment with the mannosidase α class 1B member 1 inhibitor kifunensine rescued loss of NKA-ß in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α), and treatment with an siRNA against IRE1α prevented the decrease of NKA-ß in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. In addition, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in precision-cut lung slices and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-ß. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with acute respiratory distress syndrome and hypercapnia.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Endorribonucleasas/metabolismo , Hipercapnia/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células A549 , Animales , Humanos , Ratones
20.
Science ; 372(6547): 1215-1219, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112694

RESUMEN

Hedgehog proteins govern crucial developmental steps in animals and drive certain human cancers. Before they can function as signaling molecules, Hedgehog precursor proteins must undergo amino-terminal palmitoylation by Hedgehog acyltransferase (HHAT). We present cryo-electron microscopy structures of human HHAT in complex with its palmitoyl-coenzyme A substrate and of a product complex with a palmitoylated Hedgehog peptide at resolutions of 2.7 and 3.2 angstroms, respectively. The structures reveal how HHAT overcomes the challenges of bringing together substrates that have different physiochemical properties from opposite sides of the endoplasmic reticulum membrane within a membrane-embedded active site for catalysis. These principles are relevant to related enzymes that catalyze the acylation of Wnt and of the appetite-stimulating hormone ghrelin. The structural and mechanistic insights may advance the development of inhibitors for cancer.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Retículo Endoplásmico/enzimología , Proteínas Hedgehog/química , Palmitoil Coenzima A/química , Acilación , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Proteínas Hedgehog/metabolismo , Humanos , Membranas Intracelulares/enzimología , Lipoilación , Modelos Moleculares , Simulación de Dinámica Molecular , Palmitoil Coenzima A/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA