Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
J Neuropathol Exp Neurol ; 81(4): 271-281, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35294549

RESUMEN

Transactivation response DNA-binding protein 43 (TDP-43)-immunoreactive neuronal cytoplasmic inclusions (NCIs) are the histopathological hallmarks of amyotrophic lateral sclerosis (ALS). They are classified as skein-like inclusions, round inclusions, dot-like inclusions, linear wisps, and diffuse punctate cytoplasmic staining (DPCS). We hypothesized that TDP-43-immunoreactive DPCS may form the early-stage pathology of ALS. Hence, we investigated phosphorylated TDP-43 pathology in the upper and lower motor neurons of patients with ALS and control participants. We designated patients whose disease duration was ≤1 year as short-duration ALS (n = 7) and those whose duration equaled 3-5 years as standard-duration ALS (n = 6). DPCS and skein-like inclusions were the most common NCIs in short-duration and standard-duration ALS, respectively. The density of DPCS was significantly higher in short-duration ALS than that in standard-duration ALS and was inversely correlated with disease duration. DPCS was not ubiquitinated and disappeared after proteinase K treatment, suggesting that it was not aggregated. Immunoelectron microscopy revealed that DPCS corresponded to nonfibrillar TDP-43 localized to the ribosomes of the rough endoplasmic reticulum (ER). These findings suggest that nonfibrillar TDP-43 accumulation in the rough ER is the earliest TDP-43 pathology in ALS, which may be helpful in developing future TDP-43 breakdown strategies for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Retículo Endoplásmico Rugoso , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Humanos , Cuerpos de Inclusión/patología , Neuronas Motoras/patología
2.
Ultrastruct Pathol ; 45(6): 414-420, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34538206

RESUMEN

Vascular Ehlers-Danlos Syndrome (vEDS) and Osteogenesis Imperfecta (OI) are two forms of connective tissue disorders. Previously, transmission electron microscopy of skin biopsies was routinely performed on all patients who were clinically suspected to have vEDS. At present, molecular genetics using genomic DNA extracted from a blood sample is the first line investigation for these patients. However, when variants of uncertain clinical significance are identified on genetic testing and individuals do not have the classical features of OI or vEDS, additional phenotypic information obtained from a skin biopsy can be valuable for contributing to the evidence for re-classifying pathogenicity of variants.We present a cohort of six patients with molecularly confirmed vEDS and one patient with a severe form of OI, who each had expanded (or dilated), protein-filled, rough endoplasmic reticulum identified on transmission electron microscopy. The patients were identified through retrospective screening of medical records, and biopsies were taken between 1999-2016. We discuss the potential role for assessing rough endoplasmic reticulum expansion as a useful tool to allow further phenotyping of these individuals.


Asunto(s)
Síndrome de Ehlers-Danlos , Osteogénesis Imperfecta , Colágeno Tipo III , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Retículo Endoplásmico Rugoso , Humanos , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Estudios Retrospectivos
3.
Intern Med ; 60(19): 3129-3136, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33840699

RESUMEN

Tubulointerstitial nephritis (TIN) with IgM-positive plasma cells (IgMPC-TIN) is an autoimmune kidney disease characterized by IgM/CD138-double-positive plasma cell infiltration in the tubulointerstitium. A 50-year-old man developed IgMPC-TIN and presented with crystalline inclusions in the rough endoplasmic reticulum. Intracellular crystal formation is a rare finding in paraprotein-related kidney diseases, but this case showed no pathogenic monoclonal immunoglobulin. Prednisolone (PSL, 30 mg) improved the TIN, but PSL tapering resulted in the recurrence of TIN. Combination therapy with 15 mg PSL and 150 mg mizoribine ultimately stabilized TIN. This case offers original evidence concerning the pathophysiology and treatment strategy of IgMPC-TIN.


Asunto(s)
Nefritis Intersticial , Células Plasmáticas , Retículo Endoplásmico Rugoso , Glucocorticoides , Humanos , Inmunoglobulina M , Masculino , Persona de Mediana Edad
4.
J Biol Chem ; 296: 100453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33631195

RESUMEN

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Asunto(s)
Colágeno Tipo I/metabolismo , Colágeno Tipo V/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo V/genética , Retículo Endoplásmico Rugoso/metabolismo , Hidroxilación , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procolágeno-Prolina Dioxigenasa/genética , Conformación Proteica , Procesamiento Proteico-Postraduccional/genética
5.
Cell Microbiol ; 23(5): e13318, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583106

RESUMEN

Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.


Asunto(s)
Dictyostelium/fisiología , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas/metabolismo , Legionella pneumophila/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/microbiología , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Dictyostelium/ultraestructura , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico Rugoso/microbiología , Retículo Endoplásmico Rugoso/fisiología , GTP Fosfohidrolasas/genética , Homeostasis , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Movimiento , Muramidasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Protozoarias/genética , Vacuolas/fisiología
6.
Viruses ; 13(2)2021 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572517

RESUMEN

West Nile virus (WNV) nonstructural protein 3 (NS3) harbors the viral triphosphatase and helicase for viral RNA synthesis and, together with NS2B, constitutes the protease responsible for polyprotein processing. NS3 is a soluble protein, but it is localized to specialized compartments at the rough endoplasmic reticulum (RER), where its enzymatic functions are essential for virus replication. However, the mechanistic details behind the recruitment of NS3 from the cytoplasm to the RER have not yet been fully elucidated. In this study, we employed immunofluorescence and biochemical assays to demonstrate that NS3, when expressed individually and when cleaved from the viral polyprotein, is localized exclusively to the cytoplasm. Furthermore, NS3 appeared to be peripherally recruited to the RER and proteolytically active when NS2B was provided in trans. Thus, we provide evidence for a potential additional role for NS2B in not only serving as the cofactor for the NS3 protease, but also in recruiting NS3 from the cytoplasm to the RER for proper enzymatic activity. Results from our study suggest that targeting the interaction between NS2B and NS3 in disrupting the NS3 ER localization may be an attractive avenue for antiviral drug discovery.


Asunto(s)
Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/fisiología , Citoplasma/virología , Retículo Endoplásmico Rugoso/virología , Humanos , Transporte de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Virus del Nilo Occidental/enzimología , Virus del Nilo Occidental/genética
7.
J Med Genet ; 58(3): 213-216, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32332102

RESUMEN

Newly synthesised glycoproteins enter the rough endoplasmic reticulum through a translocation pore. The translocon associated protein (TRAP) complex is located close to the pore. In a patient with a homozygous start codon variant in TRAPγ (SSR3), absence of TRAPγ causes disruption of the TRAP complex, impairs protein translocation into the endoplasmic reticulum and affects transport, for example, into the brush-border membrane. Furthermore, we observed an unbalanced non-occupancy of N-glycosylation sites. The major clinical features are intrauterine growth retardation, facial dysmorphism, congenital diarrhoea, failure to thrive, pulmonary disease and severe psychomotor disability.


Asunto(s)
Retículo Endoplásmico Rugoso/genética , Retardo del Crecimiento Fetal/genética , Glicoproteínas/genética , Fosfatasa Ácida Tartratorresistente/genética , Niño , Preescolar , Diarrea/genética , Diarrea/patología , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Femenino , Retardo del Crecimiento Fetal/patología , Glicoproteínas/biosíntesis , Glicosilación , Humanos , Lactante , Recién Nacido , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología , Masculino , Trastornos Psicomotores/genética , Trastornos Psicomotores/patología , Fosfatasa Ácida Tartratorresistente/deficiencia
8.
Microsc Res Tech ; 84(2): 246-252, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32893922

RESUMEN

Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) is a native generalist predator which attacks and kills its prey by first inserting its stylet into the prey's body and then injecting saliva into it. Here, we describe the histology and ultrastructure of its salivary glands. The study showed that the salivary glands were made up of pairs of principal and tubular accessory salivary glands. The principal salivary glands were bilobed and consisted of a smaller anterior lobe and a larger elongated posterior lobe. The ducts of the principal and accessory salivary glands were located in a narrow region between the anterior and posterior lobe known as the hilum. The principal salivary gland was lined with a single-layered epithelium. The cells cytoplasm was enriched with rough endoplasmic reticulum and secretory, and the nucleus showed a higher level of uncondensed chromatin. The basal region of the cell had plasma membrane infoldings. The cytoplasm of the accessory gland was rich in rough endoplasmic reticulum and many large cavities. The ducts of the principal salivary gland were made up of a single layer of flattened cells which had a thin cuticle lining the apical portion. Variation in the lumen content of the different lobes, which made up the principal gland suggested that their chemical products also varied. These results indicate that these two salivary glands produce the proteins found in the saliva.


Asunto(s)
Heterópteros/anatomía & histología , Heterópteros/ultraestructura , Glándulas Salivales/anatomía & histología , Glándulas Salivales/ultraestructura , Animales , Retículo Endoplásmico Rugoso , Heterópteros/citología , Conducta Predatoria , Saliva/química , Glándulas Salivales/citología , Proteínas y Péptidos Salivales
9.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32888429

RESUMEN

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Cuerpos de Nissl/metabolismo , ARN Mensajero/metabolismo , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Relojes Circadianos/genética , Colon/citología , Colon/metabolismo , Retículo Endoplásmico Rugoso/genética , Retículo Endoplásmico Rugoso/metabolismo , Retículo Endoplásmico Rugoso/ultraestructura , Células Epiteliales/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Íleon/citología , Íleon/metabolismo , Inflamación/genética , Inflamación/metabolismo , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Cuerpos de Nissl/genética , Cuerpos de Nissl/ultraestructura , ARN Mensajero/genética , RNA-Seq , Ribosomas/metabolismo , Ribosomas/ultraestructura , Células del Estroma/metabolismo
10.
J Appl Toxicol ; 40(12): 1636-1646, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32608070

RESUMEN

Concerns have been raised over the safety and health of industrial workers exposed to indium oxide nanoparticles (IO-NPs) when working. IO-NPs were previously shown in vitro and in vivo to be cytotoxic, but the mechanism of pathogenesis was unclear. In this study, the effects of IO-NPs on lung cells associated with respiratory and immune barriers and the toxic effects of intercellular cascades were studied. Here IO-NPs had acute toxicity to Wistar rats over a time course (5 days post-intratracheal instillation). Following treatment epithelial cells (16HBE) or macrophages (RAW264.7) with IO-NPs or IO fine particles (IO-FPs), the damage of 16HBE cells caused by IO-NPs was serious, mainly in the mitochondrial and rough endoplasmic reticulum. The lactate dehydrogenase level also showed that cytotoxicity in vitro was more serious for IO-NPs compared with IO-FPs. The level of In3+ (examined by inductively coupled plasma mass spectrometry) in 16HBE cells was 10 times higher than that in RAW cells. In3+ , releasing from IO-NPs absorbed by 16HBE cells, could not only significantly inhibit the phagocytosis and migration of macrophages (P < .0001), but also stimulate RAW cells to secrete high levels of inflammatory cytokines. IO-NPs can directly damage pulmonary epithelial cells. The In3+ released by epithelial cells affect the phagocytosis and migration of macrophages, which may be a new point for the decrease in the clearance of alveolar surfactants and the development of IO-related pulmonary alveolar proteinosis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Indio/toxicidad , Macrófagos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Proteinosis Alveolar Pulmonar/inducido químicamente , Alveolos Pulmonares/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Retículo Endoplásmico Rugoso/efectos de los fármacos , Retículo Endoplásmico Rugoso/metabolismo , Retículo Endoplásmico Rugoso/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/ultraestructura , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fagocitosis/efectos de los fármacos , Proteinosis Alveolar Pulmonar/metabolismo , Proteinosis Alveolar Pulmonar/patología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/ultraestructura , Células RAW 264.7 , Ratas Wistar , Medición de Riesgo
11.
J Cell Sci ; 133(3)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019826

RESUMEN

The endoplasmic reticulum (ER) translocon complex is the main gate into the secretory pathway, facilitating the translocation of nascent peptides into the ER lumen or their integration into the lipid membrane. Protein biogenesis in the ER involves additional processes, many of them occurring co-translationally while the nascent protein resides at the translocon complex, including recruitment of ER-targeted ribosome-nascent-chain complexes, glycosylation, signal peptide cleavage, membrane protein topogenesis and folding. To perform such varied functions on a broad range of substrates, the ER translocon complex has different accessory components that associate with it either stably or transiently. Here, we review recent structural and functional insights into this dynamically constituted central hub in the ER and its components. Recent cryo-electron microscopy (EM) studies have dissected the molecular organization of the co-translational ER translocon complex, comprising the Sec61 protein-conducting channel, the translocon-associated protein complex and the oligosaccharyl transferase complex. Complemented by structural characterization of the post-translational import machinery, key molecular principles emerge that distinguish co- and post-translational protein import and biogenesis. Further cryo-EM structures promise to expand our mechanistic understanding of the various biochemical functions involving protein biogenesis and quality control in the ER.


Asunto(s)
Retículo Endoplásmico , Microscopía por Crioelectrón , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Transporte de Proteínas , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo
12.
J Anat ; 236(6): 996-1003, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32056204

RESUMEN

Histopathology can reveal toxicant-induced changes in the structure of a tissue or organ. A prerequisite for histopathological studies is a sound knowledge of the morphology of the anatomical structure in the normal or healthy state. Zebrafish larvae can provide a tool for studies focused on hepatotoxicity at early stages of development; therefore, the fine structure of the organ should be well characterised. To date, liver structure at 72 and 120 hr post-fertilisation (hpf) has not been reported in detail and this study aimed to fill this scientific gap. A stereological approach allowed for quantitative description of the liver and revealed ultrastructural alterations occurring with time of development. These included a significant increase in the absolute volume of hepatocytes, mitochondria and rough endoplasmic reticulum (rER) during the period of study. The surface area of rER, and of outer and inner mitochondrial membranes also increased. There was no change in the absolute volume of the nuclei. This study provides a quantitative spatial and temporal framework for future research aiming to detect early developmental changes in the liver.


Asunto(s)
Retículo Endoplásmico Rugoso/ultraestructura , Hepatocitos/ultraestructura , Mitocondrias/ultraestructura , Animales , Microscopía Electrónica de Transmisión , Pez Cebra
13.
Med Mol Morphol ; 53(2): 86-93, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31559505

RESUMEN

Fibroblasts and myofibroblasts have been known to be present in both ruptured and intact human anterior cruciate ligament (ACL), and although their relevant histology and immunochemistry have been studied in the past, ultrastructural features of these cells are largely lacking. Therefore, we aim to characterise the ultrastructural details of these cells with the help of transmission electron microscopy (TEM) and to study the changes and their significance with duration of injury. Samples from 60 ruptured human ACL undergoing surgery were obtained and categorised according to duration of injury and observed under TEM with main focus on the following ultrastructural features: cellular morphology, presence of rough endoplasmic reticulum, Golgi apparatus, lamina, myofilaments, and presence of myofibroblasts. These features were further correlated with the duration of injury and association, if any, determined using appropriate statistical analysis. A total of 54 male and 6 female patients with mean duration of the injury of 23.01 ± 26.09 weeks (2-108 weeks) were included in the study and categorised into five groups based on duration of injury as follows: I (< 6 weeks), II (7-12 weeks), III (13-20 weeks), IV (21-50 weeks) and V (> 50 weeks). There was a significant association between the above-mentioned ultrastructural features and the duration of injury (p < 0.05) except for the presence of ovoid fibroblast cells (p = 0.53). Furthermore, number of myofibroblasts and cells with Golgi apparatus and rough endoplasmic reticulum was seen to peak at 13-20 weeks following injury. We describe ultrastructural features of fibroblast of different morphology along with myofibroblasts in the ligaments following injury, the changes in which might have a potential bearing on ligament healing.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/patología , Ligamento Cruzado Anterior/ultraestructura , Tibia/ultraestructura , Adolescente , Adulto , Ligamento Cruzado Anterior/citología , Ligamento Cruzado Anterior/patología , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Artroscopía , Retículo Endoplásmico Rugoso/ultraestructura , Femenino , Aparato de Golgi/ultraestructura , Humanos , Masculino , Microscopía Electrónica de Transmisión , Miofibroblastos/citología , Miofibroblastos/ultraestructura , Estudios Prospectivos , Tibia/citología , Tibia/patología , Tibia/cirugía , Factores de Tiempo , Adulto Joven
14.
Histochem Cell Biol ; 153(2): 89-99, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31720797

RESUMEN

Autophagy is a degradative cellular process that can be both non-selective and selective and begins with the formation of a unique smooth double-membrane phagophore which wraps around a portion of the cytoplasm. Excess and damaged organelles and cytoplasmic protein aggregates are degraded by selective autophagy. Previously, we reported that in fed HepG2 cells, cytoplasmic aggregates of EDEM1 and surplus fibrinogen Aα-γ assembly intermediates are targets of selective autophagy receptors and become degraded by a selective autophagy called aggrephagy. Here, we show by multiple confocal immunofluorescence and colocalization panels the codistribution of cytoplasmic protein aggregates with the selective autophagy receptors p62/SQSTM1 and NBR1 and with the phagophore marker LC3, and that phagophores induced by vinblastine treatment contain complexes of protein aggregates and selective autophagy receptors. By combined serial ultrathin section analysis and immunoelectron microscopy, we found that in fed HepG2 cells, a basically ribosome-free subdomain of rough endoplasmic reticulum (RER) cisternae forms a cradle that engulfs the cytoplasmic protein aggregates. This RER subdomain appears structurally different from omegasomes formed by the RER, which were suggested to provide a membrane platform from which the phagophore is derived in starvation-induced autophagy. Taken together, our observations provide further evidence for the importance of RER subdomains as a site and membrane source for phagophore formation and show their involvement in selective autophagy.


Asunto(s)
Autofagia , Proteínas Portadoras/química , Citosol/química , Retículo Endoplásmico Rugoso/química , Agregado de Proteínas , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Células Hep G2 , Humanos
15.
Cell Mol Gastroenterol Hepatol ; 8(4): 549-560, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31330316

RESUMEN

BACKGROUND: Paneth cells are professional secretory cells found within the small intestinal crypt epithelium. Although their role as part of the innate immune complex providing antimicrobial secretory products is well-known, the mechanisms that control secretory capacity are not well-understood. MIST1 is a scaling factor that is thought to control secretory capacity of exocrine cells. METHODS: Mist1+/+ and Mist1-/- mice were used to evaluate the function of MIST1 in small intestinal Paneth cells. We used histologic and immunofluorescence staining to evaluate small intestinal tissue for proliferation and lineage allocation. Total RNA was isolated to evaluate gene expression. Enteroid culture was used to evaluate the impact of the absence of MIST1 expression on intestinal stem cell function. RESULTS: Absence of MIST1 resulted in increased numbers of Paneth cells exhibiting an intermediate cell phenotype but otherwise did not alter overall epithelial cell lineage allocation. Muc2 and lysozyme staining confirmed the presence of intermediate cells at the crypt base of Mist1-/- mice. These changes were not associated with changes in mRNA expression of transcription factors associated with lineage allocation, and they were not abrogated by inhibition of Notch signaling. However, the absence of MIST1 expression was associated with alterations in Paneth cell morphology including decreased granule size and distended rough endoplasmic reticulum. Absence of MIST1 was associated with increased budding of enteroid cultures; however, there was no evidence of increased intestinal stem cell numbers in vivo. CONCLUSIONS: MIST1 plays an important role in organization of the Paneth cell secretory apparatus and managing endoplasmic reticulum stress. This role occurs downstream of Paneth cell lineage allocation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células de Paneth/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Diferenciación Celular/fisiología , División Celular/fisiología , Linaje de la Célula , Estrés del Retículo Endoplásmico , Retículo Endoplásmico Rugoso/fisiología , Epitelio/metabolismo , Femenino , Mucosa Intestinal/metabolismo , Intestino Delgado/fisiología , Intestinos/fisiología , Ratones , Ratones Noqueados , Células de Paneth/fisiología , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Transcriptoma
16.
Nat Microbiol ; 4(9): 1465-1474, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31182796

RESUMEN

Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans1,2. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host3-6. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)7,8 and has a genomic repertoire similar to that of rickettsial parasites9,10, but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host's internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations11-13. This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan's nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter.


Asunto(s)
Bacterias/metabolismo , Placozoa/microbiología , Simbiosis , Microbiología del Agua , Animales , Bacterias/clasificación , Bacterias/genética , Vías Biosintéticas , Retículo Endoplásmico Rugoso/microbiología , Genoma Bacteriano/genética , Microbiota/genética , Filogenia , Placozoa/citología , Especificidad de la Especie , Vacuolas/microbiología
17.
Toxins (Basel) ; 11(6)2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146400

RESUMEN

Tetrodotoxin (TTX) is an extremely toxic marine compound produced by different genera of bacteria that can reach humans through ingestion mainly of pufferfish but also of other contaminated fish species, marine gastropods or bivalves. TTX blocks voltage-gated sodium channels inhibiting neurotransmission, which in severe cases triggers cardiorespiratory failure. Although TTX has been responsible for many human intoxications limited toxicological data are available. The recent expansion of TTX from Asian to European waters and diversification of TTX-bearing organisms entail an emerging risk of food poisoning. This study is focused on the acute toxicity assessment of TTX administered to mice by oral gavage following macroscopic and microscopic studies. Necropsy revealed that TTX induced stomach swelling 2 h after administration, even though no ultrastructural alterations were further detected. However, transmission electron microscopy images showed an increase of lipid droplets in hepatocytes, swollen mitochondria in spleens, and alterations of rough endoplasmic reticulum in intestines as hallmarks of the cellular damage. These findings suggested that gastrointestinal effects should be considered when evaluating human TTX poisoning.


Asunto(s)
Neurotoxinas/toxicidad , Tetrodotoxina/toxicidad , Administración Oral , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/ultraestructura , Retículo Endoplásmico Rugoso/efectos de los fármacos , Femenino , Intestinos/efectos de los fármacos , Intestinos/patología , Intestinos/ultraestructura , Riñón/efectos de los fármacos , Riñón/patología , Riñón/ultraestructura , Hígado/efectos de los fármacos , Hígado/patología , Hígado/ultraestructura , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Miocardio/patología , Miocardio/ultraestructura , Parálisis/inducido químicamente , Convulsiones/inducido químicamente , Bazo/efectos de los fármacos , Bazo/patología , Bazo/ultraestructura , Estómago/efectos de los fármacos , Estómago/ultraestructura , Pruebas de Toxicidad Aguda
18.
Annu Rev Biophys ; 48: 185-207, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31084584

RESUMEN

Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.


Asunto(s)
Retículo Endoplásmico Rugoso , Imagen Individual de Molécula , Membrana Celular/metabolismo , Transporte de Proteínas
19.
Microscopy (Oxf) ; 68(3): 243-253, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860257

RESUMEN

This study was designed to observe osteoclasts in the rat femora by light and electron microscopic cytochemistry for nicotinamide adenine dinucleotide phosphatase (NADPase) and arylsulfatase, and scanning electron microscopy using osmium maceration to assess the three-dimensional morphology of the Golgi apparatus in osteoclasts. The Golgi apparatus showed strong NADPase activity and surrounded each nucleus with the cis-side facing the nucleus. The Golgi apparatus could be often traced for a length of 20 µm or longer. Observations of serial semi-thin sections confirmed that a single line of reaction products (=lead precipitates) intervened somewhere between any two neighboring nuclei. The nuclear membrane showed strong arylsulfatase activity as well as rough endoplasmic reticulum and lysosomes. Scanning electron microscopy showed that the Golgi apparatus covered the nucleus in a porous sheet-like configuration. Under magnification, the cis-most saccule showed a sieve-like configuration with fine fenestrations. The saccules decreased fenestration numbers toward the trans-side and displayed a more plate-like appearance. The above findings indicate the following. (1) The Golgi saccules of osteoclasts have a three-dimensional structure comparable with that generally seen in other cell types. (2) The Golgi apparatus forms a porous multi-spherical structure around nuclei. Within the structure, in most cases a Golgi stack partitions the room into several compartments in each of which a nucleus fits. (3) The nuclear membrane synthesizes some kinds of proteins more stably and sufficiently than the rough endoplasmic reticulum. Consequently, the Golgi apparatus accumulates around nuclei with the cis-side facing the nucleus.


Asunto(s)
Arilsulfatasas/metabolismo , Aparato de Golgi/ultraestructura , NAD/química , Osteoclastos/ultraestructura , Pirofosfatasas/metabolismo , Animales , Retículo Endoplásmico Rugoso/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Masculino , Microscopía Electrónica de Rastreo , Membrana Nuclear/metabolismo , Osmio/química , Ratas , Ratas Wistar
20.
Endocrinology ; 160(4): 827-839, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30776298

RESUMEN

Brain and behavior of teleosts are highly sexually plastic throughout life, yet the underlying neural mechanisms are largely unknown. On examining brain morphology in the teleost medaka (Oryzias latipes), we identified distinctively large neurons in the magnocellular preoptic nucleus that occurred much more abundantly in females than in males. Examination of sex-reversed medaka showed that the sexually dimorphic abundance of these neurons is dependent on gonadal phenotype, but independent of sex chromosome complement. Most of these neurons in females, but none in males, produced neuropeptide B (Npb), whose expression is known to be estrogen-dependent and associated with female sexual receptivity. In phenotypic analysis, the female-specific Npb neurons had a large euchromatic nucleus with an abundant cytoplasm containing plentiful rough endoplasmic reticulum, exhibited increased overall transcriptional activity, and typically displayed a spontaneous regular firing pattern. These phenotypes, which are probably indicative of cellular activation, were attenuated by ovariectomy and restored by estrogen replacement. Furthermore, the population of Npb-expressing neurons emerged in adult males treated with estrogen, not through frequently occurring neurogenesis in the adult teleost brain, but through the activation of preexisting, quiescent male counterpart neurons. Collectively, our results demonstrate that the morphological, transcriptional, and electrophysiological phenotypes of sexually dimorphic preoptic Npb neurons are highly dependent on estrogen and can be switched between female and male patterns. These properties of the preoptic Npb neurons presumably underpin the neural mechanism for sexual differentiation and plasticity of brain and behavior in teleosts.


Asunto(s)
Encéfalo/metabolismo , Estradiol/farmacología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Conducta Sexual Animal/fisiología , Animales , Encéfalo/efectos de los fármacos , Núcleo Celular/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Femenino , Masculino , Neuronas/efectos de los fármacos , Oryzias , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA