Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.377
Filtrar
1.
Phys Chem Chem Phys ; 26(36): 24090-24108, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39248601

RESUMEN

Inward proton pumping is a relatively new function for microbial rhodopsins, retinal-binding light-driven membrane proteins. So far, it has been demonstrated for two unrelated subgroups of microbial rhodopsins, xenorhodopsins and schizorhodopsins. A number of recent studies suggest unique retinal-protein interactions as being responsible for the reversed direction of proton transport in the latter group. Here, we use solid-state NMR to analyze the retinal chromophore environment and configuration in an inward proton-pumping Antarctic schizorhodopsin. Using fully 13C-labeled retinal, we have assigned chemical shifts for every carbon atom and, assisted by structure modelling and molecular dynamics simulations, made a comparison with well-studied outward proton pumps, identifying locations of the unique protein-chromophore interactions for this functional subclass of microbial rhodopsins. Both the NMR results and molecular dynamics simulations point to the distinctive polar environment in the proximal part of the retinal, which may result in a hydration pattern dramatically different from that of the outward proton pumps, causing the reversed proton transport.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Bombas de Protones , Rodopsinas Microbianas , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Bombas de Protones/química , Bombas de Protones/metabolismo , Retinaldehído/química , Retinaldehído/metabolismo , Espectroscopía de Resonancia Magnética , Protones , Luz
2.
J Chem Inf Model ; 64(18): 7027-7034, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39259968

RESUMEN

Unraveling the reaction pathway of photoinduced reactions poses a great challenge owing to its complexity. Recently, graph theory-based machine learning combined with nonadiabatic molecular dynamics (NAMD) has been applied to obtain the global reaction coordinate of the photoisomerization of azobenzene. However, NAMD simulations are computationally expensive as they require calculating the nonadiabatic coupling vectors at each time step. Here, we showed that ab initio molecular dynamics (AIMD) can be used as an alternative to NAMD by choosing an appropriate initial condition for the simulation. We applied our methodology to determine a plausible global reaction coordinate of retinal photoisomerization, which is essential for human vision. On rank-ordering the internal coordinates, based on the mutual information (MI) between the internal coordinates and the HOMO energy, NAMD and AIMD give a similar trend. Our results demonstrate that our AIMD-based machine learning protocol for retinal is 1.5 times faster than that of NAMD to study reaction coordinates.


Asunto(s)
Aprendizaje Automático , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Isomerismo , Retinaldehído/química , Teoría Cuántica , Compuestos Azo/química
3.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337609

RESUMEN

Age-related macular degeneration (AMD) is a common disease contributing to vision loss in the elderly. All-trans-retinal (atRAL) is a retinoid in the retina, and its abnormal accumulation exhibits toxicity to the retina and promotes oxidative stress-induced photoreceptor degeneration, which plays a crucial role in AMD progression. Crocin is a natural product extracted from saffron, which displays significant antioxidant and anti-inflammatory effects. The present study elucidates the protective effects of crocin on photoreceptor cell damage by atRAL and its potential mechanisms. The results revealed that crocin significantly attenuated cytotoxicity by repressing oxidative stress, mitochondrial injury, and DNA damage in atRAL-loaded photoreceptor cells. Moreover, crocin visibly inhibited DNA damage-induced apoptosis and gasdermin E (GSDME)-mediated pyroptosis in photoreceptor cells after exposure to atRAL. It was also observed that crocin distinctly prevented an increase in Fe2+ levels and lipid peroxidation caused by atRAL via suppressing the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway, thereby ameliorating photoreceptor cell ferroptosis. In short, these findings provide new insights that crocin mitigates atRAL-induced toxicity to photoreceptor cells by inhibiting oxidative stress, apoptosis, pyroptosis, and ferroptosis.


Asunto(s)
Carotenoides , Estrés Oxidativo , Retinaldehído , Animales , Ratones , Carotenoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Retinaldehído/metabolismo , Línea Celular , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ferroptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Sustancias Protectoras/farmacología , Peroxidación de Lípido/efectos de los fármacos , Piroptosis/efectos de los fármacos
4.
Exp Eye Res ; 246: 110018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111651

RESUMEN

NADPH, the primary source of reducing equivalents in the cytosol, is used in vertebrate rod photoreceptor outer segments to reduce the all-trans retinal released from photoactivated visual pigment to all-trans retinol. Light activation of the visual pigment isomerizes the 11-cis retinal chromophore to all-trans, thereby destroying it and necessitating its regeneration. Release and reduction of all-trans retinal are the first steps in the series of reactions that regenerate the visual pigment. Glucose and glutamine can both support the reduction of all-trans retinal to retinol, indicating that the NADPH used in rod photoreceptor outer segments can be generated by the pentose phosphate pathway as well as by mitochondria-linked pathways. We have used the conversion of all-trans retinal to all-trans retinol to examine whether amino acids other than glutamine can also support the generation of NADPH in rod photoreceptors. We have measured this conversion in single isolated mouse rod photoreceptors by imaging the fluorescence of the all-trans retinal and retinol generated after exposure of the cells to light. In agreement with previous work, we find that 5 mM glucose or 0.5 mM glutamine support the conversion of ∼70-80% of all-trans retinal to retinol, corresponding to a reduced NADP fraction of ∼10%. All other amino acids at 0.5 mM concentration support the conversion to a much lesser extent, indicating reduced NADP fractions of 1-2% at most. Taurine was also ineffective at supporting NADPH generation, while formic acid, the toxic metabolite of methanol, suppressed the generation of NADPH by either glucose or glutamine.


Asunto(s)
Glutamina , Ratones Endogámicos C57BL , NADP , Células Fotorreceptoras Retinianas Bastones , Vitamina A , Animales , NADP/metabolismo , Ratones , Glutamina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Vitamina A/metabolismo , Retinaldehído/metabolismo , Glucosa/metabolismo
5.
Nat Commun ; 15(1): 7292, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181878

RESUMEN

Channelrhodopsins are popular optogenetic tools in neuroscience, but remain poorly understood mechanistically. Here we report the cryo-EM structures of channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii and H. catenoides kalium channelrhodopsin (KCR1). We show that ChR2 recruits an endogenous N-retinylidene-PE-like molecule to a previously unidentified lateral retinal binding pocket, exhibiting a reduced light response in HEK293 cells. In contrast, H. catenoides kalium channelrhodopsin (KCR1) binds an endogenous retinal in its canonical retinal binding pocket under identical condition. However, exogenous ATR reduces the photocurrent magnitude of wild type KCR1 and also inhibits its leaky mutant C110T. Our results uncover diverse retinal chromophores with distinct binding patterns for channelrhodopsins in mammalian cells, which may further inspire next generation optogenetics for complex tasks such as cell fate control.


Asunto(s)
Channelrhodopsins , Chlamydomonas reinhardtii , Optogenética , Células HEK293 , Humanos , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/química , Microscopía por Crioelectrón , Retinaldehído/metabolismo , Retinaldehído/química , Unión Proteica , Sitios de Unión , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Luz
6.
Nat Commun ; 15(1): 6950, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138159

RESUMEN

Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.


Asunto(s)
Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Retinaldehído , Rodopsinas Microbianas , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Retinaldehído/metabolismo , Retinaldehído/química , Multimerización de Proteína , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 121(31): e2406814121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042699

RESUMEN

Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.


Asunto(s)
Opsinas , Retinaldehído , Animales , Retinaldehído/metabolismo , Retinaldehído/química , Retinaldehído/análogos & derivados , Opsinas/metabolismo , Opsinas/química , Rodopsina/metabolismo , Rodopsina/química , Arañas/metabolismo , Humanos
8.
Invest Ophthalmol Vis Sci ; 65(8): 9, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958967

RESUMEN

Purpose: Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors. Methods: Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C. Results: We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods. Conclusions: The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.


Asunto(s)
Macaca fascicularis , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Vitamina A , Humanos , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Anciano , Células Fotorreceptoras Retinianas Bastones/fisiología , Anciano de 80 o más Años , Persona de Mediana Edad , Adulto , Vitamina A/metabolismo , Animales , Adulto Joven , Masculino , Retinaldehído/metabolismo , Cadáver , Femenino , Visión Ocular/fisiología , Pigmentos Retinianos/metabolismo
9.
Curr Biol ; 34(15): 3342-3353.e6, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981477

RESUMEN

Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.


Asunto(s)
Oxidorreductasas de Alcohol , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Pez Cebra , Animales , Humanos , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Opsinas/metabolismo , Opsinas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Pigmentos Retinianos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinaldehído/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
10.
Photochem Photobiol Sci ; 23(8): 1435-1443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886314

RESUMEN

Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.


Asunto(s)
Rodopsinas Microbianas , Bases de Schiff , Cromatografía Líquida de Alta Presión , Isomerismo , Luz , Procesos Fotoquímicos , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Bases de Schiff/química , Soluciones
11.
Proc Natl Acad Sci U S A ; 121(26): e2319676121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900801

RESUMEN

The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states. Here, the photoexcited system passes two crossing regions to return to the ground state. The electric dipole moment of the Schiff base in the S[Formula: see text] and S[Formula: see text] state differs strongly and, thus, its measurement allows for assessing the character of the excited-state potential. We apply the method of ultrafast terahertz (THz) Stark spectroscopy to measure electric dipole changes of wild-type BR and a BR D85T mutant upon electronic excitation. A fully reversible transient broadening and spectral shift of electronic absorption is induced by a picosecond THz field of several megavolts/cm and mapped by a 120-fs optical probe pulse. For both BR variants, we derive a moderate electric dipole change of 5 [Formula: see text] 1 Debye, which is markedly smaller than predicted for a neat S[Formula: see text]-character of the excited state. In contrast, S[Formula: see text]-admixture and temporal averaging of excited-state dynamics over the probe pulse duration gives a dipole change in line with experiment. Our results support a picture of electronic and nuclear dynamics governed by the interaction of S[Formula: see text] and S[Formula: see text] states in a 3-state model.


Asunto(s)
Bacteriorodopsinas , Retinaldehído , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Retinaldehído/química , Retinaldehído/metabolismo , Espectroscopía de Terahertz/métodos , Bases de Schiff/química , Halobacterium salinarum/metabolismo , Halobacterium salinarum/química , Isomerismo
12.
Eur J Pharm Sci ; 198: 106784, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705422

RESUMEN

To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (µM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the CO maximum absorbance occurred between 1600∼1800 cm-1 and was greater from ROL than that from RAL and RP, indicating conjugation of R-OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) - total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 µM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 µM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.


Asunto(s)
Retinaldehído , Retinoides , Piel , Tretinoina , Humanos , Tretinoina/metabolismo , Piel/metabolismo , Retinoides/metabolismo , Retinaldehído/metabolismo , Cinética , Ésteres de Retinilo/metabolismo , Vitamina A/análogos & derivados , Vitamina A/metabolismo , Diterpenos/química , Diterpenos/farmacocinética , Espectrometría de Masas , Modelos Biológicos , Epidermis/metabolismo , Absorción Cutánea
13.
Cells ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786093

RESUMEN

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Asunto(s)
Retinoides , Animales , Humanos , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Retinaldehído/metabolismo , Retinoides/metabolismo , Vitamina A/metabolismo
14.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38811164

RESUMEN

The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.


Asunto(s)
Proteínas de Transporte de Ácidos Grasos , Amaurosis Congénita de Leber , Células Fotorreceptoras Retinianas Conos , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Ratones , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Masculino , Femenino , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismo , cis-trans-Isomerasas/deficiencia , Supervivencia Celular , Ratones Noqueados , Diterpenos , Visión Ocular/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Retinaldehído
15.
Sci Rep ; 14(1): 10699, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729974

RESUMEN

In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.


Asunto(s)
Opsinas , Retinaldehído , Espermatozoides , Vitamina A , Masculino , Animales , Espermatozoides/metabolismo , Espermatozoides/fisiología , Ratones , Opsinas/metabolismo , Humanos , Retinaldehído/metabolismo , Vitamina A/metabolismo , Taxia/fisiología , Motilidad Espermática/fisiología , Isomerismo
16.
Proc Natl Acad Sci U S A ; 121(12): e2318996121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478688

RESUMEN

Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.


Asunto(s)
Diterpenos , Retinaldehído , Rodopsina , Isomerismo , Conformación Proteica , Rodopsina/metabolismo , Retinaldehído/química
17.
J Phys Chem B ; 128(12): 2864-2873, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38489248

RESUMEN

Bovine rhodopsin is among the most studied proteins in the rhodopsin family. Its primary activation mechanism is the photoisomerization of 11-cis retinal, triggered by the absorption of a UV-visible photon. Different mutants of the same rhodopsin show different absorption wavelengths due to the influence of the specific amino acid residues forming the cavity in which the retinal chromophore is embedded, and rhodopsins activated at different wavelengths are, for example, exploited in the field of optogenetics. In this letter, we present a procedure for systematically investigating color tuning in models of bovine rhodopsin and a set of its mutants embedded in a membrane bilayer. Vertical excitation energy calculations were carried out with the polarizable embedding potential for describing the environment surrounding the chromophore. We show that polarizable embedding outperformed regular electrostatic embedding in determining both the vertical excitation energies and associated oscillator strengths of the systems studied.


Asunto(s)
Retina , Rodopsina , Animales , Bovinos , Rodopsina/química , Retinaldehído , Fotones
18.
J Phys Chem B ; 128(10): 2389-2397, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38433395

RESUMEN

The properties of a prosthetic group are broadened by interactions with its neighboring residues in proteins. The retinal chromophore in rhodopsins absorbs light, undergoes structural changes, and drives functionally important structural changes in proteins during the photocycle. It is therefore crucial to understand how chromophore-protein interactions regulate the molecular structure and electronic state of chromophores in rhodopsins. Schizorhodopsin is a newly discovered subfamily of rhodopsins found in the genomes of Asgard archaea, which are extant prokaryotes closest to the last common ancestor of eukaryotes and of other microbial species. Here, we report the effects of a hydrogen bond between a retinal Schiff base and its counterion on the twist of the polyene chain and the color of the retinal chromophore. Correlations between spectral features revealed the unexpected fact that the twist of the polyene chain is reduced as the hydrogen bond becomes stronger, suggesting that the twist is caused by tight atomic contacts between the chromophore and nearby residues. In addition, the strength of the hydrogen bond is the primary factor affecting the color-tuning of the retinal chromophore in schizorhodopsins. The findings of this study are valuable for manipulating the molecular structure and electronic state of the chromophore by controlling chromophore-protein interactions.


Asunto(s)
Retinaldehído , Rodopsina , Retinaldehído/química , Estructura Molecular , Polienos , Bases de Schiff/química
19.
Nat Chem Biol ; 20(6): 779-788, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355721

RESUMEN

The retinal light response in animals originates from the photoisomerization of an opsin-coupled 11-cis-retinaldehyde chromophore. This visual chromophore is enzymatically produced through the action of carotenoid cleavage dioxygenases. Vertebrates require two carotenoid cleavage dioxygenases, ß-carotene oxygenase 1 and retinal pigment epithelium 65 (RPE65), to form 11-cis-retinaldehyde from carotenoid substrates, whereas invertebrates such as insects use a single enzyme known as Neither Inactivation Nor Afterpotential B (NinaB). RPE65 and NinaB couple trans-cis isomerization with hydrolysis and oxygenation, respectively, but the mechanistic relationship of their isomerase activities remains unknown. Here we report the structure of NinaB, revealing details of its active site architecture and mode of membrane binding. Structure-guided mutagenesis studies identify a residue cluster deep within the NinaB substrate-binding cleft that controls its isomerization activity. Our data demonstrate that isomerization activity is mediated by distinct active site regions in NinaB and RPE65-an evolutionary convergence that deepens our understanding of visual system diversity.


Asunto(s)
Carotenoides , Carotenoides/metabolismo , Carotenoides/química , Animales , Dominio Catalítico , Retinaldehído/metabolismo , Retinaldehído/química , cis-trans-Isomerasas/metabolismo , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/química , Dioxigenasas/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Humanos , Modelos Moleculares , Evolución Molecular
20.
J Biol Chem ; 300(3): 105781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395306

RESUMEN

A delicate balance between photon absorption for vision and the protection of photoreceptors from light damage is pivotal for ocular health. This equilibrium is governed by the light-absorbing 11-cis-retinylidene chromophore of visual pigments, which, upon bleaching, transforms into all-trans-retinal and undergoes regeneration through an enzymatic pathway, named the visual cycle. Chemical side reactions of retinaldehyde during the recycling process can generate by-products that may result in a depletion of retinoids. In our study, we have clarified the crucial roles played by melanin pigmentation and the retinoid transporter STRA6 in preventing this loss and preserving the integrity of the visual cycle. Our experiments initially confirmed that consecutive green and blue light bleaching of isolated bovine rhodopsin produced 9-cis and 13-cis retinal. The same unusual retinoids were found in the retinas of mice exposed to intense light, with elevated concentrations observed in albino mice. Examining the metabolic fate of these visual cycle byproducts revealed that 9-cis-retinal, but not 13-cis-retinal, was recycled back to all-trans-retinal through an intermediate called isorhodopsin. However, investigations in Stra6 knockout mice unveiled that the generation of these visual cycle byproducts correlated with a light-induced loss of ocular retinoids and visual impairment. Collectively, our findings uncover important novel aspects of visual cycle dynamics, with implications for ocular health and photoreceptor integrity.


Asunto(s)
Proteínas de la Membrana , Retinoides , Animales , Bovinos , Ratones , Diterpenos , Ratones Noqueados , Retina/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo , Visión Ocular , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...