Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 914
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000357

RESUMEN

Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration.


Asunto(s)
Ratas Sprague-Dawley , Degeneración Retiniana , Canales Catiónicos TRPC , Animales , Canales Catiónicos TRPC/metabolismo , Ratas , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retina/metabolismo , Retina/patología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/genética , Modelos Animales de Enfermedad
2.
Biomolecules ; 14(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927058

RESUMEN

The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.


Asunto(s)
Retina , Canales Aniónicos Dependientes del Voltaje , Humanos , Canales Aniónicos Dependientes del Voltaje/metabolismo , Retina/metabolismo , Animales , Estrés Oxidativo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Mitocondrias/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
3.
PLoS One ; 19(6): e0304261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870197

RESUMEN

PURPOSE: Patients with Retinitis Pigmentosa (RP) commonly experience sleep-related issues and are susceptible to stress. Moreover, variatiaons in their vision are often linked to anxiety, stress and drowsiness, indicating that stress and sleep deprivation lead to a decline in vision, and vision improves when both are mitigated. The objective of this study was to investigate the utility of salivary biomarkers as biochemical indicators of anxiety and sleep deprivation in RP patients. METHODS: Seventy-eight RP patients and 34 healthy controls were included in this observational study. Anxiety and sleep-quality questionnaires, a complete ophthalmological exam for severity grading and, the collection of salivary samples from participants were assessed for participants. The activity of biomarkers was estimated by ELISA, and statistical analysis was performed to determine associations between the parameters. Associations between underlying psychological factors, grade of disease severity, and biomarkers activity were also examined. RESULTS: Fifty-two (67%) of patients had a severe RP, and 26 (33%) had a mild-moderate grade. Fifty-eight (58,9%) patients reported severe levels of anxiety and 18 (23.,1%) a high level. Forty-six (59%) patients obtained pathological values in sleep-quality questionaries and 43 (55.1%) in sleepiness. Patients with RP exhibited significant differences in testosterone, cortisol, sTNFαRII, sIgA and melatonin as compared to controls and patients with a mild-moderate and advanced stage of disease showed greater differences. In covariate analysis, patients with a severe anxiety level also showed greater differences in mean salivary cortisol, sTNFαRII and melatonin and male patients showed lower IgA levels than female. CONCLUSIONS: The present findings suggest that salivary biomarkers could be suitable non-invasive biochemical markers for the objective assessment of sleep deprivation and anxiety in RP patients. Further research is needed to characterize the effects of untreated negative psychological states and sleep deprivation on increased variability of vision and disease progression, if any.


Asunto(s)
Biomarcadores , Retinitis Pigmentosa , Saliva , Privación de Sueño , Humanos , Masculino , Femenino , Saliva/química , Saliva/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Retinitis Pigmentosa/metabolismo , Adulto , Persona de Mediana Edad , Privación de Sueño/metabolismo , Estrés Psicológico/metabolismo , Ansiedad/metabolismo , Estudios de Casos y Controles , Hidrocortisona/análisis , Hidrocortisona/metabolismo
4.
Nat Commun ; 15(1): 4316, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773095

RESUMEN

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Asunto(s)
Actinas , Proteínas del Ojo , Retinitis Pigmentosa , Animales , Actinas/metabolismo , Ratones , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Cilios/metabolismo , Humanos , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Membrana Celular/metabolismo
5.
Elife ; 122024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727583

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa , Tiorredoxinas , Animales , Ratones , Alelos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Mutación Missense , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Epitelio Pigmentado de la Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
Stem Cell Res ; 78: 103448, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810502

RESUMEN

Mutations in the eyes shut homolog (EYS) gene are one of the common causes of autosomal recessive retinitis pigmentosa (RP). The lack of suitable animal models hampers progress understanding of the disease mechanism and drug development. This study reported the reprogramming of CD34+ hematopoietic stem/progenitor cells from a patient with compound heterozygous EYS mutations (c.6416 G > A and c.7228 + 1 G > A) into the induced pluripotent stem cell line, MUi038-A, using non-integrating vectors. The MUi038-A demonstrates pluripotency, tri-lineage differentiation potential, and a normal karyotype, offering a valuable model for studying the mechanism of EYS-related RP and new therapeutic development.


Asunto(s)
Proteínas del Ojo , Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Diferenciación Celular , Mutación
7.
Nat Commun ; 15(1): 3562, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670966

RESUMEN

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.


Asunto(s)
Aprendizaje Automático , Metabolómica , Degeneración Retiniana , Retinitis Pigmentosa , Enfermedad de Stargardt , Humanos , Metabolómica/métodos , Diagnóstico Diferencial , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/sangre , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Masculino , Femenino , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/sangre , Retinitis Pigmentosa/metabolismo , Enfermedad de Stargardt/genética , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Biomarcadores/sangre , Metaboloma , Niño , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/sangre , Distrofias de Conos y Bastones/metabolismo , Espectrometría de Masas , Degeneración Macular/sangre , Degeneración Macular/diagnóstico , Degeneración Macular/genética
8.
Elife ; 122024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661530

RESUMEN

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.


Asunto(s)
Variaciones en el Número de Copia de ADN , Retinitis Pigmentosa , Rodopsina , Anciano , Humanos , Masculino , Organoides/metabolismo , Organoides/efectos de los fármacos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
9.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648465

RESUMEN

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Rodopsina , Animales , Rodopsina/metabolismo , Rodopsina/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Ratones , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Cilios/metabolismo , Cilios/patología
10.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38688030

RESUMEN

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Asunto(s)
GMP Cíclico , Fármacos Neuroprotectores , Células Fotorreceptoras Retinianas Bastones , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/metabolismo , Relación Estructura-Actividad
11.
Int J Biol Macromol ; 268(Pt 2): 131671, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641272

RESUMEN

In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and ß-carotene on RP. The results demonstrated that chitosan synergized with ß-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of ß-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of ß-carotene and retinoids in the liver of chitosan and ß-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the ß-carotene group. Chitosan and ß-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1ß, and promoted the up-regulation of Bcl2. Chitosan and ß-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.


Asunto(s)
Quitosano , Metilnitrosourea , Retinitis Pigmentosa , beta Caroteno , Animales , beta Caroteno/farmacología , Quitosano/farmacología , Quitosano/química , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Ratones , Sinergismo Farmacológico , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Retinoides/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
12.
Neurosci Lett ; 830: 137778, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621504

RESUMEN

The endoplasmic reticulum (ER) plays an indispensable role in cellular processes, including maintenance of calcium homeostasis, and protein folding, synthesized and processing. Disruptions in these processes leading to ER stress and the accumulation of misfolded proteins can instigate the unfolded protein response (UPR), culminating in either restoration of balanced proteostasis or apoptosis. A key player in this intricate balance is CLCC1, an ER-resident chloride channel, whose essential role extends to retinal development, regulation of ER stress, and UPR. The importance of CLCC1 is further underscored by its interaction with proteins localized to mitochondria-associated endoplasmic reticulum membranes (MAMs), where it participates in UPR induction by MAM proteins. In previous research, we identified a p.(Asp25Glu) pathogenic CLCC1 variant associated with retinitis pigmentosa (RP) (CLCC1 hg38 NC_000001.11; NM_001048210.3, c.75C > A; UniprotKB Q96S66). In attempt to decipher the impact of this variant function, we leveraged liquid chromatography-mass spectrometry (LC-MS) to identify likely CLCC1-interacting proteins. We discovered that the CLCC1 interactome is substantially composed of proteins that localize to ER compartments and that the Asp25Glu variant results in noticeable loss and gain of specific protein interactors. Intriguingly, the analysis suggests that the CLCC1Asp25Glu mutant protein exhibits a propensity for increased interactions with cytoplasmic proteins compared to its wild-type counterpart. To corroborate our LC-MS data, we further scrutinized two novel CLCC1 interactors, Calnexin and SigmaR1, chaperone proteins that localize to the ER and MAMs. Through microscopy, we demonstrate that CLCC1 co-localizes with both proteins, thereby validating our initial findings. Moreover, our results reveal that CLCC1 co-localizes with SigmaR1 not merely at the ER, but also at MAMs. These findings reinforce the notion of CLCC1 interacting with MAM proteins at the ER-mitochondria interface, setting the stage for further exploration into how these interactions impact ER or mitochondria function and lead to retinal degenerative disease when impaired.


Asunto(s)
Retículo Endoplásmico , Receptores sigma , Receptor Sigma-1 , Humanos , Retículo Endoplásmico/metabolismo , Células HEK293 , Mitocondrias/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Receptores sigma/metabolismo , Receptores sigma/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Respuesta de Proteína Desplegada
13.
Curr Eye Res ; 49(8): 853-861, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38604988

RESUMEN

PURPOSE: Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. METHODS: IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. RESULTS: In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8-10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8-10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. CONCLUSIONS: Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8-10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.


Asunto(s)
Heterocigoto , IMP Deshidrogenasa , Mutación Missense , Linaje , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Femenino , Masculino , IMP Deshidrogenasa/genética , Adulto , Persona de Mediana Edad , Secuenciación del Exoma , Análisis Mutacional de ADN , Genes Dominantes , ADN/genética , Exones/genética
14.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570189

RESUMEN

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Asunto(s)
Amaurosis Congénita de Leber , Retinitis Pigmentosa , Animales , Humanos , Pez Cebra/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Portadoras/metabolismo
15.
Cell Rep Med ; 5(4): 101459, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38518771

RESUMEN

Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Animales , Humanos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia , Células Fotorreceptoras Retinianas Conos/metabolismo , Modelos Animales de Enfermedad
16.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504136

RESUMEN

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Asunto(s)
Retinitis Pigmentosa , Animales , Ratones , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Exones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Terapia Genética , Proteínas del Ojo/genética , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo
17.
Sci Rep ; 14(1): 6940, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521799

RESUMEN

Whole-body physical exercise has been shown to promote retinal structure and function preservation in animal models of retinal degeneration. It is currently unknown how exercise modulates retinal inflammatory responses. In this study, we investigated cytokine alterations associated with retinal neuroprotection induced by voluntary running wheel exercise in a retinal degeneration mouse model of class B1 autosomal dominant retinitis pigmentosa, I307N Rho. I307N Rho mice undergo rod photoreceptor degeneration when exposed to bright light (induced). Our data show, active induced mice exhibited significant preservation of retinal and visual function compared to inactive induced mice after 4 weeks of exercise. Retinal cytokine expression revealed significant reductions of proinflammatory chemokines, keratinocyte-derived chemokine (KC) and interferon gamma inducible protein-10 (IP-10) expression in active groups compared to inactive groups. Through immunofluorescence, we found KC and IP-10 labeling localized to retinal vasculature marker, collagen IV. These data show that whole-body exercise lowers specific retinal cytokine expression associated with retinal vasculature. Future studies should determine whether suppression of inflammatory responses is requisite for exercise-induced retinal protection.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Animales , Degeneración Retiniana/metabolismo , Quimiocina CXCL10 , Rodopsina/metabolismo , Retinitis Pigmentosa/metabolismo , Modelos Animales de Enfermedad
18.
Neurobiol Dis ; 193: 106436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341159

RESUMEN

Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Humanos , Animales , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Degeneración Retiniana/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Retina/metabolismo
19.
Nat Commun ; 15(1): 1451, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365903

RESUMEN

Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Rodopsina , Animales , Ratones , Modelos Animales de Enfermedad , Mutación , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Agregado de Proteínas/genética
20.
Stem Cell Res Ther ; 15(1): 54, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414051

RESUMEN

BACKGROUND: Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS: A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS: Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION: Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.


Asunto(s)
Células Ependimogliales , Retinitis Pigmentosa , Animales , Ratones , Células Ependimogliales/metabolismo , Gliosis/metabolismo , Proteína HMGA2/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Modelos Animales de Enfermedad , ARN/metabolismo , Neuroglía/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...