Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.129
Filtrar
1.
J Bodyw Mov Ther ; 38: 81-85, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38763620

RESUMEN

BACKGROUND: The interest in virtual reality (VR) applications has been on the rise in recent years. However, the impact of VR on postural stability remains unclear. RESEARCH QUESTION: The study has two primary objectives: first, to compare postural stability in a 3D-immersed virtual reality environment (VE) and a real environment (RE), and second, to investigate the effect of positive and negative visual feedback, which are subconditions of VE on postural stability. METHODS: The observational study recruited 20 healthy adults (10 male, 10 female, 22.8 ± 1.8 years) who underwent postural stability assessments in both RE and VE. In VE, participants received visual stimuli in three different ways: without visual feedback, with positive and negative visual feedback that they would consider themselves to be directed towards postural stability outcomes. The RE included two conditions: eyes open (EO) and eyes closed (EC). Postural stability was evaluated with sway velocity, sway area, and perimeter variables obtained from a force platform. RESULTS: All postural stability variables were significantly lower in the RE than in the VE (p < 0.05). There was no significant difference between the VE and EC in terms of sway velocity and sway area (p > 0.05). The visual feedback in the VE did not affect participants' postural stability (p > 0.05). VE may cause an increase in postural sway variables compared to RE and postural requirements may be higher in VE compared to RE. SIGNIFICANCE: This is the first and only study examining the effect of different visual feedback on postural stability in VE.


Asunto(s)
Retroalimentación Sensorial , Equilibrio Postural , Realidad Virtual , Humanos , Equilibrio Postural/fisiología , Femenino , Masculino , Adulto Joven , Retroalimentación Sensorial/fisiología , Adulto , Percepción Visual/fisiología
2.
J Neuroeng Rehabil ; 21(1): 77, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745227

RESUMEN

BACKGROUND: Over 80% of patients with stroke experience finger grasping dysfunction, affecting independence in activities of daily living and quality of life. In routine training, task-oriented training is usually used for functional hand training, which may improve finger grasping performance after stroke, while augmented therapy may lead to a better treatment outcome. As a new technology-supported training, the hand rehabilitation robot provides opportunities to improve the therapeutic effect by increasing the training intensity. However, most hand rehabilitation robots commonly applied in clinics are based on a passive training mode and lack the sensory feedback function of fingers, which is not conducive to patients completing more accurate grasping movements. A force feedback hand rehabilitation robot can compensate for these defects. However, its clinical efficacy in patients with stroke remains unknown. This study aimed to investigate the effectiveness and added value of a force feedback hand rehabilitation robot combined with task-oriented training in stroke patients with hemiplegia. METHODS: In this single-blinded randomised controlled trial, 44 stroke patients with hemiplegia were randomly divided into experimental (n = 22) and control (n = 22) groups. Both groups received 40 min/day of conventional upper limb rehabilitation training. The experimental group received 20 min/day of task-oriented training assisted by a force feedback rehabilitation robot, and the control group received 20 min/day of task-oriented training assisted by therapists. Training was provided for 4 weeks, 5 times/week. The Fugl-Meyer motor function assessment of the hand part (FMA-Hand), Action Research Arm Test (ARAT), grip strength, Modified Ashworth scale (MAS), range of motion (ROM), Brunnstrom recovery stages of the hand (BRS-H), and Barthel index (BI) were used to evaluate the effect of two groups before and after treatment. RESULTS: Intra-group comparison: In both groups, the FMA-Hand, ARAT, grip strength, AROM, BRS-H, and BI scores after 4 weeks of treatment were significantly higher than those before treatment (p < 0.05), whereas there was no significant difference in finger flexor MAS scores before and after treatment (p > 0.05). Inter-group comparison: After 4 weeks of treatment, the experimental group's FMA-Hand total score, ARAT, grip strength, and AROM were significantly better than those of the control group (p < 0.05). However, there were no statistically significant differences in the scores of each sub-item of the FMA-Hand after Bonferroni correction (p > 0.007). In addition, there were no statistically significant differences in MAS, BRS-H, and BI scores (p > 0.05). CONCLUSION: Hand performance improved in patients with stroke after 4 weeks of task-oriented training. The use of a force feedback hand rehabilitation robot to support task-oriented training showed additional value over conventional task-oriented training in stroke patients with hand dysfunction. CLINICAL TRIAL REGISTRATION INFORMATION: NCT05841108.


Asunto(s)
Fuerza de la Mano , Hemiplejía , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Robótica/instrumentación , Fuerza de la Mano/fisiología , Hemiplejía/rehabilitación , Hemiplejía/fisiopatología , Hemiplejía/etiología , Anciano , Método Simple Ciego , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Dedos/fisiología , Dedos/fisiopatología , Mano/fisiopatología , Adulto , Retroalimentación Sensorial/fisiología , Resultado del Tratamiento , Recuperación de la Función
3.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745322

RESUMEN

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Asunto(s)
Retroalimentación Sensorial , Corteza Motora , Espectroscopía Infrarroja Corta , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Retroalimentación Sensorial/fisiología , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Lóbulo Parietal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Desempeño Psicomotor/fisiología , Espectroscopía Infrarroja Corta/métodos
4.
Curr Biol ; 34(10): 2118-2131.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692275

RESUMEN

Humans and other animals can readily learn to compensate for changes in the dynamics of movement. Such changes can result from an injury or changes in the weight of carried objects. These changes in dynamics can lead not only to reduced performance but also to dramatic instabilities. We evaluated the impacts of compensatory changes in control policies in relation to stability and robustness in Eigenmannia virescens, a species of weakly electric fish. We discovered that these fish retune their sensorimotor control system in response to experimentally generated destabilizing dynamics. Specifically, we used an augmented reality system to manipulate sensory feedback during an image stabilization task in which a fish maintained its position within a refuge. The augmented reality system measured the fish's movements in real time. These movements were passed through a high-pass filter and multiplied by a gain factor before being fed back to the refuge motion. We adjusted the gain factor to gradually destabilize the fish's sensorimotor loop. The fish retuned their sensorimotor control system to compensate for the experimentally induced destabilizing dynamics. This retuning was partially maintained when the augmented reality feedback was abruptly removed. The compensatory changes in sensorimotor control improved tracking performance as well as control-theoretic measures of robustness, including reduced sensitivity to disturbances and improved phase margins.


Asunto(s)
Adaptación Fisiológica , Retroalimentación Sensorial , Animales , Retroalimentación Sensorial/fisiología , Gymnotiformes/fisiología , Pez Eléctrico/fisiología
5.
Sci Robot ; 9(90): eadl0085, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809994

RESUMEN

Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.


Asunto(s)
Amputados , Miembros Artificiales , Retroalimentación Sensorial , Mano , Músculo Esquelético , Diseño de Prótesis , Reflejo , Vibración , Humanos , Adulto , Mano/fisiología , Masculino , Femenino , Retroalimentación Sensorial/fisiología , Reflejo/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Electromiografía , Tendones/fisiología , Neuronas Motoras/fisiología , Persona de Mediana Edad , Fuerza de la Mano/fisiología , Adulto Joven
6.
Psychol Sport Exerc ; 73: 102657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719021

RESUMEN

Ratings of perceived exertion (RPE) are frequently used to monitor and prescribe exercise intensity. However, studies examining the shape and robustness of how feelings of effort map onto objective outputs are limited and report inconsistent results. To address this, we investigated whether (1) producing isometric forces according to RPE levels reliably leads to differences in force output, (2) if feelings of effort map linearly or non-linearly onto force output, and (3) if this mapping is robust when visual feedback and social facilitation are present. In a counterbalanced repeated measures design, N = 26 participants performed isometric handgrip contractions prescribed by ten levels of the Borg CR-10 scale. They did so either with or without the availability of concurrent visual feedback regarding their force production, and in the presence or absence of another person performing the same task simultaneously. We found that subjects reliably produced different force outputs that corresponded to each RPE level. Furthermore, concurrent visual feedback led to a linearization of force output, while in the absence of feedback, the produced forces could also be described by quadratic and cubic functions. Exploratory post-hoc analyses revealed that participants perceived moderate RPE levels to be more challenging to produce. By shedding light on the dynamic nature of the mapping between RPE and objective performance, our findings provide helpful insights regarding the utility of RPE scales.


Asunto(s)
Fuerza de la Mano , Contracción Isométrica , Esfuerzo Físico , Humanos , Contracción Isométrica/fisiología , Esfuerzo Físico/fisiología , Masculino , Fuerza de la Mano/fisiología , Femenino , Adulto Joven , Adulto , Percepción/fisiología , Retroalimentación Sensorial/fisiología
7.
Behav Brain Res ; 468: 115024, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705283

RESUMEN

Motor adaptations are responsible for recalibrating actions and facilitating the achievement of goals in a constantly changing environment. Once consolidated, the decay of motor adaptation is a process affected by available sensory information during deadaptation. However, the cortical response to task error feedback during the deadaptation phase has received little attention. Here, we explored changes in brain cortical responses due to feedback of task-related error during deadaptation. Twelve healthy volunteers were recruited for the study. Right hand movement and EEG were recorded during repetitive trials of a hand reaching movement. A visuomotor rotation of 30° was introduced to induce motor adaptation. Volunteers participated in two experimental sessions organized in baseline, adaptation, and deadaptation blocks. In the deadaptation block, the visuomotor rotation was removed, and visual feedback was only provided in one session. Performance was quantified using angle end-point error, averaged speed, and movement onset time. A non-parametric spatiotemporal cluster-level permutation test was used to analyze the EEG recordings. During deadaptation, participants experienced a greater error reduction when feedback of the cursor was provided. The EEG responses showed larger activity in the left centro-frontal parietal areas during the deadaptation block when participants received feedback, as opposed to when they did not receive feedback. Centrally distributed clusters were found for the adaptation and deadaptation blocks in the absence of visual feedback. The results suggest that visual feedback of the task-related error activates cortical areas related to performance monitoring, depending on the accessible sensory information.


Asunto(s)
Adaptación Fisiológica , Electroencefalografía , Retroalimentación Sensorial , Desempeño Psicomotor , Humanos , Masculino , Femenino , Adulto , Desempeño Psicomotor/fisiología , Adaptación Fisiológica/fisiología , Adulto Joven , Retroalimentación Sensorial/fisiología , Corteza Cerebral/fisiología , Mano/fisiología , Movimiento/fisiología , Actividad Motora/fisiología
8.
J Neurophysiol ; 131(6): 1200-1212, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38718415

RESUMEN

Localizing one's body parts is important for movement control and motor learning. Recent studies have shown that the precision with which people localize their hand places constraints on motor adaptation. Although these studies have assumed that hand localization remains equally precise across learning, we show that precision decreases rapidly during early motor learning. In three experiments, healthy young participants (n = 92) repeatedly adapted to a 45° visuomotor rotation for a cycle of two to four reaches, followed by a cycle of two to four reaches with veridical feedback. Participants either used an aiming strategy that fully compensated for the rotation (experiment 1), or always aimed directly at the target, so that adaptation was implicit (experiment 2). We omitted visual feedback for the last reach of each cycle, after which participants localized their unseen hand. We observed an increase in the variability of angular localization errors when subjects used a strategy to counter the visuomotor rotation (experiment 1). This decrease in precision was less pronounced in the absence of reaiming (experiment 2), and when subjects knew that they would have to localize their hand on the upcoming trial, and could thus focus on hand position (experiment 3). We propose that strategic reaiming decreases the precision of perceived hand position, possibly due to attention to vision rather than proprioception. We discuss how these dynamics in precision during early motor learning could impact on motor control and shape the interplay between implicit and strategy-based motor adaptation.NEW & NOTEWORTHY Recent studies indicate that the precision with which people localize their hand limits implicit visuomotor learning. We found that localization precision is not static, but decreases early during learning. This decrease is pronounced when people apply a reaiming strategy to compensate for a visuomotor perturbation and is partly resistant to allocation of attention to the hand. We propose that these dynamics in position sense during learning may influence how implicit and strategy-based motor adaption interact.


Asunto(s)
Adaptación Fisiológica , Mano , Desempeño Psicomotor , Humanos , Masculino , Femenino , Adaptación Fisiológica/fisiología , Mano/fisiología , Adulto , Desempeño Psicomotor/fisiología , Adulto Joven , Percepción Visual/fisiología , Retroalimentación Sensorial/fisiología , Aprendizaje/fisiología , Percepción Espacial/fisiología , Actividad Motora/fisiología , Propiocepción/fisiología , Rotación
9.
J Speech Lang Hear Res ; 67(6): 1731-1751, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754028

RESUMEN

PURPOSE: The present study examined whether participants respond to unperturbed parameters while experiencing specific perturbations in auditory feedback. For instance, we aim to determine if speakers adjust voice loudness when only pitch is artificially altered in auditory feedback. This phenomenon is referred to as the "accompanying effect" in the present study. METHOD: Thirty native Mandarin speakers were asked to sustain the vowel /ɛ/ for 3 s while their auditory feedback underwent single shifts in one of the three distinct ways: pitch shift (±100 cents; coded as PT), loudness shift (±6 dB; coded as LD), or first formant (F1) shift (±100 Hz; coded as FM). Participants were instructed to ignore the perturbations in their auditory feedback. Response types were categorized based on pitch, loudness, and F1 for each individual trial, such as Popp_Lopp_Fopp indicating opposing responses in all three domains. RESULTS: The accompanying effect appeared 93% of the time. Bayesian Poisson regression models indicate that opposing responses in all three domains (Popp_Lopp_Fopp) were the most prevalent response type across the conditions (PT, LD, and FM). The more frequently used response types exhibited opposing responses and significantly larger response curves than the less frequently used response types. Following responses became more prevalent only when the perturbed stimuli were perceived as voices from someone else (external references), particularly in the FM condition. In terms of isotropy, loudness and F1 tended to change in the same direction rather than loudness and pitch. CONCLUSION: The presence of the accompanying effect suggests that the motor systems responsible for regulating pitch, loudness, and formants are not entirely independent but rather interconnected to some degree.


Asunto(s)
Teorema de Bayes , Percepción de la Altura Tonal , Humanos , Masculino , Femenino , Adulto Joven , Percepción de la Altura Tonal/fisiología , Adulto , Percepción del Habla/fisiología , Percepción Sonora/fisiología , Retroalimentación Sensorial/fisiología , Voz/fisiología , Estimulación Acústica/métodos , Acústica del Lenguaje
10.
Commun Biol ; 7(1): 598, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762691

RESUMEN

Many songbirds learn to produce songs through vocal practice in early life and continue to sing daily throughout their lifetime. While it is well-known that adult songbirds sing as part of their mating rituals, the functions of singing behavior outside of reproductive contexts remain unclear. Here, we investigated this issue in adult male zebra finches by suppressing their daily singing for two weeks and examining the effects on song performance. We found that singing suppression decreased the pitch, amplitude, and duration of songs, and that those song features substantially recovered through subsequent free singing. These reversible song changes were not dependent on auditory feedback or the age of the birds, contrasting with the adult song plasticity that has been reported previously. These results demonstrate that adult song structure is not stable without daily singing, and suggest that adult songbirds maintain song performance by preventing song changes through physical act of daily singing throughout their life. Such daily singing likely functions as vocal training to maintain the song production system in optimal conditions for song performance in reproductive contexts, similar to how human singers and athletes practice daily to maintain their performance.


Asunto(s)
Retroalimentación Sensorial , Pinzones , Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Pinzones/fisiología , Retroalimentación Sensorial/fisiología , Factores de Edad , Envejecimiento/fisiología , Percepción Auditiva/fisiología
11.
Sensors (Basel) ; 24(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38794060

RESUMEN

This study investigated the immediate effects of auditory feedback training on gait performance and kinematics in 19 healthy young adults, focusing on bilateral changes, despite unilateral training. Baseline and post-training kinematic measurements, as well as the feedback training were performed on a treadmill with a constant velocity. Significant improvements were seen in step length (trained: 590.7 mm to 611.1 mm, 95%CI [7.609, 24.373]; untrained: 591.1 mm to 628.7 mm, 95%CI [10.698, 30.835]), toe clearance (trained: 13.9 mm to 16.5 mm, 95%CI [1.284, 3.503]; untrained: 11.8 mm to 13.7 mm, 95%CI [1.763, 3.612]), ankle dorsiflexion angle at terminal stance (trained: 8.3 deg to 10.5 deg, 95%CI [1.092, 3.319]; untrained: 9.2 deg to 12.0 deg, 95%CI [1.676, 3.573]), hip flexion angular velocity, (trained: -126.5 deg/s to -131.0 deg/s, 95%CI [-9.054, -2.623]; untrained: -130.2 deg/s to -135.3 deg/s, 95%CI [-10.536, -1.675]), ankle angular velocity at terminal stance (trained: -344.7 deg/s to -359.1 deg/s, 95%CI [-47.540, -14.924]; untrained: -340.3 deg/s to -376.9 deg/s, 95%CI [-37.280, -13.166s]), and gastrocnemius EMG activity (trained: 0.60 to 0.66, 95%CI [0.014, 0.258]; untrained: 0.55 to 0.65, 95%CI [0.049, 0.214]). These findings demonstrate the efficacy of auditory feedback training in enhancing key gait parameters, highlighting the bilateral benefits from unilateral training.


Asunto(s)
Marcha , Humanos , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Masculino , Adulto Joven , Femenino , Adulto , Retroalimentación Sensorial/fisiología
12.
Nat Commun ; 15(1): 3093, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600118

RESUMEN

Sensory-motor interactions in the auditory system play an important role in vocal self-monitoring and control. These result from top-down corollary discharges, relaying predictions about vocal timing and acoustics. Recent evidence suggests such signals may be two distinct processes, one suppressing neural activity during vocalization and another enhancing sensitivity to sensory feedback, rather than a single mechanism. Single-neuron recordings have been unable to disambiguate due to overlap of motor signals with sensory inputs. Here, we sought to disentangle these processes in marmoset auditory cortex during production of multi-phrased 'twitter' vocalizations. Temporal responses revealed two timescales of vocal suppression: temporally-precise phasic suppression during phrases and sustained tonic suppression. Both components were present within individual neurons, however, phasic suppression presented broadly regardless of frequency tuning (gating), while tonic was selective for vocal frequencies and feedback (prediction). This suggests that auditory cortex is modulated by concurrent corollary discharges during vocalization, with different computational mechanisms.


Asunto(s)
Corteza Auditiva , Animales , Corteza Auditiva/fisiología , Neuronas/fisiología , Retroalimentación Sensorial/fisiología , Retroalimentación , Callithrix/fisiología , Vocalización Animal/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica
13.
J Neuroeng Rehabil ; 21(1): 65, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678291

RESUMEN

BACKGROUND: Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS: We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS: Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS: We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.


Asunto(s)
Retroalimentación Sensorial , Pie , Percepción del Tacto , Humanos , Masculino , Femenino , Adulto , Retroalimentación Sensorial/fisiología , Pie/fisiología , Percepción del Tacto/fisiología , Adulto Joven , Caminata/fisiología , Vibración , Tacto/fisiología
14.
NeuroRehabilitation ; 54(3): 435-448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607770

RESUMEN

BACKGROUND: Patients with stroke depend on visual information due to balance deficits. Therefore, it is believed that appropriate visual deprivation training could have an impact on improving balance abilities. OBJECTIVE: The purpose of this study was to compare the effects of balance training performed in visual deprivation and feedback conditions on balance in stroke survivors. METHODS: The 39 participants were randomly assigned to either the Visual Deprivation Group (VDG; n = 13), the Visual Feedback Group (VFG; n = 13), or the Control Group (CG; n = 13). The training sessions were conducted five times a week for three weeks. Participants completed the Berg Balance Scale (BBS), Timed Up and Go test (TUG), Four Square Step Test (FSST), and Limit of Stability (LOS) assessments. RESULTS: The VDG showed significant improvements in BBS, FSST, TUG, and LOS. In VFG, significant improvements were observed in BBS and TUG. There were statistically significant differences among the groups in all variables related to balance. CONCLUSION: The results of this study suggest that balance training under visual deprivation is effective in improving static and dynamic balance and gait in patients with stroke. In other words, patients with stroke need to reduce their over-reliance on visual information.


Asunto(s)
Retroalimentación Sensorial , Equilibrio Postural , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Equilibrio Postural/fisiología , Masculino , Femenino , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Retroalimentación Sensorial/fisiología , Anciano , Privación Sensorial/fisiología , Adulto , Resultado del Tratamiento , Terapia por Ejercicio/métodos
15.
PLoS Comput Biol ; 20(4): e1011562, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630803

RESUMEN

The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.


Asunto(s)
Electroencefalografía , Retroalimentación Sensorial , Equilibrio Postural , Humanos , Equilibrio Postural/fisiología , Retroalimentación Sensorial/fisiología , Masculino , Adulto Joven , Adulto , Femenino , Músculo Esquelético/fisiología , Corteza Sensoriomotora/fisiología , Corteza Cerebral/fisiología , Biología Computacional , Electromiografía
16.
J Cogn Neurosci ; 36(6): 1206-1220, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579248

RESUMEN

Given that informative and relevant feedback in the real world is often intertwined with distracting and irrelevant feedback, we asked how the relevancy of visual feedback impacts implicit sensorimotor adaptation. To tackle this question, we presented multiple cursors as visual feedback in a center-out reaching task and varied the task relevance of these cursors. In other words, participants were instructed to hit a target with a specific task-relevant cursor, while ignoring the other cursors. In Experiment 1, we found that reach aftereffects were attenuated by the mere presence of distracting cursors, compared with reach aftereffects in response to a single task-relevant cursor. The degree of attenuation did not depend on the position of the distracting cursors. In Experiment 2, we examined the interaction between task relevance and attention. Participants were asked to adapt to a task-relevant cursor/target pair, while ignoring the task-irrelevant cursor/target pair. Critically, we jittered the location of the relevant and irrelevant target in an uncorrelated manner, allowing us to index attention via how well participants tracked the position of target. We found that participants who were better at tracking the task-relevant target/cursor pair showed greater aftereffects, and interestingly, the same correlation applied to the task-irrelevant target/cursor pair. Together, these results highlight a novel role of task relevancy on modulating implicit adaptation, perhaps by giving greater attention to informative sources of feedback, increasing the saliency of the sensory prediction error.


Asunto(s)
Adaptación Fisiológica , Atención , Retroalimentación Sensorial , Desempeño Psicomotor , Humanos , Masculino , Femenino , Adulto Joven , Desempeño Psicomotor/fisiología , Adulto , Retroalimentación Sensorial/fisiología , Atención/fisiología , Adaptación Fisiológica/fisiología , Percepción Visual/fisiología
17.
Behav Brain Res ; 469: 114973, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38641177

RESUMEN

Left and right-hand exhibit differences in the execution of movements. Particularly, it has been shown that manual goal-directed aiming is more accurate with the right hand than with the left, which has been explained through the shorter time spent by the right hand in the feedback phase (FB). This explanation makes sense for the temporal aspects of the task; however, there is a lack of explanations for the spatial aspects. The present study hypothesizes that the right hand is more associated with the FB, while the left hand is more strongly associated with the pre-programming phase (PP). In addition, the present study aims to investigate differences between hands in functional brain connectivity (FBC). We hypothesize an increase in FBC of the right hand compared to the left hand. Twenty-two participants performed 20 trials of the goal-directed aiming task with both hands. Overall, the results confirm the study's hypotheses. Although the right hand stopped far from the target at the PP, it exhibited a lower final position error than the left hand. These findings imply that during the FB, the right hand compensates for the higher error observed in the PP, using the visual feedback to approach the target more closely than the left hand. Conversely, the left hand displayed a lower error at the PP than the right. Also, the right hand displayed greater FBC within and between brain hemispheres. This heightened connectivity in the right hand might be associated with inhibitory mechanisms between hemispheres.


Asunto(s)
Encéfalo , Electroencefalografía , Lateralidad Funcional , Mano , Desempeño Psicomotor , Humanos , Masculino , Electroencefalografía/métodos , Femenino , Desempeño Psicomotor/fisiología , Mano/fisiología , Adulto Joven , Adulto , Lateralidad Funcional/fisiología , Encéfalo/fisiología , Retroalimentación Sensorial/fisiología
18.
Exp Brain Res ; 242(6): 1439-1453, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652273

RESUMEN

We explored unintentional drifts of finger forces during force production and matching task. Based on earlier studies, we predicted that force matching with the other hand would reduce or stop the force drift in instructed fingers while uninstructed (enslaved) fingers remain unaffected. Twelve young, healthy, right-handed participants performed two types of tasks with both hands (task hand and match hand). The task hand produced constant force at 20% of MVC level with the Index and Ring fingers pressing in parallel on strain gauge force sensors. The Middle finger force wasn't instructed, and its enslaved force was recorded. Visual feedback on the total force by the instructed fingers was either present throughout the trial or only during the first 5 s (no-feedback condition). The other hand matched the perceived force level of the task hand starting at either 4, 8, or 15 s from the trial initiation. No feedback was ever provided for the match hand force. After the visual feedback was removed, the task hand showed a consistent drift to lower magnitudes of total force. Contrary to our prediction, over all conditions, force matching caused a brief acceleration of force drift in the task hand, which then reached a plateau. There was no effect of matching on drifts in enslaved finger force. We interpret the force drifts within the theory of control with spatial referent coordinates as consequences of drifts in the command (referent coordinate) to the antagonist muscles. This command is not adequately incorporated into force perception.


Asunto(s)
Dedos , Desempeño Psicomotor , Humanos , Masculino , Femenino , Desempeño Psicomotor/fisiología , Adulto Joven , Dedos/fisiología , Adulto , Retroalimentación Sensorial/fisiología , Fuerza de la Mano/fisiología , Fenómenos Biomecánicos/fisiología
19.
Exp Brain Res ; 242(6): 1411-1419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613669

RESUMEN

Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.


Asunto(s)
Envejecimiento , Cognición , Retroalimentación Sensorial , Humanos , Femenino , Masculino , Anciano , Adulto , Envejecimiento/fisiología , Adulto Joven , Retroalimentación Sensorial/fisiología , Persona de Mediana Edad , Anciano de 80 o más Años , Cognición/fisiología , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Contracción Muscular/fisiología
20.
Proc Natl Acad Sci U S A ; 121(14): e2319313121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551834

RESUMEN

Optimal feedback control provides an abstract framework describing the architecture of the sensorimotor system without prescribing implementation details such as what coordinate system to use, how feedback is incorporated, or how to accommodate changing task complexity. We investigate how such details are determined by computational and physical constraints by creating a model of the upper limb sensorimotor system in which all connection weights between neurons, feedback, and muscles are unknown. By optimizing these parameters with respect to an objective function, we find that the model exhibits a preference for an intrinsic (joint angle) coordinate representation of inputs and feedback and learns to calculate a weighted feedforward and feedback error. We further show that complex reaches around obstacles can be achieved by augmenting our model with a path-planner based on via points. The path-planner revealed "avoidance" neurons that encode directions to reach around obstacles and "placement" neurons that make fine-tuned adjustments to via point placement. Our results demonstrate the surprising capability of computationally constrained systems and highlight interesting characteristics of the sensorimotor system.


Asunto(s)
Aprendizaje , Músculos , Retroalimentación , Neuronas , Retroalimentación Sensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA