Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587812

RESUMEN

Lentil is one of the most important legumes cultivated in various provinces of Iran. However, there is limited information about the symbiotic rhizobia of lentils in this country. In this study, molecular identification of lentil-nodulating rhizobia was performed based on 16S-23S rRNA intergenic spacer (IGS) and recA, atpD, glnII, and nodC gene sequencing. Using PCR-RFLP analysis of 16S-23S rRNA IGS, a total of 116 rhizobia isolates were classified into 20 groups, leaving seven strains unclustered. Phylogenetic analysis of representative isolates revealed that the rhizobia strains belonged to Rhizobium leguminosarum and Rhizobium laguerreae, and the distribution of the species is partially related to geographical location. Rhizobium leguminosarum was the dominant species in North Khorasan and Zanjan, while R. laguerreae prevailed in Ardabil and East Azerbaijan. The distribution of the species was also influenced by agroecological climates; R. leguminosarum thrived in cold semiarid climates, whereas R. laguerreae adapted to humid continental climates. Both species exhibited equal dominance in the Mediterranean climate, characterized by warm, dry summers and mild, wet winters, in Lorestan and Kohgiluyeh-Boyer Ahmad provinces.


Asunto(s)
ADN Bacteriano , Lens (Planta) , Filogenia , Rhizobium , Lens (Planta)/microbiología , Irán , Rhizobium/genética , Rhizobium/clasificación , Rhizobium/aislamiento & purificación , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Clima , ADN Espaciador Ribosómico/genética , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , ARN Ribosómico 23S/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Simbiosis , Proteínas Bacterianas/genética , Reacción en Cadena de la Polimerasa
2.
Theor Appl Genet ; 135(1): 125-143, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34628514

RESUMEN

KEY MESSAGE: Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.


Asunto(s)
Genes de Plantas , Fijación del Nitrógeno , Rhizobium leguminosarum/fisiología , Trifolium/genética , Variación Genética , Genotipo , Modelos Genéticos , Desarrollo de la Planta/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Trifolium/crecimiento & desarrollo , Trifolium/metabolismo , Trifolium/microbiología
3.
Microbiology (Reading) ; 167(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33829985

RESUMEN

Rhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants. However in nature individual plants are infected by a high diversity of rhizobia symbionts. How this diversity affects productivity within the symbiosis is unclear. Here, we use a powerful statistical approach to assess the impact of diversity within the Rhizobium leguminosarum - clover symbiosis using a biodiversity-ecosystem function framework. Statistically, we found no significant impact of rhizobium diversity. However this relationship was weakly positive - rather than negative - indicating that there is no significant cost to increasing inoculant diversity. Productivity was influenced by the identity of the strains within an inoculant; strains with the highest individual performance showed a significant positive contribution within mixed inoculants. Overall, inoculant effectiveness was best predicted by the individual performance of the best inoculant member, and only weakly predicted by the worst performing member. Collectively, our data suggest that the Rhizobium leguminosarum - clover symbiosis displays a weak diversity-function relationship, but that inoculant performance can be improved through the inclusion of high performing strains. Given the wide environmental dependence of rhizobial inoculant quality, multi-strain inoculants could be highly successful as they increase the likelihood of including a strain well adapted to local conditions across different environments.


Asunto(s)
Medicago/microbiología , Rhizobium leguminosarum/fisiología , Simbiosis , Ecosistema , Interacciones Microbiota-Huesped , Medicago/crecimiento & desarrollo , Medicago/fisiología , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética
4.
Genes (Basel) ; 12(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477547

RESUMEN

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN
5.
Int Microbiol ; 23(4): 607-618, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32495247

RESUMEN

Grass pea (Lathyrus sativus L.) is widely cultivated for food and feed in some developing countries including Ethiopia. However, due to its overexaggerated neuro-lathyrism alkaloid causing paralysis of limbs, it failed to attract attention of the research community and is one of the most neglected orphan crops in the world. But, the crop is considered an insurance crop by resource-poor farmers due to its strong abiotic stress tolerance and ability to produce high yields when all other crops fail due to unfavorable environmental conditions. This study was aimed at screening rhizobial isolates of grass pea and evaluating their symbiotic nitrogen fixation efficiency and tolerance to abiotic stresses. Fifty rhizobial isolates collected from grass pea nodules were isolated, screened, and characterized based on standard microbiological methods. The rhizobial isolates showed diversity in nodulation, symbiotic nitrogen fixation, and nutrient utilization. The 16S rRNA gene sequencing of 14 rhizobial isolates showed that two of them were identified as Rhizobium leguminosarum and the remaining twelve as Rhizobium species. Based on their overall performance, strains AAUGR-9, AAUGR-11, and AAUGR-14 that performed top and identified as Rhizobium species were recommended for field trials. This study screened and identified effective and competitive rhizobial isolates enriched with high nitrogen-fixing and abiotic stress tolerant traits, which contributes much to the application of microbial inoculants as alternative to chemical fertilizers.


Asunto(s)
Lathyrus/microbiología , Fijación del Nitrógeno/fisiología , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Farmacorresistencia Bacteriana/genética , Lathyrus/crecimiento & desarrollo , Lathyrus/metabolismo , Metales Pesados/toxicidad , ARN Ribosómico 16S/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Estrés Fisiológico/fisiología
6.
Microb Genom ; 6(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32176601

RESUMEN

Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.


Asunto(s)
Proteínas Bacterianas/genética , Plásmidos/genética , Rhizobium leguminosarum/genética , Trifolium/microbiología , Secuenciación Completa del Genoma/métodos , Introgresión Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Desequilibrio de Ligamiento , Filogenia , Raíces de Plantas/microbiología , Rhizobium leguminosarum/clasificación , Selección Genética , Simbiosis
7.
FEMS Microbiol Lett ; 365(4)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351606

RESUMEN

Natural habitats containing high amounts of heavy metals provide a valuable source of bacteria adapted to deal with metal toxicity. A functional analysis of the population of legume endosymbiotic bacteria in an ultramafic soil was undertaken by studying a collection of Rhizobium leguminosarum bv viciae (Rlv) isolates obtained using pea as trap plant. One of the isolates, Rlv UPM1137, was selected on the basis of its higher tolerance to nickel and cobalt and presence of inducible mechanisms for such tolerance. A random transposon mutagenesis of Rlv UPM1137 allowed the generation of 14 transposant derivatives with increased nickel sensitivity; five of these transposants were also more sensitive to cobalt. Sequencing of the insertion sites revealed that one of the transposants (D2250) was affected in a gene homologous to the cation diffusion facilitator gene dmeF first identified in the metal-resistant bacterium Cupriavidus metallidurans CH34. The symbiotic performance of D2250 and two other transposants bearing single transposon insertions was unaffected under high-metal conditions, suggesting that, in contrast to previous observations in other Rlv strain, metal tolerance in UPM1137 under symbiotic conditions might be supported by functional redundancy between several mechanisms.


Asunto(s)
Cobalto/metabolismo , Níquel/metabolismo , Rhizobium leguminosarum/metabolismo , Microbiología del Suelo , Fabaceae/microbiología , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Suelo/química , Simbiosis
8.
Syst Appl Microbiol ; 41(2): 122-130, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29310897

RESUMEN

Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S-23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S-23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.


Asunto(s)
Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium/clasificación , Vicia faba/microbiología , Argelia , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Genes Bacterianos , Tipificación de Secuencias Multilocus , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
9.
Antonie Van Leeuwenhoek ; 111(1): 135-153, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28905167

RESUMEN

The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.


Asunto(s)
Variación Genética , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Trifolium/microbiología , Biodiversidad , Genes Bacterianos , Genes Esenciales , Genoma Bacteriano , Genómica/métodos , Tipificación Molecular , Tipificación de Secuencias Multilocus , Fenotipo
10.
Antonie Van Leeuwenhoek ; 110(12): 1729-1744, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28791535

RESUMEN

Trifolium rubens L., commonly known as the red feather clover, is capable of symbiotic interactions with rhizobia. Up to now, no specific symbionts of T. rubens and their symbiotic compatibility with Trifolium spp. have been described. We characterized the genomic diversity of T. rubens symbionts by analyses of plasmid profiles and BOX-PCR. The phylogeny of T. rubens isolates was inferred based on the nucleotide sequences of 16S rRNA and two core genes (atpD, recA). The nodC phylogeny allowed classification of rhizobia nodulating T. rubens as Rhizobium leguminosarum symbiovar trifolii (Rlt). The symbiotic efficiency of the Rlt isolates was determined on four clover species: T. rubens, T. pratense, T. repens and T. resupinatum. We determined that Rlt strains formed mostly inefficient symbiosis with their native host plant T. rubens and weakly effective (sub-optimal) symbiosis with T. repens and T. pratense. The same Rlt strains were fully compatible in the symbiosis with T. resupinatum. T. rubens did not exhibit strict selectivity in regard to the symbionts and rhizobia closely related to Rhizobium grahamii, Rhizobium galegae and Agrobacterium radiobacter, which did not nodulate Trifolium spp., were found amongst T. rubens nodule isolates.


Asunto(s)
Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Trifolium/microbiología , Genes Bacterianos , Variación Genética , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Filogenia , Plásmidos/genética , Rhizobium leguminosarum/aislamiento & purificación
11.
Arch Microbiol ; 199(7): 1011-1021, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28386666

RESUMEN

Rhizobia that nodulate peas comprise a heterogeneous group of bacteria. The aim of this study was to investigate the relationship between phylogeny and electrophoretic and hydroxy fatty acid lipopolysaccharide (LPS) profiles of pea microsymbionts. Based on amplified fragment length polymorphism (AFLP) fingerprinting data, the pea microsymbionts were grouped into two clusters distinguished at 58% similarity level. Based on the concatenated 16S rRNA, recA, and atpD housekeeping gene data, the microsymbionts appeared to be most closely related to Rhizobium leguminosarum biovars viciae and trifolii. Applying cluster analysis to their LPS electrophoretic profiles, the strains were assigned to two major groups with different banding patterns. All hydroxy fatty acids common to R. leguminosarum and R. etli were detected in each examined strain. Differences in the proportions of 3- to ω-1 hydroxy fatty acids allowed us to distinguish two groups of strains. This classification did not overlap with one based on LPS electrophoretic profiles. No clear correlation was apparent between the genetic traits and LPS profiles of the pea nodule isolates.


Asunto(s)
Ácidos Grasos/análisis , Lipopolisacáridos/análisis , Pisum sativum/microbiología , Rhizobium leguminosarum , Nódulos de las Raíces de las Plantas/microbiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Secuencia de Bases , ADN Bacteriano/genética , Proteínas de la Membrana/genética , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Análisis de Secuencia de ADN , Simbiosis
12.
BMC Microbiol ; 16(1): 260, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814683

RESUMEN

BACKGROUND: Evidence based on genomic sequences is extremely important to confirm the phylogenetic relationships within the Rhizobium group. SEMIA3007 was analyzed within the Mesorhizobium groups to define the underlying causes of taxonomic identification. We previously used biochemical tests and phenotypic taxonomic methods to identify bacteria, which can lead to erroneous classification. An improved understanding of bacterial strains such as the Mesorhizobium genus would increase our knowledge of classification and evolution of these species. RESULTS: In this study, we sequenced the complete genome of SEMIA3007 and compared it with five other Mesorhizobium and two Rhizobium genomes. The genomes of isolated SEMIA3007 showed several orthologs with M. huakuii, M. erdmanii and M. loti. We identified SEMIA3007 as a Mesorhizobium by comparing the 16S rRNA gene and the complete genome. CONCLUSION: Our ortholog, 16S rRNA gene and average nucleotide identity values (ANI) analysis all demonstrate SEMIA3007 is not Rhizobium leguminosarum bv. viceae. The results of the phylogenetic analysis clearly show SEMIA3007 is part of the Mesorhizobium group and suggest a reclassification is warranted.


Asunto(s)
Biología Computacional , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Secuencia de Bases , Clasificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Genoma Bacteriano , Mesorhizobium/clasificación , Mesorhizobium/genética , México , Anotación de Secuencia Molecular , ARN Ribosómico 16S/genética , Rhizobium/clasificación , Rhizobium/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Análisis de Secuencia de ADN
13.
Syst Appl Microbiol ; 39(6): 409-17, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27394068

RESUMEN

A total of 212 symbiotic bacteria were isolated from nodules of Vicia ervilia, a traditional crop cultivated in Northern Morocco. The isolates were recovered from 10 different sites, trapped each time with the local cultivar grown in the same field. Four loci were sequenced in order to characterize the isolates, including two housekeeping genes (recA and glnII), one plasmidic symbiotic gene (nodC) and one locus from another plasmid (prL11). In several isolates, two different copies of glnII were detected and sequenced, suggesting a unique duplication event, which has never been reported previously. There was no correlation between the genetic differentiation among cultivars and among bacteria, showing that the evolution of the bacterial population was independent, at least partially, from the host plant. By placing the haplotypes in a wide-ranging phylogenetic reconstruction, it was shown that the diversity detected in Morocco was spread throughout the different clades detected worldwide. The differentiation between areas relied on frequency variations of haplotypes rather than a presence/absence pattern. This finding raises new questions concerning bacterial genetic resource preservation, and confirms the old tenet "everything is everywhere but the environment selects".


Asunto(s)
Técnicas de Tipificación Bacteriana , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Nódulos de las Raíces de las Plantas/microbiología , Vicia/microbiología , Secuencia de Bases , ADN Bacteriano/genética , Genes Esenciales/genética , Variación Genética/genética , Marruecos , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium leguminosarum/aislamiento & purificación , Análisis de Secuencia de ADN , Simbiosis
14.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267929

RESUMEN

A total of 142 rhizobial bacteria were isolated from root nodules of Lens culinaris Medik endemic to Tunisia and they belonged to the species Rhizobium leguminosarum, and for the first time to Ensifer and Mesorhizobium, genera never previously described as microsymbionts of lentil. Phenotypically, our results indicate that L. culinaris Medik strains showed heterogenic responses to the different phenotypic features and they effectively nodulated their original host. Based on the concatenation of the 16S rRNA with relevant housekeeping genes (glnA, recA, dnaK), rhizobia that nodulate lentil belonged almost exclusively to the known R. leguminosarum sv. viciae. Interestingly, R. leguminosarum sv. trifolii, Ensifer numidicus (10 isolates) and Mesorhizobium amorphae (or M. loti) (9 isolates) isolates species, not considered, up to now, as a natural symbiont of lentil are reported. The E. numidicus and M. amorphae (or M. loti) strains induced fixing nodules on Medicago sativa and Cicer arietinum host plants, respectively. Symbiotic gene phylogenies showed that the E. numidicus, new symbiont of lentil, markedly diverged from strains of R. leguminosarum, the usual symbionts of lentil, and converged to the symbiovar meliloti so far described within E. meliloti Indeed, the nodC and nodA genes from the M. amorphae showed more than 99% similarity with respect to those from M. mediterraneum, the common chickpea nodulating species, and would be included in the new infrasubspecific division named M. amorphae symbiovar ciceri, or to M. loti, related to the strains able to effectively nodulate C. arietinum host plant. On the basis of these data, R. leguminosarum sv. trifolii (type strain LBg3 (T)), M. loti or M. amorphae sv. ciceri (type strain LB4 (T)) and E. numidicus (type strain LBi2 (T)) are proposed as new symbionts of L. culinaris Medik.


Asunto(s)
Lens (Planta)/microbiología , Mesorhizobium/aislamiento & purificación , Rhizobiaceae/aislamiento & purificación , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Secuencia de Bases , Cicer/microbiología , ADN Bacteriano/genética , Genes Esenciales/genética , Mesorhizobium/clasificación , Mesorhizobium/genética , Filogenia , ARN Ribosómico 16S/genética , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN , Simbiosis/genética
15.
Syst Appl Microbiol ; 39(3): 203-210, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26924220

RESUMEN

Despite the recognition that Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia species worldwide, there is no available information on rhizobia nodulating native Vicia species in Sweden. We have therefore studied the genetic diversity and phylogeny of root nodule bacteria isolated from V. cracca, V. hirsuta, V. sepium, V. tetrasperma and V. sylvatica growing in different locations in Sweden as well as an isolate each from V. cracca in Tromsø, Norway, and V. multicaulis in Siberia, Russia. Out of 25 isolates sampled from the six Vicia species in 12 different locations, there were 14 different genotypes based on the atpD, recA and nodA gene phylogenies. All isolates were classified into Rhizobium leguminosarum sv. viciae group based on the concatenated atpD and recA phylogeny and the nodA phylogeny.


Asunto(s)
Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Vicia/microbiología , Aciltransferasas/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Variación Genética/genética , Genotipo , Filogenia , Rec A Recombinasas/genética , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN , Suecia , Factores de Transcripción/genética
16.
FEMS Microbiol Lett ; 363(5): fnw024, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26832644

RESUMEN

The phylogenetic diversity of 29 rhizobial strains nodulating Phaseolus vulgaris in Iran was analysed on the basis of their core and symbiotic genes. These strains displayed five 16S rRNA-RFLP patterns and belong to eight ERIC-PCR clusters. The phylogenetic analyses of 16S rRNA, recA and atpD core genes allowed the identification of several strains as Rhizobium sophoriradicis, R. leguminosarum, R. tropici and Pararhizobium giardinii, whereas other strains represented a new phylogenetic lineage related to R. vallis. These strains and those identified as R. sophoriradicis and R. leguminosarum belong to the symbiovar phaseoli carrying the γ nodC allele distributed in P. vulgaris endosymbionts in America, Europe, Africa and Asia. The strain identified as R. tropici belongs to the symbiovar tropici carried by strains of R. tropici, R. leucaenae, R. lusitanum and R. freirei nodulating P. vulgaris in America, Africa and Asia. The strain identified as P. giardinii belongs to the symbiovar giardinii together with the type strain of this species nodulating P. vulgaris in France. It is remarkable that the recently described species R. sophoriradicis is worldwide distributed in P. vulgaris nodules carrying the γ nodC allele of symbiovar phaseoli harboured by rhizobia isolated in the American distribution centers of this legume.


Asunto(s)
Phaseolus/microbiología , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/genética , Irán , Proteínas de la Membrana/genética , N-Acetilglucosaminiltransferasas/genética , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium tropici/clasificación , Rhizobium tropici/crecimiento & desarrollo , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis
17.
Mol Plant Microbe Interact ; 29(2): 143-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26812045

RESUMEN

Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (<0.25 µM). However, at 2.5 µM molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Molibdeno/metabolismo , Fijación del Nitrógeno/fisiología , Rhizobium leguminosarum/clasificación , Sulfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Mutación
18.
Syst Appl Microbiol ; 38(5): 346-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26032249

RESUMEN

Cicer canariense is a threatened endemic legume from the Canary Islands where it can be nodulated by mesorhizobial strains from the symbiovar ciceri, which is the common worldwide endosymbiont of Cicer arietinum linked to the genus Mesorhizobium. However, when C. canariense was cultivated in a soil from mainland Spain, where the symbiovar ciceri is present, only fast-growing rhizobial strains were unexpectedly isolated from its nodules. These strains were classified into the genus Rhizobium by analysis of the recA and atpD genes, and they were phylogenetically related to Rhizobium leguminosarum. The analysis of the nodC gene showed that the isolated strains belonged to the symbiovar trifolii that harbored a nodC allele (ß allele) different to that harbored by other strains from this symbiovar. Nodulation experiments carried out with the lacZ-labeled strain RCCHU01, representative of the ß nodC allele, showed that it induced curling of root hairs, infected them through infection threads, and formed typical indeterminate nodules where nitrogen fixation took place. This represents a case of exceptional performance between the symbiovar trifolii and a legume from the tribe Cicereae that opens up new possibilities and provides new insights into the study of rhizobia-legume symbiosis.


Asunto(s)
Cicer/microbiología , Cicer/fisiología , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Proteínas Bacterianas/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , Filogenia , Nodulación de la Raíz de la Planta , Rec A Recombinasas/genética , Rhizobium leguminosarum/fisiología , Análisis de Secuencia de ADN , Homología de Secuencia , España , Factores de Transcripción/genética
19.
Open Biol ; 5(1): 140133, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25589577

RESUMEN

Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional 'polyphasic taxonomy' that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as 'biovars' within species that are defined by core gene phylogeny.


Asunto(s)
Ecosistema , Especiación Genética , Genoma Bacteriano , Rhizobium leguminosarum/genética , Filogenia , Rhizobium leguminosarum/clasificación
20.
J Basic Microbiol ; 55(4): 462-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25400035

RESUMEN

The aim of this work was to determine the genetic structure of Rhizobium leguminosarum bv. trifolii population isolated from root nodules of Trifolium repens growing in heavy metal contaminated Boleslaw waste-heap area and compare it with that of an unpolluted control Bolestraszyce population. The 684-bp long dinitrogenase reductase (nifH) gene fragments were amplified in a PCR reaction and then sequenced. An analysis of nifH gene amplicons of 21 rhizobial strains from each of the studied populations revealed substantially reduced genotype (h) and nucleotide (π) diversities in the metallicolous Boleslaw population in comparison to the non-metallicolous Bolestraszyce one, and showed a significant genetic differentiation between these populations (F(ST) = 0.159, p = 0.018). Among the strains under investigation, six genotypes (A-F) with 95-99% nifH gene sequence identities were distinguished. Studied T. repens nodule isolates indicated the highest nifH gene sequence similarities (95-100%) with R. leguminosarum bv. trifolii reference strains and on nifH phylogram all these strains formed monophyletic, highly supported clade (100%). The decreased genotype and nucleotide diversities of the waste-heap R. leguminosarum bv. trifolii population, compared to that from the control area and substantial genetic differentiation between populations of nifH gene, is arguably the consequence of the random genetic drift (Tajima's D = 2.042, p = 0.99).


Asunto(s)
Dinitrogenasa Reductasa/genética , Variación Genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Trifolium/microbiología , Instalaciones de Eliminación de Residuos , Flujo Genético , Plomo , Metales Pesados , Polonia , Reacción en Cadena de la Polimerasa , Rhizobium leguminosarum/clasificación , Análisis de Secuencia de ADN , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA