Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 203(7): 4149-4159, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34059946

RESUMEN

A novel acyl-CoA dehydrogenase involved in degradation of the auxin indoleacetate by Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of indoleacetate catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not used. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.


Asunto(s)
Proteínas Bacterianas , Ácidos Indolacéticos , Oxidorreductasas , Rhodocyclaceae , Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Cinética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Rhodocyclaceae/enzimología
2.
J Biol Inorg Chem ; 25(8): 1129-1138, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113038

RESUMEN

Chlorite dismutase is a heme enzyme that catalyzes the conversion of the toxic compound ClO2- (chlorite) to innocuous Cl- and O2. The reaction is a very rare case of enzymatic O-O bond formation, which has sparked the interest to elucidate the reaction mechanism using pre-steady-state kinetics. During stopped-flow experiments, spectroscopic and structural changes of the enzyme were observed in the absence of a substrate in the time range from milliseconds to minutes. These effects are a consequence of illumination with UV-visible light during the stopped-flow experiment. The changes in the UV-visible spectrum in the initial 200 s of the reaction indicate a possible involvement of a ferric superoxide/ferrous oxo or ferric hydroxide intermediate during the photochemical inactivation. Observed EPR spectral changes after 30 min reaction time indicate the loss of the heme and release of iron during the process. During prolonged illumination, the oligomeric state of the enzyme changes from homo-pentameric to monomeric with subsequent protein precipitation. Understanding the effects of UV-visible light illumination induced changes of chlorite dismutase will help us to understand the nature and mechanism of photosensitivity of heme enzymes in general. Furthermore, previously reported stopped-flow data of chlorite dismutase and potentially other heme enzymes will need to be re-evaluated in the context of the photosensitivity. Illumination of recombinantly expressed Azospira oryzae Chlorite dismutase (AoCld) with a high-intensity light source, common in stopped-flow equipment, results in disruption of the bond between FeIII and the axial histidine. This leads to the enzyme losing its heme cofactor and changing its oligomeric state as shown by spectroscopic changes and loss of activity.


Asunto(s)
Hemo/metabolismo , Luz , Oxidorreductasas/metabolismo , Cinética , Oxidorreductasas/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Rhodocyclaceae/enzimología
3.
J Biol Inorg Chem ; 25(4): 609-620, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32246282

RESUMEN

Chlorite dismutase is a unique heme enzyme that catalyzes the conversion of chlorite to chloride and molecular oxygen. The enzyme is highly specific for chlorite but has been known to bind several anionic and neutral ligands to the heme iron. In a pH study, the enzyme changed color from red to green in acetate buffer pH 5.0. The cause of this color change was uncovered using UV-visible and EPR spectroscopy. Chlorite dismutase in the presence of acetate showed a change of the UV-visible spectrum: a redshift and hyperchromicity of the Soret band from 391 to 404 nm and a blueshift of the charge transfer band CT1 from 647 to 626 nm. Equilibrium binding titrations with acetate resulted in a dissociation constant of circa 20 mM at pH 5.0 and 5.8. EPR spectroscopy showed that the acetate bound form of the enzyme remained high spin S = 5/2, however with an apparent change of the rhombicity and line broadening of the spectrum. Mutagenesis of the proximal arginine Arg183 to alanine resulted in the loss of the ability to bind acetate. Acetate was discovered as a novel ligand to chlorite dismutase, with evidence of direct binding to the heme iron. The green color is caused by a blueshift of the CT1 band that is characteristic of the high spin ferric state of the enzyme. Any weak field ligand that binds directly to the heme center may show the red to green color change, as was indeed the case for fluoride.


Asunto(s)
Acetatos/química , Color , Hemoproteínas/química , Oxidorreductasas/química , Acetatos/metabolismo , Sitios de Unión , Hemoproteínas/aislamiento & purificación , Hemoproteínas/metabolismo , Oxidorreductasas/metabolismo , Rhodocyclaceae/enzimología
4.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220846

RESUMEN

The degradation of the xenobiotic phthalic acid esters by microorganisms is initiated by the hydrolysis to the respective alcohols and ortho-phthalate (hereafter, phthalate). In aerobic bacteria and fungi, oxygenases are involved in the conversion of phthalate to protocatechuate, the substrate for ring-cleaving dioxygenases. In contrast, anaerobic bacteria activate phthalate to the extremely unstable phthaloyl-coenzyme A (CoA), which is decarboxylated by oxygen-sensitive UbiD-like phthaloyl-CoA decarboxylase (PCD) to the central benzoyl-CoA intermediate. Here, we demonstrate that the facultatively anaerobic, denitrifying Thauera chlorobenzoica 3CB-1 and Aromatoleum evansii KB740 strains use phthalate as a growth substrate under aerobic and denitrifying conditions. In vitro assays with extracts from cells grown aerobically with phthalate demonstrated the succinyl-CoA-dependent activation of phthalate followed by decarboxylation to benzoyl-CoA. In T. chlorobenzoica 3CB-1, we identified PCD as a highly abundant enzyme in both aerobically and anaerobically grown cells, whereas genes for phthalate dioxygenases are missing in the genome. PCD was highly enriched from aerobically grown T. chlorobenzoica cells and was identified as an identical enzyme produced under denitrifying conditions. These results indicate that the initial steps of aerobic phthalate degradation in denitrifying bacteria are accomplished by the anaerobic enzyme inventory, whereas the benzoyl-CoA oxygenase-dependent pathway is used for further conversion to central intermediates. Such a hybrid pathway requires intracellular oxygen homeostasis at concentrations low enough to prevent PCD inactivation but sufficiently high to supply benzoyl-CoA oxygenase with its cosubstrate.IMPORTANCE Phthalic acid esters (PAEs) are industrially produced on a million-ton scale per year and are predominantly used as plasticizers. They are classified as environmentally relevant xenobiotics with a number of adverse health effects, including endocrine-disrupting activity. Biodegradation by microorganisms is considered the most effective process to eliminate PAEs from the environment. It is usually initiated by the hydrolysis of PAEs to alcohols and o-phthalic acid. Degradation of o-phthalic acid fundamentally differs in aerobic and anaerobic microorganisms; aerobic phthalate degradation heavily depends on dioxygenase-dependent reactions, whereas anaerobic degradation employs the oxygen-sensitive key enzyme phthaloyl-CoA decarboxylase. We demonstrate that aerobic phthalate degradation in facultatively anaerobic bacteria proceeds via a previously unknown hybrid degradation pathway involving oxygen-sensitive and oxygen-dependent key enzymes. Such a strategy is essential for facultatively anaerobic bacteria that frequently switch between oxic and anoxic environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desnitrificación , Ácidos Ftálicos/metabolismo , Rhodocyclaceae/metabolismo , Aerobiosis , Bacterias/metabolismo , Rhodocyclaceae/enzimología , Thauera/enzimología , Thauera/metabolismo
5.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31138631

RESUMEN

Aromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacterium Aromatoleum aromaticum EbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two heme c cofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2ß2γ2 composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αßγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCE The known substrate spectrum of A. aromaticum EbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bencilaminas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Fenetilaminas/metabolismo , Rhodocyclaceae/enzimología , Anaerobiosis , Proteínas Bacterianas/genética , Bencilaminas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Fenetilaminas/química , Rhodocyclaceae/genética , Rhodocyclaceae/crecimiento & desarrollo , Rhodocyclaceae/metabolismo
6.
Environ Microbiol ; 21(2): 800-813, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30680854

RESUMEN

Bile salts are steroid compounds from the digestive tract of vertebrates and enter the environment via defecation. Many aerobic bile-salt degrading bacteria are known but no bacteria that completely degrade bile salts under anoxic conditions have been isolated so far. In this study, the facultatively anaerobic Betaproteobacterium Azoarcus sp. strain Aa7 was isolated that grew with bile salts as sole carbon source under anoxic conditions with nitrate as electron acceptor. Phenotypic and genomic characterization revealed that strain Aa7 used the 2,3-seco pathway for the degradation of bile salts as found in other denitrifying steroid-degrading bacteria such as Sterolibacterium denitrificans. Under oxic conditions strain Aa7 used the 9,10-seco pathway as found in, for example, Pseudomonas stutzeri Chol1. Metabolite analysis during anaerobic growth indicated a reductive dehydroxylation of 7α-hydroxyl bile salts. Deletion of the gene hsh2 Aa7 encoding a 7-hydroxysteroid dehydratase led to strongly impaired growth with cholate and chenodeoxycholate but not with deoxycholate lacking a hydroxyl group at C7. The hsh2 Aa7 deletion mutant degraded cholate and chenodeoxycholate to the corresponding C19 -androstadienediones only while no phenotype change was observed during aerobic degradation of cholate. These results showed that removal of the 7α-hydroxyl group was essential for cleavage of the steroid skeleton under anoxic conditions.


Asunto(s)
Azoarcus/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Hidroxiesteroide Deshidrogenasas/metabolismo , Anaerobiosis , Azoarcus/enzimología , Azoarcus/genética , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/química , Colatos/metabolismo , Desnitrificación , Hidroxiesteroide Deshidrogenasas/genética , Hidroxiesteroides/metabolismo , Rhodocyclaceae/enzimología , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Esteroides/química , Esteroides/metabolismo
7.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29767715

RESUMEN

The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt, under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C23O genotypes could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of site sediments with 13C7-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon sequencing and T-RFLP fingerprinting of C23O genes from SIP gradient fractions revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 13C were identified as members of the genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/microbiología , Rhodocyclaceae/metabolismo , Tolueno/metabolismo , Sedimentos Geológicos/microbiología , Hungría , Marcaje Isotópico , Oxigenasas/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rhodocyclaceae/enzimología , Rhodocyclaceae/genética
8.
Mol Microbiol ; 108(6): 614-626, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29645305

RESUMEN

Xenobiotic phthalates are industrially produced on the annual million ton scale. The oxygen-independent enzymatic reactions involved in anaerobic phthalate degradation have only recently been elucidated. In vitro assays suggested that phthalate is first activated to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report the heterologous production and characterization of the enzyme initiating anaerobic phthalate degradation from 'Aromatoleum aromaticum': a highly specific succinyl-CoA:phthalate CoA transferase (SPT, class III CoA transferase). Phthaloyl-CoA formed by SPT accumulated only to sub-micromolar concentrations due to the extreme lability of the product towards intramolecular substitution with a half-life of around 7 min. Upon addition of excess phthaloyl-CoA decarboxylase (PCD), the combined activity of both enzymes was drastically shifted towards physiologically relevant benzoyl-CoA formation. In conclusion, a massive overproduction of PCD in phthalate-grown cells to concentrations >140 µM was observed that allowed for efficient phthaloyl-CoA conversion at concentrations 250-fold below the apparent Km -value of PCD. The results obtained provide insights into an only recently evolved xenobiotic degradation pathway where a massive cellular overproduction of PCD compensates for the formation of the probably most unstable CoA ester intermediate in biology.


Asunto(s)
Coenzima A/metabolismo , Ácidos Ftálicos/metabolismo , Rhodocyclaceae/enzimología , Xenobióticos/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cinética , Ácidos Ftálicos/química , Filogenia , Rhodocyclaceae/clasificación , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo
9.
Environ Microbiol Rep ; 10(3): 239-244, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29457693

RESUMEN

Nitrous oxide (N2 O) reducing microorganisms may be key in the mitigation of N2 O emissions from managed ecosystems. However, there is still no clear understanding of the physiological and bioenergetic implications of microorganisms possessing either of the two N2 O reductase genes (nosZ), clade I and the more recently described clade II type nosZ. It has been suggested that organisms with nosZ clade II have higher growth yields and a lower affinity constant (Ks ) for N2 O. We compared N2 O reducing communities with different nosZI/nosZII ratios selected in chemostat enrichment cultures, inoculated with activated sludge, fed with N2 O as a sole electron acceptor and growth limiting factor and acetate as electron donor. From the sequencing of the 16S rRNA gene, FISH and quantitative PCR of nosZ and nir genes, we concluded that betaproteobacterial denitrifying organisms dominated the enrichments with members within the family Rhodocyclaceae being highly abundant. When comparing cultures with different nosZI/nosZII ratios, we did not find support for (i) a more energy conserving N2 O respiration pathway in nosZ clade II systems, as reflected in the growth yield per mole of substrate, or (ii) a higher affinity for N2 O, defined by µmax /Ks , in organisms with nosZ clade II.


Asunto(s)
Desnitrificación , Óxido Nitroso/metabolismo , Oxidorreductasas/genética , Rhodocyclaceae/enzimología , Rhodocyclaceae/crecimiento & desarrollo , Ecosistema , Filogenia , ARN Ribosómico 16S/genética , Rhodocyclaceae/genética , Selección Genética , Microbiología del Suelo
10.
J Inorg Biochem ; 173: 28-43, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28482186

RESUMEN

Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O2-independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[2H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH.


Asunto(s)
Isoenzimas/metabolismo , Oxidorreductasas/metabolismo , Anaerobiosis , Dominio Catalítico , Bacterias Gramnegativas/enzimología , Enlace de Hidrógeno , Hidroxilación , Hidroxiesteroides/metabolismo , Isoenzimas/química , Cetosteroides/metabolismo , Cinética , Oxidorreductasas/química , Rhodocyclaceae/enzimología , Especificidad por Sustrato
11.
J Comput Aided Mol Des ; 31(6): 587-602, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550607

RESUMEN

The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, (S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously suggested concomitant transfer of hydride from NADH to carbonyl C atom of the substrate with proton transfer from Tyr to carbonyl O atom. However, additional coupled motion of the next proton in the proton-relay system, between O2' ribose hydroxyl and Tyr154 was observed. The protonation of Lys158 seems not to affect the pKa of Tyr154, as the stable tyrosyl anion was observed only for a neutral Lys158 in the high pH model. The calculated reaction energies and reaction barriers were calibrated by calorimetric and kinetic methods. This allowed an excellent prediction of the reaction enthalpies (R2 = 0.93) and a good prediction of the reaction kinetics (R2 = 0.89). The observed relations were validated in prediction of log K eq obtained for real whole-cell reactor systems that modelled industrial synthesis of S-alcohols.


Asunto(s)
Alcoholes/química , Oxidorreductasas/química , Catálisis , Análisis por Conglomerados , Concentración de Iones de Hidrógeno , Cetonas/química , Cinética , Lisina/química , Simulación del Acoplamiento Molecular , NAD/química , Oxidación-Reducción , Teoría Cuántica , Rhodocyclaceae/enzimología , Estereoisomerismo , Tirosina/química
12.
Environ Microbiol ; 18(9): 3120-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27102732

RESUMEN

The plant hormone auxin (indoleacetate) is anaerobically degraded by the Betaproteobacterium Aromatoleum aromaticum. We report here on a CoA ligase (IaaB) and a CoA-transferase (IaaL) which are encoded in the apparent substrate-induced iaa operon containing genes for indoleacetate degradation. IaaB is a highly specific indoleacetate-CoA ligase which activates indoleacetate to the CoA-thioester immediately after uptake into the cytoplasm. This enzyme only activates indoleacetate and some closely related compounds such as naphthylacetate, phenylacetate and indolepropionate, and is inhibited by high concentrations of substrates, and by the synthetic auxin compound 2,4-dichlorophenoxyacetate, which does not serve as substrate. IaaL is a CoA-transferase recognizing several C4-dicarboxylic acids, such as succinate, phenylsuccinate or benzylsuccinate and their CoA-thioesters, but only few monocarboxylic acids and no C3-dicarboxylic acids such as benzylmalonate. The enzyme shows no stereospecific discrimation of the benzylsuccinate enantiomers. Moreover, benzylsuccinate is regiospecifically activated to 2-benzylsuccinyl-CoA, whereas phenylsuccinate is converted to an equal mixture of both regioisomers (2- and 3-phenylsuccinyl-CoA). The identification of these two enzymes allows us to set up a modified version of the metabolic pathway of anaerobic indoleacetate degradation and to investigate the sequences databases for the occurrence and distribution of this pathway in other microorgansisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzima A Transferasas/metabolismo , Ácidos Indolacéticos/metabolismo , Ligasas/metabolismo , Rhodocyclaceae/enzimología , Succinatos/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Coenzima A Transferasas/genética , Ácidos Dicarboxílicos/metabolismo , Ligasas/genética , Redes y Vías Metabólicas , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo
13.
J Mol Microbiol Biotechnol ; 26(1-3): 45-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26960184

RESUMEN

Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data.


Asunto(s)
Coenzimas/metabolismo , Metaloproteínas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Pteridinas/metabolismo , Alcanos/metabolismo , Anaerobiosis , Bacterias Anaerobias/enzimología , Biodegradación Ambiental , Colesterol/química , Colesterol/metabolismo , Coenzimas/química , Hidroxilación , Metaloproteínas/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Cofactores de Molibdeno , Oxidorreductasas/genética , Pteridinas/química , Rhodocyclaceae/enzimología , Rhodocyclaceae/metabolismo
14.
J Biol Chem ; 291(17): 9190-202, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26940877

RESUMEN

Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 µm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Oxidorreductasas/química , Percloratos/química , Rhodocyclaceae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , ADN Helicasas/genética , ADN Helicasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Percloratos/metabolismo , Rhodocyclaceae/genética
15.
J Mol Microbiol Biotechnol ; 25(5): 327-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488297

RESUMEN

The dehydrogenation of 1-(4-hydroxyphenyl)-ethanol to 4-hydroxyacetophenone represents the second reaction step during anaerobic degradation of p-ethylphenol in the denitrifying bacterium 'Aromatoleum aromaticum' EbN1. Previous proteogenomic studies identified two different proteins (ChnA and EbA309) as possible candidates for catalyzing this reaction [Wöhlbrand et al: J Bacteriol 2008;190:5699-5709]. Physiological-molecular characterization of newly generated unmarked in-frame deletion and complementation mutants allowed defining ChnA (renamed here as Hped) as the enzyme responsible for 1-(4-hydroxyphenyl)-ethanol oxidation. Hped [1-(4-hydroxyphenyl)-ethanol dehydrogenase] belongs to the 'classical' family within the short-chain alcohol dehydrogenase/reductase (SDR) superfamily. Hped was overproduced in Escherichia coli, purified and crystallized. The X-ray structures of the apo- and NAD(+)-soaked form were resolved at 1.5 and 1.1 Å, respectively, and revealed Hped as a typical homotetrameric SDR. Modeling of the substrate 4-hydroxyacetophenone (reductive direction of Hped) into the active site revealed the structural determinants of the strict (R)-specificity of Hped (Phe(187)), contrasting the (S)-specificity of previously reported 1-phenylethanol dehydrogenase (Ped; Tyr(93)) from strain EbN1 [Höffken et al: Biochemistry 2006;45:82-93].


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Rhodocyclaceae/enzimología , Rhodocyclaceae/genética , Acetofenonas/química , Acetofenonas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Fermentación , Simulación del Acoplamiento Molecular/métodos , Mutación , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodocyclaceae/crecimiento & desarrollo , Análisis de Secuencia de Proteína
16.
Arch Microbiol ; 197(9): 1051-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26275558

RESUMEN

The denitrifying bacterium 'Aromatoleum aromaticum' strain EbN1 is one of the best characterized bacteria regarding anaerobic ethylbenzene degradation. EbN1 also degrades various other aromatic and phenolic compounds in the absence of oxygen, one of them being p-ethylphenol. Despite having similar chemical structures, ethylbenzene and p-ethylphenol have been proposed to be metabolized by completely separate pathways. In this study, we established and applied biochemical and molecular biological methods to show the (almost) exclusive presence and specificity of enzymes involved in the respective degradation pathways by recording enzyme activities, complemented by heme staining, immuno- and biotin-blotting analyses. These combined results substantiated the predicted p-ethylphenol degradation pathway. The identified enzymes include a heme c-containing p-ethylphenol-hydroxylase, both an (R)- and an (S)-specific alcohol dehydrogenase as well as a novel biotin-dependent carboxylase. We also establish an activity assay for benzoylacetate-CoA ligases likely being involved in both metabolic pathways.


Asunto(s)
Derivados del Benceno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Fenoles/metabolismo , Rhodocyclaceae/enzimología , Anaerobiosis , Inducción Enzimática , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/genética , Rhodocyclaceae/genética
17.
Appl Microbiol Biotechnol ; 99(12): 5055-69, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25549618

RESUMEN

Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 ß-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ésteres/metabolismo , Cetonas/metabolismo , Oxidorreductasas/metabolismo , Rhodocyclaceae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Desnitrificación , Cetonas/química , Cinética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Rhodocyclaceae/química , Rhodocyclaceae/genética , Estereoisomerismo , Especificidad por Sustrato
18.
J Biol Chem ; 290(2): 1155-69, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25418128

RESUMEN

Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a ß-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.


Asunto(s)
Hipoxia de la Célula , Colesterol/metabolismo , Bacterias Gramnegativas/metabolismo , Esteroles/metabolismo , Anaerobiosis , Radioisótopos de Carbono/química , Colestenonas/química , Colestenonas/metabolismo , Colesterol/química , Bacterias Gramnegativas/química , Lipólisis , Metabolismo/genética , Oxidación-Reducción , Periplasma/enzimología , Rhodocyclaceae/enzimología , Esteroles/química , Especificidad por Sustrato
19.
J Biotechnol ; 192 Pt B: 400-9, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24998764

RESUMEN

The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols.


Asunto(s)
Alcoholes/química , Alcoholes/metabolismo , Enzimas Inmovilizadas/metabolismo , Ingeniería Metabólica/métodos , Oxidorreductasas/metabolismo , Enzimas Inmovilizadas/química , Ferricianuros , Hidroxilación , Molibdeno , Oxidorreductasas/química , Rhodocyclaceae/enzimología , Estereoisomerismo , Especificidad por Sustrato
20.
J Inorg Biochem ; 139: 9-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24950385

RESUMEN

The enantioselectivity of reactions catalyzed by ethylbenzene dehydrogenase, a molybdenum enzyme that catalyzes the oxygen-independent hydroxylation of many alkylaromatic and alkylheterocyclic compounds to secondary alcohols, was studied by chiral chromatography and theoretical modeling. Chromatographic analyses of 22 substrates revealed that this enzyme exhibits remarkably high reaction enantioselectivity toward (S)-secondary alcohols (18 substrates converted with >99% ee). Theoretical QM:MM modeling was used to elucidate the structure of the catalytically active form of the enzyme and to study the reaction mechanism and factors determining its high degree of enantioselectivity. This analysis showed that the enzyme imposes strong stereoselectivity on the reaction by discriminating the hydrogen atom abstracted from the substrate. Activation of the pro(S) hydrogen atom was calculated to be 500 times faster than of the pro(R) hydrogen atom. The actual hydroxylation step (i.e., hydroxyl group rebound reaction to a carbocation intermediate) does not appear to be enantioselective enough to explain the experimental data (the calculated rate ratios were in the range of only 2-50 for pro(S): pro(R)-oriented OH rebound).


Asunto(s)
Proteínas Bacterianas/química , Derivados del Benceno/química , Oxidorreductasas/química , Oxígeno/química , Dominio Catalítico , Enlace de Hidrógeno , Hidroxilación , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica , Rhodocyclaceae/enzimología , Estereoisomerismo , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...