Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Microb Cell Fact ; 23(1): 141, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760782

RESUMEN

BACKGROUND: The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS: We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS: Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.


Asunto(s)
Metabolismo de los Lípidos , Nitrógeno , Rhodotorula , Rhodotorula/metabolismo , Rhodotorula/genética , Nitrógeno/metabolismo , Transcriptoma , Ingeniería Metabólica/métodos , Fosfolípidos/metabolismo , Lipidómica , Lípidos/biosíntesis
2.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777956

RESUMEN

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Asunto(s)
Hígado , Ratones Endogámicos C57BL , Rhodotorula , Animales , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Rhodotorula/metabolismo , Fermentación , Dosificación Letal Mediana , Supervivencia Celular/efectos de los fármacos , Aceites de Plantas/toxicidad , Aceites de Plantas/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Biocombustibles , Riñón/efectos de los fármacos , Pruebas de Toxicidad Aguda , Masculino , Administración Oral , India
3.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702537

RESUMEN

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Asunto(s)
Fermentación , Melaza , Rhodotorula , Saccharum , beta Caroteno , Rhodotorula/metabolismo , Rhodotorula/genética , Rhodotorula/crecimiento & desarrollo , Rhodotorula/aislamiento & purificación , Rhodotorula/clasificación , Saccharum/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Carotenoides/metabolismo , Antioxidantes/metabolismo , Biomasa , Medios de Cultivo/química , Filogenia
4.
Sci Rep ; 14(1): 9188, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649733

RESUMEN

This study assessed Rhodotorula paludigena CM33's growth and ß-carotene production in a 22-L bioreactor for potential use as an aquatic animal feed supplement. Optimizing the feed medium's micronutrient concentration for high-cell-density fed-batch cultivation using glucose as the carbon source yielded biomass of 89.84 g/L and ß-carotene concentration of 251.64 mg/L. Notably, using sucrose as the carbon source in feed medium outperforms glucose feeds, resulting in a ß-carotene concentration of 285.00 mg/L with a similar biomass of 87.78 g/L. In the fed-batch fermentation using Sucrose Feed Medium, R. paludigena CM33 exhibited high biomass production rates (Qx) of 0.91 g/L.h and remarkable ß-carotene production rates (Qp) of 2.97 mg/L.h. In vitro digestibility assays showed that R. paludigena CM33, especially when cultivated using sucrose, enhances protein digestibility affirming its suitability as an aquatic feed supplement. Furthermore, R. paludigena CM33's nutrient-rich profile and probiotic potential make it an attractive option for aquatic nutrition. This research highlights the importance of cost-effective carbon sources in large-scale ß-carotene production for aquatic animal nutrition.


Asunto(s)
Biomasa , Rhodotorula , beta Caroteno , Rhodotorula/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Animales , Alimentación Animal , Fermentación , Reactores Biológicos , Sacarosa/metabolismo , Glucosa/metabolismo , Medios de Cultivo/química , Técnicas de Cultivo Celular por Lotes/métodos , Organismos Acuáticos/metabolismo
5.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660720

RESUMEN

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Asunto(s)
Biocatálisis , Epóxido Hidrolasas , Proteínas Fúngicas , Fungicidas Industriales , Rhodotorula , Triazoles , Rhodotorula/enzimología , Rhodotorula/química , Rhodotorula/metabolismo , Triazoles/química , Triazoles/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/síntesis química , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Escherichia coli/enzimología , Escherichia coli/metabolismo
6.
Food Funct ; 15(8): 4323-4337, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38530276

RESUMEN

Microbial transformation is extensively utilized to generate new metabolites in bulk amounts with more specificity and improved activity. As cinnamic acid was reported to exhibit several important pharmacological properties, microbial transformation was used to obtain its new derivatives with enhanced biological activities. By manipulating the 2-stage fermentation protocol of biotransformation, five metabolites were produced from cinnamic acid. Two of them were new derivatives; N-propyl cinnamamide 2̲ and 2-methyl heptyl benzoate 3̲ produced by Alternaria alternata. The other 3 metabolites, p-hydroxy benzoic acid 4̲, cinnamyl alcohol 5̲ and methyl cinnamate 6̲, were produced by Rhodotorula rubra, Rhizopus species and Penicillium chrysogeneum, respectively. Cinnamic acid and its metabolites were evaluated for their cyclooxygenase (COX) and acetylcholinesterase (AChE) inhibitory activities. Protection against H2O2 and Aß1-42 induced-neurotoxicity in human neuroblastoma (SH-SY5Y) cells was also monitored. Metabolite 4̲ was more potent as a COX-2 inhibitor than the parent compound with an IC50 value of 1.85 ± 0.07 µM. Out of the tested compounds, only metabolite 2̲ showed AChE inhibitory activity with an IC50 value of 8.27 µM. These results were further correlated with an in silico study of the binding interactions of the active metabolites with the active sites of the studied enzymes. Metabolite 3̲ was more potent as a neuroprotective agent against H2O2 and Aß1-42 induced-neurotoxicity than catechin and epigallocatechin-3-gallate as positive controls. This study suggested the two new metabolites 2̲ and 3̲ along with metabolite 4̲ as potential leads for neurodegenerative diseases associated with cholinergic deficiency, neurotoxicity or neuroinflammation.


Asunto(s)
Biotransformación , Inhibidores de la Colinesterasa , Cinamatos , Fármacos Neuroprotectores , Propanoles , Humanos , Cinamatos/farmacología , Cinamatos/metabolismo , Cinamatos/química , Fármacos Neuroprotectores/farmacología , Inhibidores de la Colinesterasa/farmacología , Línea Celular Tumoral , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Rhodotorula/metabolismo , Alternaria/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/metabolismo
7.
J Sci Food Agric ; 104(7): 4050-4057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353320

RESUMEN

BACKGROUND: Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS: In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION: To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.


Asunto(s)
Ergotioneína , Monascus , Rhodotorula , Humanos , Animales , Rhodotorula/genética , Rhodotorula/metabolismo , Antioxidantes/metabolismo , Histidina , Fermentación , Monascus/metabolismo
8.
Biochim Biophys Acta Bioenerg ; 1865(2): 149035, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360260

RESUMEN

Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.


Asunto(s)
Extremófilos , Rhodotorula , Transporte de Electrón , Rhodotorula/química , Rhodotorula/metabolismo , Membranas Mitocondriales/metabolismo
9.
Biotechnol J ; 19(1): e2300483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041508

RESUMEN

Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.


Asunto(s)
Glicerol , Rhodotorula , Glicerol/metabolismo , Metanol/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Biomasa , Lípidos
10.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37796891

RESUMEN

This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.3 g l-1 of fermentable sugars. A total of 62 yeast strains were screened for single-cell oil accumulation, identifying Rhodotorula mucilaginosa M1K4 as the most advantageous oleaginous yeast. M1K4 lipid production was optimized in liquid culture, and its fatty acid profile was analyzed, showing a high content of industrially valuable fatty acids, particularly palmitic (28%) and oleic (51%). Batch-culture of M1K4 in a 3-l reactor demonstrated the strain's ability to utilize wastepaper hydrolysate as a carbon source, with dry cell weight, total lipid and protein production of 17.7 g l-1, 4.5 g l-1, and 2.1 g l-1, respectively. Wastepaper as a substrate provides a sustainable solution for waste management and bioproduction. This research highlights the potential of R. mucilaginosa for lipid and protein production from wastepaper hydrolysate.


Asunto(s)
Rhodotorula , Levaduras , Rhodotorula/metabolismo , Ácidos Grasos/metabolismo , Carbohidratos , Carbono/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2313-2333, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401596

RESUMEN

Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.


Asunto(s)
Edición Génica , Rhodotorula , Ingeniería Metabólica , Rhodotorula/genética , Rhodotorula/metabolismo , Lípidos
12.
World J Microbiol Biotechnol ; 39(9): 234, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358633

RESUMEN

Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.


Asunto(s)
Ácidos Grasos , Rhodotorula , Ácidos Grasos/metabolismo , Rhodotorula/metabolismo , Levaduras/metabolismo , Aceites/metabolismo
13.
Bioresour Technol ; 384: 129379, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37352986

RESUMEN

The study reports the exploration of the transcriptome landscape of the red oleaginous yeast Rhodotorula mucilaginosa IIPL32 coinciding with the fermentation kinetics of the yeast cultivated in a two-stage fermentation process to exploit the time-series approach to get the complete transcripts picture and reveal the persuasive genes for fatty acid and terpenoid synthesis. The finding displayed the molecular drivers with more than 2-fold upregulation in the nitrogen-limited stage than in the nitrogen-excess stage. The rate-limiting diphosphomevalonate decarboxylase, acetylCoA-citrate lyase, and acetyl-CoA C-acetyltransferase were significant in controlling the metabolic flux in the synthesis of reduced compounds, and acetoacetyl-CoA synthase, 3-ketoacyl-acyl carrier-protein reductase, and ß-subunit enoyl reductase catalyze the key starting steps of lipids or terpenoid synthesis. The last two catalyze essential reduction steps in fatty acid synthesis. These enzymes would be the prime targets for the metabolic engineering of the oleaginous yeast for enhanced fatty acids and terpenoid production.


Asunto(s)
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Transcriptoma/genética , Carotenoides/metabolismo , Levaduras/genética , Levaduras/metabolismo , Ácidos Grasos/metabolismo , Oxidorreductasas/metabolismo , Nitrógeno/metabolismo
14.
Sci Rep ; 13(1): 5016, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977741

RESUMEN

Polyester-urethanes as the most widely used polyurethanes (PUs) are among the most recalcitrant plastics in natural conditions. Among existing approaches for managing and reducing plastic waste, biodegradation as a promising approach to reduce plastic waste pollution has drawn scientific society's attention in recent years. In this study, two polyester-polyether urethane degrading yeasts were isolated and identified as two new strains of Exophilia sp. NS-7 and Rhodotorula sp. NS-12. The results showed that Exophilia sp. NS-7 is esterase, protease, and urease positive, and Rhodotorula sp. NS-12 can produce esterase and urease. Both strains can degrade Impranil® as the sole carbon source with the highest growth rate in 4-6 and 8-12 days, respectively. SEM micrograph revealed PU degradation ability in both strains by showing so many pits and holes in treated films. The Sturm test showed that these two isolates can mineralize PU to CO2, and significant decreases in N-H stretching, C-H stretching, C=O stretching, and N-H/C=O bending absorption in the molecular structure of PU were revealed by the FT-IR spectrum. The detection of the deshielding effect in chemical shifts of the H-NMR spectrum after the treatment also confirmed the destructive effects of both strains on PU films.


Asunto(s)
Poliuretanos , Rhodotorula , Poliuretanos/metabolismo , Rhodotorula/metabolismo , Poliésteres/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Ureasa , Biodegradación Ambiental , Esterasas
15.
Appl Microbiol Biotechnol ; 107(4): 1491-1501, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633623

RESUMEN

Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.


Asunto(s)
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Ácidos Grasos/metabolismo , Levaduras/metabolismo , Biocombustibles , Lipasa/metabolismo , Biomasa , Triglicéridos/metabolismo
16.
J Agric Food Chem ; 71(4): 1802-1819, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688927

RESUMEN

Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.


Asunto(s)
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Ingeniería Metabólica , Fenotipo , Carotenoides/metabolismo
17.
Microb Cell Fact ; 21(1): 270, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566171

RESUMEN

BACKGROUND: Resveratrol is a plant-derived phenylpropanoid with diverse biological activities and pharmacological applications. Plant-based extraction could not satisfy ever-increasing market demand, while chemical synthesis is impeded by the existence of toxic impurities. Microbial production of resveratrol offers a promising alternative to plant- and chemical-based processes. The non-conventional oleaginous yeast Rhodotorula toruloides is a potential workhorse for the production of resveratrol that endowed with an efficient and intrinsic bifunctional phenylalanine/tyrosine ammonia-lyase (RtPAL) and malonyl-CoA pool, which may facilitate the resveratrol synthesis when properly rewired. RESULTS: Resveratrol showed substantial stability and would not affect the R. toruloides growth during the yeast cultivation in flasks. The heterologus resveratrol biosynthesis pathway was established by introducing the 4-coumaroyl-CoA ligase (At4CL), and the stilbene synthase (VlSTS) from Arabidopsis thaliana and Vitis labrusca, respectively. Next, The resveratrol production was increased by 634% through employing the cinnamate-4-hydroxylase from A. thaliana (AtC4H), the fused protein At4CL::VlSTS, the cytochrome P450 reductase 2 from A. thaliana (AtATR2) and the endogenous cytochrome B5 of R. toruloides (RtCYB5). Then, the related endogenous pathways were optimized to affect a further 60% increase. Finally, the engineered strain produced a maximum titer of 125.2 mg/L resveratrol in YPD medium. CONCLUSION: The non-conventional oleaginous yeast R. toruloides was engineered for the first time to produce resveratrol. Protein fusion, co-factor channeling, and ARO4 and ARO7 overexpression were efficient for improving resveratrol production. The results demonstrated the potential of R. toruloides for resveratrol and other phenylpropanoids production.


Asunto(s)
Arabidopsis , Rhodotorula , Ingeniería Metabólica/métodos , Resveratrol/metabolismo , Arabidopsis/genética , Rhodotorula/genética , Rhodotorula/metabolismo , Levaduras , Plantas
18.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499311

RESUMEN

Rhodotorula dairenensis ß-fructofuranosidase is a highly glycosylated enzyme with broad substrate specificity that catalyzes the synthesis of 6-kestose and a mixture of the three series of fructooligosaccharides (FOS), fructosylating a variety of carbohydrates and other molecules as alditols. We report here its three-dimensional structure, showing the expected bimodular arrangement and also a unique long elongation at its N-terminus containing extensive O-glycosylation sites that form a peculiar arrangement with a protruding loop within the dimer. This region is not required for activity but could provide a molecular tool to target the dimeric protein to its receptor cellular compartment in the yeast. A truncated inactivated form was used to obtain complexes with fructose, sucrose and raffinose, and a Bis-Tris molecule was trapped, mimicking a putative acceptor substrate. The crystal structure of the complexes reveals the major traits of the active site, with Asn387 controlling the substrate binding mode. Relevant residues were selected for mutagenesis, the variants being biochemically characterized through their hydrolytic and transfructosylating activity. All changes decrease the hydrolytic efficiency against sucrose, proving their key role in the activity. Moreover, some of the generated variants exhibit redesigned transfructosylating specificity, which may be used for biotechnological purposes to produce novel fructosyl-derivatives.


Asunto(s)
Rhodotorula , beta-Fructofuranosidasa , beta-Fructofuranosidasa/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Oligosacáridos/química , Especificidad por Sustrato , Sacarosa/metabolismo
19.
Arch Microbiol ; 204(9): 549, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947190

RESUMEN

The presence of inhibitor compounds in the culture medium can cause severe effects on the microorganisms cells. Brewery wastewaters present organic acids (acetic, propionic and butyric acids) which can severely affect yeast cells metabolism, when grown in pure cultures, although in mixed cultures they are able to develop. To understand the physiological changes on Rhodotorula toruloides (formerly Rhodosporidium toruloides) cells when fermenting in the presence of the organic acids present in brewery wastewater, pure and mixed cultures with the microalga Tetradesmus obliquus were performed in a synthetic medium containing the same organic acids concentrations that are present in brewery wastewater at pH 4 and 6. It was concluded that, at pH 4, the organic acids effects in the yeast cells were much more toxic than at pH 6. Moreover, mixed cultures can be an advantage over heterotrophic pure cultures as the microalga is able to contribute for the consumption of potential inhibitors for the yeast.


Asunto(s)
Rhodotorula , Aguas Residuales , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno , Lípidos , Rhodotorula/metabolismo
20.
Curr Microbiol ; 79(9): 253, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834133

RESUMEN

The aim of this study was to investigate the role of RKHog1 in the cold adaptation of Rhodosporidium kratochvilovae strain YM25235 and elucidate the correlation of biosynthesis of polyunsaturated fatty acids (PUFAs) and glycerol with its cold adaptation. The YM25235 strain was subjected to salt, osmotic, and cold stress tolerance analyses. mRNA levels of RKhog1, Δ12/15-fatty acid desaturase gene (RKD12), RKMsn4, HisK2301, and RKGPD1 in YM25235 were detected by reverse transcription quantitative real-time PCR. The contents of PUFAs, such as linoleic acid (LA) and linolenic acid (ALA) was measured using a gas chromatography-mass spectrometer, followed by determination of the growth rate of YM25235 and its glycerol content at low temperature. The RKHog1 overexpression, knockout, and remediation strains were constructed. Stress resistance analysis showed that overexpression of RKHog1 gene increased the biosynthesis of glycerol and enhanced the tolerance of YM25235 to cold, salt, and osmotic stresses, respectively. Inversely, the knockout of RKHog1 gene decreased the biosynthesis of glycerol and inhibited the tolerance of YM25235 to different stresses. Fatty acid analysis showed that the overexpression of RKHog1 gene in YM25235 significantly increased the content of LA and ALA, but RKHog1 gene knockout YM25235 strain had decreased content of LA and ALA. In addition, the mRNA expression level of RKD12, RKMsn4, RKHisK2301, and RKGPD1 showed an increase at 15 °C after RKHog1 gene overexpression but were unchanged at 30 °C. RKHog1 could regulate the growth adaptability and PUFA content of YM25235 at low temperature and this could be helpful for the cold adaptation of YM25235.


Asunto(s)
Ácidos Grasos Insaturados , Glicerol , Proteínas Quinasas Activadas por Mitógenos , Rhodotorula , Ácidos Grasos/biosíntesis , Ácidos Grasos Insaturados/biosíntesis , Glicerol/metabolismo , Ácido Linoleico/análisis , Ácido Linoleico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , ARN Mensajero , Rhodotorula/genética , Rhodotorula/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA