Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.948
Filtrar
1.
J Virol ; 98(5): e0159623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38587378

RESUMEN

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Animales , Herpes Genital/inmunología , Herpes Genital/prevención & control , Cobayas , Herpesvirus Humano 2/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Linfocitos T CD4-Positivos/inmunología , Ganglios Espinales/inmunología , Ganglios Espinales/virología , Ribonucleótido Reductasas/metabolismo , Vagina/virología , Vagina/inmunología , Vacunación , Modelos Animales de Enfermedad , Células T de Memoria/inmunología
2.
Daru ; 32(1): 263-278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683491

RESUMEN

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Asunto(s)
Antineoplásicos , Proliferación Celular , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Simulación del Acoplamiento Molecular , Fenantrolinas , Humanos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Fenantrolinas/química , Fenantrolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/química , Apoptosis/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 121(18): e2317291121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648489

RESUMEN

Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of Escherichia coli class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating ß subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y356[ß], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y356• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any ß metallocofactor highlights the adaptability of the 10-stranded αß barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.


Asunto(s)
Escherichia coli , Ingeniería de Proteínas , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Ingeniería de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Dominio Catalítico , Evolución Molecular , Modelos Moleculares , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química
4.
Eur J Med Chem ; 269: 116324, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520762

RESUMEN

The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.


Asunto(s)
Neoplasias , Ribonucleótido Reductasas , Humanos , Ribonucleótido Reductasas/uso terapéutico , Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias/genética
5.
Extremophiles ; 28(1): 18, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353731

RESUMEN

We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.


Asunto(s)
Geobacillus , Ribonucleótido Reductasas , Ribonucleótido Reductasas/genética , Oxigenasas de Función Mixta/genética , Geobacillus/genética , Alcanos
6.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38412549

RESUMEN

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Asunto(s)
Enfermedad de Alzheimer , Caenorhabditis elegans , Desoxicitidina , Modelos Animales de Enfermedad , Caenorhabditis elegans/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Humanos , Gemcitabina , Ribonucleósido Difosfato Reductasa/genética , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Interferencia de ARN
7.
J Phys Chem Lett ; 15(6): 1686-1693, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315651

RESUMEN

The enzyme ribonucleotide reductase, which is essential for DNA synthesis, initiates the conversion of ribonucleotides to deoxyribonucleotides via radical transfer over a 32 Å pathway composed of proton-coupled electron transfer (PCET) reactions. Previously, the first three PCET reactions in the α subunit were investigated with hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations. Herein, the fourth PCET reaction in this subunit between C439 and guanosine diphosphate (GDP) is simulated and found to be slightly exoergic with a relatively high free energy barrier. To further elucidate the mechanisms of all four PCET reactions, we analyzed the vibronic and electron-proton nonadiabaticities. This analysis suggests that interfacial PCET between Y356 and Y731 is vibronically and electronically nonadiabatic, whereas PCET between Y731 and Y730 and between C439 and GDP is fully adiabatic and PCET between Y730 and C439 is in the intermediate regime. These insights provide guidance for selecting suitable rate constant expressions for these PCET reactions.


Asunto(s)
Protones , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Electrones , Transporte de Electrón
8.
Inorg Chem ; 63(4): 2194-2203, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38231137

RESUMEN

In the postulated catalytic cycle of class Ib Mn2 ribonucleotide reductases (RNRs), a MnII2 core is suggested to react with superoxide (O2·-) to generate peroxido-MnIIMnIII and oxo-MnIIIMnIV entities prior to proton-coupled electron transfer (PCET) oxidation of tyrosine. There is limited experimental support for this mechanism. We demonstrate that [MnII2(BPMP)(OAc)2](ClO4) (1, HBPMP = 2,6-bis[(bis(2 pyridylmethyl)amino)methyl]-4-methylphenol) was converted to peroxido-MnIIMnIII (2) in the presence of superoxide anion that converted to (µ-O)(µ-OH)MnIIIMnIV (3) via the addition of an H+-donor (p-TsOH) or (µ-O)2MnIIIMnIV (4) upon warming to room temperature. The physical properties of 3 and 4 were probed using UV-vis, EPR, X-ray absorption, and IR spectroscopies and mass spectrometry. Compounds 3 and 4 were capable of phenol oxidation to yield a phenoxyl radical via a concerted PCET oxidation, supporting the proposed mechanism of tyrosyl radical cofactor generation in RNRs. The synthetic models demonstrate that the postulated O2/Mn2/tyrosine activation mechanism in class Ib Mn2 RNRs is plausible and provides spectral insights into intermediates currently elusive in the native enzyme.


Asunto(s)
Oxidantes , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Manganeso/química , Oxidación-Reducción , Superóxidos/química , Tirosina
9.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38261971

RESUMEN

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Asunto(s)
Proteínas de Ciclo Celular , Antígeno Nuclear de Célula en Proliferación , Proteínas de Schizosaccharomyces pombe , Sitios de Unión , Replicación del ADN , Proteínas Intrínsecamente Desordenadas/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Ribonucleótido Reductasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
10.
Sci Rep ; 13(1): 19899, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964013

RESUMEN

The impact of N221S mutation in hRRM2B gene, which encodes the small subunit of human ribonucleotide reductase (RNR), on RNR activity and the pathogenesis of mitochondrial DNA depletion syndrome (MDDS) was investigated. Our results demonstrate that N221 mutations significantly reduce RNR activity, suggesting its role in the development of MDDS. We proposed an allosteric regulation pathway involving a chain of three phenylalanine residues on the αE helix of RNR small subunit ß. This pathway connects the C-terminal loop of ß2, transfers the activation signal from the large catalytic subunit α to ß active site, and controls access of oxygen for radical generation. N221 is near this pathway and likely plays a role in regulating RNR activity. Mutagenesis studies on residues involved in the phenylalanine chain and the regulation pathway were conducted to confirm our proposed mechanism. We also performed molecular dynamic simulation and protein contact network analysis to support our findings. This study sheds new light on RNR small subunit regulation and provides insight on the pathogenesis of MDDS.


Asunto(s)
Mutación Missense , Ribonucleótido Reductasas , Humanos , Ribonucleótido Reductasas/metabolismo , Mutación , Fenilalanina/genética , ADN Mitocondrial/genética
11.
Med Oncol ; 40(12): 353, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952032

RESUMEN

3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) has broad-spectrum antitumor activity. However, its role in osteosarcoma (OS) remains unclear. Therefore, this study explored the effects of 3-AP on OS in vitro and in vivo using three human OS cell lines (MG-63, U2-OS, and 143B) and a nude mice model generated by transplanting 143B cells. The cells and mice were treated with DMSO (control) or gradient concentrations of 3-AP. Then, various assays (e.g., cell counting kit-8, flow cytometry, immunohistochemistry, and western blotting) were performed to assess cell viability and apoptosis levels, as well as γH2A.X (DNA damage correlation), ribonucleotide reductase catalytic subunit M1 and M2 (RRM1 and RRM2, respectively) protein levels (iron-dependent correlation). 3-AP time- and dose-dependably suppressed growth and induced apoptosis in all three OS cell lines, and ferric ammonium citrate (FAC) blocked these effects. Moreover, 3-AP decreased RRM2 and total ribonucleotide reductase (RRM1 plus RRM2) protein expression but significantly increased γH2A.X expression; treatment did not affect RRM1 expression. Again, FAC treatment attenuated these effects. In vivo, the number of apoptotic cells in the tumor slices increased in the 3-AP-treated mice compared to the control mice. 3-AP treatment also decreased Ki-67 and p21 expression, suggesting inhibited OS growth. Furthermore, the expression of RRM1, RRM2, and transferrin receptor protein 1 (i.e., Tfr1) indicated that 3-AP inhibited OS growth via an iron-dependent pathway. In conclusion, 3-AP exhibits anticancer activity in OS by decreasing the activity of iron-dependent pathways, which could be a promising therapeutic strategy for OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Ribonucleótido Reductasas , Humanos , Animales , Ratones , Hierro/uso terapéutico , Ratones Desnudos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Ribonucleótido Reductasas/uso terapéutico , Proliferación Celular , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Línea Celular Tumoral , Apoptosis
12.
Exp Parasitol ; 255: 108641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949425

RESUMEN

Visceral cestodiases, like echinococcoses and cysticercoses, are zoonoses of worldwide distribution and are responsible for public health problems in many countries, especially in underdeveloped regions. Current treatments have low efficiency and there are few drugs currently in use for chemotherapy, making the development of new anthelmintics an urgent matter. The nucleotide salvage pathways are the only ones available for nucleotide synthesis in cestodes and other parasitic helminths, and, here, we used in silico approaches to assess the potential of the enzymes in these pathways as targets for drug repurposing as anthelminthics. First, a genomic survey allowed to identify a repertoire of 28 enzymes of the purine and pyrimidine salvage pathways from the cestode Echinococcus granulosus sensu stricto. Regarding purines, the parasite relies on salvaging free bases rather than salvaging nucleosides. Pyrimidines, on the other hand, can be salvaged from both bases and nucleosides. Druggability of the parasite enzymes was assessed, as well as the availability of commercial inhibitors for them. Druggable enzymes were then ranked according to their potential for drug repurposing and the 17 most promising enzymes were selected for evolutionary analyses. The constructed phylogenetic trees allowed to assess the degree of conservation among ortholog enzymes from parasitic helminths and their mammalian hosts. Positive selection is absent in all assessed flatworm enzymes. A potential target enzyme for drug repurposing, ribonucleotide reductase (RNR), was selected for further assessment. RNR 3D-modelling showed structural similarities between the E. granulosus and the human orthologs suggesting that inhibitors of the human RNR should be effective against the E. granulosus enzyme. In line with that, E. granulosus protoscolices treated in vitro with the inhibitor hydroxyurea had their viability and DNA synthesis reduced. These results are consistent with nucleotide synthesis inhibition and confirm the potential of a nucleotide salvage inhibitors for repurposing as an anthelmintic.


Asunto(s)
Antihelmínticos , Echinococcus granulosus , Ribonucleótido Reductasas , Animales , Humanos , Reposicionamiento de Medicamentos , Ribonucleótido Reductasas/genética , Filogenia , Echinococcus granulosus/genética , Antihelmínticos/farmacología , Nucleótidos , Mamíferos
13.
Inorg Chem ; 62(48): 19498-19506, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37987809

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides in all organisms. There is an ∼35 Å long-range electron-hole transfer pathway during the catalytic process of class Ia RNR, which can be described as Tyr122ß â†” [Trp48ß]? ↔ Tyr356ß â†” Tyr731α ↔ Tyr730α ↔ Cys439α. The formation of the Y122• radical initiates this long-range radical transfer process. However, the generation mechanism of Y122• is not yet clear due to confusion over the intermediate X structures. Based on the two reported X structures, we examined the possible mechanisms of Y122• generation by density functional theory (DFT) calculations. Our examinations revealed that the generation of the Y122• radical from the two different core structures of X was via a similar two-step reaction, with the first step of proton transfer for the formation of the proton receptor of Y122 and the second step of a proton-coupled long-range electron transfer reaction with the proton transfer from the Y122 hydroxyl group to the terminal hydroxide ligand of Fe1III and simultaneously electron transfer from the side chain of Y122 to Fe2IV. These findings provide an insight into the formation mechanism of Y122• catalyzed by the double-iron center of the ß subunit of class Ia RNR.


Asunto(s)
Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Protones , Transporte de Electrón , Hierro/química , Catálisis , Tirosina/química
14.
Science ; 382(6666): 109-113, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797025

RESUMEN

Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.


Asunto(s)
Proteínas Bacterianas , Entomoplasmataceae , Ribonucleótido Reductasas , Transporte de Electrón , Protones , Ribonucleótido Reductasas/química , Cristalografía por Rayos X/métodos , Entomoplasmataceae/enzimología , Dominio Catalítico , Proteínas Bacterianas/química
15.
Nat Commun ; 14(1): 5913, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737247

RESUMEN

Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.


Asunto(s)
Glioblastoma , Hipoxantina Fosforribosiltransferasa , Ribonucleótido Reductasas , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Hipoxantinas , Mercaptopurina , Temozolomida/farmacología , Hipoxantina Fosforribosiltransferasa/genética
16.
PLoS One ; 18(9): e0291461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37699023

RESUMEN

OBJECTIVES: Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide. Most cases are diagnosed at an advanced stage using current tumor markers. Here, we aimed to identify potential novel potential biomarkers for NSCLC. MATERIAL/METHODS: Four independent datasets from the Gene Expression Omnibus database were analyzed. The relative expression of ribonucleotide reductase regulatory subunit M2 (RRM2) mRNA in 30 paired of NSCLC paired tissues was measured by reverse transcription quantitative PCR. Serum levels of cytokeratin fragment 21-1 (CYFRA21-1), pro-gastrin-releasing peptide (ProGRP), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) were measured using electrochemiluminescence immunoassays, and serum RRM2 levels were evaluated by an enzyme-linked immunosorbent assay. RESULTS: The mRNA expression level of RRM2 was significantly increased in most NSCLC lesions compared to para-adjacent tissues. Serum RRM2 levels in NSCLC patients were significantly elevated compared to healthy controls and were also associated with distant metastasis and histological type, but not with tumor size or lymph node metastasis. Receiver operating characteristic curve analysis showed a higher diagnostic ratio for NSCLC using RRM2 alone compared to other traditional tumor markers. CONCLUSIONS: RRM2 is a potential sero-diagnostic biomarker for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ribonucleótido Reductasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Ribonucleótido Reductasas/genética
17.
Anticancer Agents Med Chem ; 23(17): 1958-1965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565554

RESUMEN

BACKGROUND: The development of chemotherapy resistance in prostate cancer (PCa) patients poses a significant obstacle to disease progression. Ribonucleotide reductase is a crucial enzyme for cell division and tumor growth. Triapine, an inhibitor of ribonucleotide reductase, has shown strong anti-tumor activity in various types of cancers. However, the effect of triapine on docetaxel-resistant (DR) human PCa cells has not been explored previously. AIM: This study aimed to examine the potential anti-proliferative effects of triapine in PC3-DR (docetaxel-resistant) cells. METHODS: Cell viability was determined by the MTT test, and apoptosis and cell cycle progression were analyzed by image-based cytometer. mRNA and protein expression were assessed by RT-qPCR and western blot, respectively. RESULTS: Triapine administration significantly reduced PC3 and PC3-DR cells' survival, while the cytotoxic effect was higher in PC3-DR cells. Cell death resulting from inhibition of ribonucleotide reductase was mediated by endoplasmic reticulum stress, induction of apoptosis, and cell cycle arrest. The findings were supported by the upregulation of caspases, Bax, Bak, P21, P27, P53, TNF-α, FAS, and FASL, and downregulation of Bcl2, Bcl-XL, cyclin-dependent kinase 2 (CDK2), CDK4, cyclins, and heat shock proteins expression. According to the data, the reduction of ABC transporter proteins and NF-ĸB expression may play a role in triapine-mediated cytotoxicity in docetaxel-resistant cells. CONCLUSION: Based on our findings, triapine emerges as a promising chemotherapeutic approach for combating docetaxel- resistant prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Ribonucleótido Reductasas , Masculino , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Ribonucleótido Reductasas/farmacología , Ribonucleótido Reductasas/uso terapéutico , Apoptosis , Neoplasias de la Próstata/metabolismo , Estrés del Retículo Endoplásmico , Línea Celular Tumoral
18.
J Virol ; 97(8): e0078123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565748

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Ribonucleótido Reductasas , Humanos , Recién Nacido , Citidina Desaminasa/metabolismo , Citomegalovirus/genética , Replicación del ADN , ADN Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Inmediatas-Precoces/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
19.
Cancer Res Commun ; 3(8): 1580-1593, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37599787

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in the synthesis of deoxyribonucleosides and is required for DNA replication. Multiple types of cancer, including Ewing sarcoma tumors, are sensitive to RNR inhibitors or a reduction in the levels of either the RRM1 or RRM2 subunits of RNR. However, the polypharmacology and off-target effects of RNR inhibitors have complicated the identification of the mechanisms that regulate sensitivity and resistance to this class of drugs. Consequently, we used a conditional knockout (CRISPR/Cas9) and rescue approach to target RRM1 in Ewing sarcoma cells and identified that loss of the RRM1 protein results in the upregulation of the expression of multiple members of the activator protein-1 (AP-1) transcription factor complex, including c-Jun and c-Fos, and downregulation of c-Myc. Notably, overexpression of c-Jun and c-Fos in Ewing sarcoma cells is sufficient to inhibit cell growth and downregulate the expression of the c-Myc oncogene. We also identified that the upregulation of AP-1 is mediated, in part, by SLFN11, which is a replication stress response protein that is expressed at high levels in Ewing sarcoma. In addition, small-molecule inhibitors of RNR, including gemcitabine, and histone deacetylase inhibitors, which reduce the level of the RRM1 protein, also activate AP-1 signaling and downregulate the level of c-Myc in Ewing sarcoma. Overall, these results provide novel insight into the critical pathways activated by loss of RNR activity and the mechanisms of action of inhibitors of RNR. Significance: RNR is the rate-limiting enzyme in the synthesis of deoxyribonucleotides. Although RNR is the target of multiple chemotherapy drugs, polypharmacology and off-target effects have complicated the identification of the precise mechanism of action of these drugs. In this work, using a knockout-rescue approach, we identified that inhibition of RNR upregulates AP-1 signaling and downregulates the level of c-Myc in Ewing sarcoma tumors.


Asunto(s)
Traumatismos Craneocerebrales , Tumores Neuroectodérmicos Periféricos Primitivos , Ribonucleótido Reductasas , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamiento farmacológico , Factor de Transcripción AP-1/genética , Transducción de Señal/genética , Proteínas Proto-Oncogénicas c-fos/genética , Replicación del ADN/genética , Proteínas Nucleares
20.
Plant Sci ; 335: 111819, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562732

RESUMEN

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Asunto(s)
Arabidopsis , Ribonucleótido Reductasas , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA