Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biochem ; 165(3): 249-256, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481312

RESUMEN

Ribonuclease H (RNase H) specifically hydrolyzes the 5'-phosphodiester bonds of the RNA of RNA/DNA hybrid. Both types 1 and 2 RNases H act on the RNA strand of the hybrid, while only type 2 acts on the single ribonucleotide embedded in DNA duplex. In this study, to explore the role of mammalian type 2 RNase H (RNase H2) in cells, we constructed the RNase H2 knockout NIH3T3 cells (KO cells) by CRISPR/Cas9 system. KO cells hydrolyzed RNA strands in RNA/DNA hybrid, but not single ribonucleotides in DNA duplex, while wild-type NIH3T3 cells (WT cells) hydrolyzed both. Genomic DNA in the KO cells was more heavily hydrolyzed than in the WT cells by the alkaline or RNase H2 treatment, suggesting that the KO cells contained more ribonucleotides in genomic DNA than the WT cells. The growth rate of the KO cells was 60% of that of the WT cells. Expression of interferon-stimulated genes (ISGs) in the KO cells was not markedly elevated compared with the WT cells. These results suggest that in NIH3T3 cells, RNase H2 is crucial for suppressing the accumulation of ribonucleotides in genomic DNA but not for the expression of ISGs.


Asunto(s)
Ribonucleasa H/metabolismo , Animales , Ratones , Ratones Noqueados , Células 3T3 NIH , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleótidos/metabolismo
2.
Gastroenterology ; 156(1): 145-159.e19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273559

RESUMEN

BACKGROUND & AIMS: RNase H2 is a holoenzyme, composed of 3 subunits (ribonuclease H2 subunits A, B, and C), that cleaves RNA:DNA hybrids and removes mis-incorporated ribonucleotides from genomic DNA through ribonucleotide excision repair. Ribonucleotide incorporation by eukaryotic DNA polymerases occurs during every round of genome duplication and produces the most frequent type of naturally occurring DNA lesion. We investigated whether intestinal epithelial proliferation requires RNase H2 function and whether RNase H2 activity is disrupted during intestinal carcinogenesis. METHODS: We generated mice with epithelial-specific deletion of ribonuclease H2 subunit B (H2bΔIEC) and mice that also had deletion of tumor-suppressor protein p53 (H2b/p53ΔIEC); we compared phenotypes with those of littermate H2bfl/fl or H2b/p53fl/fl (control) mice at young and old ages. Intestinal tissues were collected and analyzed by histology. We isolated epithelial cells, generated intestinal organoids, and performed RNA sequence analyses. Mutation signatures of spontaneous tumors from H2b/p53ΔIEC mice were characterized by exome sequencing. We collected colorectal tumor specimens from 467 patients, measured levels of ribonuclease H2 subunit B, and associated these with patient survival times and transcriptome data. RESULTS: The H2bΔIEC mice had DNA damage to intestinal epithelial cells and proliferative exhaustion of the intestinal stem cell compartment compared with controls and H2b/p53ΔIEC mice. However, H2b/p53ΔIEC mice spontaneously developed small intestine and colon carcinomas. DNA from these tumors contained T>G base substitutions at GTG trinucleotides. Analyses of transcriptomes of human colorectal tumors associated lower levels of RNase H2 with shorter survival times. CONCLUSIONS: In analyses of mice with disruption of the ribonuclease H2 subunit B gene and colorectal tumors from patients, we provide evidence that RNase H2 functions as a colorectal tumor suppressor. H2b/p53ΔIEC mice can be used to study the roles of RNase H2 in tissue-specific carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Células Epiteliales/enzimología , Inestabilidad Genómica , Neoplasias Intestinales/prevención & control , Intestino Delgado/enzimología , Ribonucleasa H/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colitis/inducido químicamente , Colitis/enzimología , Colitis/genética , Colitis/patología , Daño del ADN , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestino Delgado/patología , Masculino , Ratones Noqueados , Fenotipo , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
3.
PLoS Genet ; 14(12): e1007729, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30543624

RESUMEN

Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.


Asunto(s)
Evasión Inmune/genética , Ribonucleasa H/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Animales , Variación Antigénica , Daño del ADN , Genoma de Protozoos , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Ribonucleasa H/deficiencia , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología
4.
Nature ; 559(7713): 285-289, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973717

RESUMEN

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ribonucleótidos/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Immunol ; 9: 587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662492

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2ΔGFAP mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2ΔGFAP mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs) represents the most reliable AGS biomarker. Importantly, primary RNase H2ΔGFAP astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in vivo in brains of RNase H2ΔGFAP mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.


Asunto(s)
Astrocitos/inmunología , Astrocitos/metabolismo , Enfermedades Autoinmunes/etiología , Inflamación/etiología , Ácidos Nucleicos/inmunología , Ribonucleasa H/deficiencia , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes del Sistema Nervioso/etiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Biomarcadores , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Fenotipo
6.
Hum Mol Genet ; 26(20): 3960-3972, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016854

RESUMEN

Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Micronúcleo Germinal/enzimología , Malformaciones del Sistema Nervioso/enzimología , Ribonucleasa H/deficiencia , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Autofagia/genética , ADN/genética , Daño del ADN , Replicación del ADN , Ratones , Ratones Noqueados , Micronúcleo Germinal/genética , Micronúcleo Germinal/inmunología , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
7.
J Mol Biol ; 429(19): 2873-2894, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821455

RESUMEN

The rnhAB mutant Escherichia coli, deficient in two RNase H enzymes that remove both R-loops and incorporated ribonucleotides (rNs) from DNA, grow slowly, suggesting accumulation of rN-containing DNA lesions (R-lesions). We report that the rnhAB mutants have reduced viability, form filaments with abnormal nucleoids, induce SOS, and fragment their chromosome, revealing replication and/or segregation stress. R-loops are known to interfere with replication forks, and sensitivity of the double rnhAB mutants to translation inhibition points to R-loops as precursors for R-lesions. However, the strict specificity of bacterial RNase HII for RNA-DNA junctions indicates that R-lesions have rNs integrated into DNA. Indeed, instead of relieving problems of rnhAB mutants, transient inhibition of replication from oriC kills them, suggesting that oriC-initiated replication removes R-loops instead of compounding them to R-lesions. Yet, replication from an R-loop-initiating plasmid origin kills the double rnhAB mutant, revealing generation of R-lesions by R-loop-primed DNA synthesis. These R-lesions could be R-tracts, contiguous runs of ≥4 RNA nucleotides within DNA strand and the only common substrate between the two bacterial RNase H enzymes. However, a plasmid relaxation test failed to detect R-tracts in DNA of the rnhAB mutants, although it readily detected R-patches (runs of 1-3 rNs). Instead, we detected R-gaps, single-strand gaps containing rNs, in the chromosomal DNA of the rnhAB mutant. Therefore, we propose that RNase H-deficient mutants convert some R-loops into R-tracts, which progress into R-gaps and then to double-strand breaks-explaining why R-tracts do not accumulate in RNase H-deficient cells, while double-strand breaks do.


Asunto(s)
Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Ribonucleasa H/deficiencia , Ribonucleasa H/metabolismo , Replicación del ADN
8.
Nucleic Acids Res ; 44(11): 5299-312, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27131367

RESUMEN

Viable constitutive and tamoxifen inducible liver-specific RNase H1 knockout mice that expressed no RNase H1 activity in hepatocytes showed increased R-loop levels and reduced mitochondrial encoded DNA and mRNA levels, suggesting impaired mitochondrial R-loop processing, transcription and mitochondrial DNA replication. These changes resulted in mitochondrial dysfunction with marked changes in mitochondrial fusion, fission, morphology and transcriptional changes reflective of mitochondrial damage and stress. Liver degeneration ensued, as indicated by apoptosis, fibrosis and increased transaminase levels. Antisense oligonucleotides (ASOs) designed to serve as substrates for RNase H1 were inactive in the hepatocytes from the RNase H1 knockout mice and in vivo, demonstrating that RNase H1 is necessary for the activity of DNA-like ASOs. During liver regeneration, a clone of hepatocytes that expressed RNase H1 developed and partially restored mitochondrial and liver function.


Asunto(s)
Hígado/metabolismo , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Conformación de Ácido Nucleico , ARN/metabolismo , Ribonucleasa H/deficiencia , Animales , Análisis por Conglomerados , Replicación del ADN , ADN Mitocondrial , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , ARN/química , ARN/genética , Ribonucleasa H/metabolismo , Especificidad por Sustrato
9.
DNA Repair (Amst) ; 40: 1-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26947024

RESUMEN

R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low temperatures that stabilizes hyper-negatively supercoiled DNA.


Asunto(s)
Cromosomas Bacterianos/genética , Replicación del ADN/genética , ADN Superhelicoidal/genética , Mutación , Proliferación Celular/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN-Topoisomerasas de Tipo I/deficiencia , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Ribonucleasa H/deficiencia , Ribonucleasa H/genética
10.
Rev Neurol ; 62(4): 165-9, 2016 Feb 16.
Artículo en Español | MEDLINE | ID: mdl-26860721

RESUMEN

INTRODUCTION: Aicardi-Goutieres syndrome is a rare immune disorder due to mutations in seven different genes that encode proteins called TREX1, ribonuclease H2 complex, SAMHD1, ADAR and IDIH1 (MDA5), which are involved in acid nucleic metabolism. Two cases are described in detail below caused by RNASEH2B gene mutation, one of which displays a mutation no described to date. CASE REPORTS: Case 1: male consulting because from 5-month-old shows loss of maturity items acquired until then, coming with several fever episodes. Case 2: a 4-month-old boy showing since 2-month-old great irritability and oral-feeding trouble with severe psychomotor impairment. In both cases it was found an increase of pterines in the cerebrospinal fluid, mainly neopterine, with calcifications in the basal ganglia. The diagnosis was proved by sequencing RNASEH2B gene, founding in case 2 a new mutation not described previously. CONCLUSIONS: The reported cases belong to the description already done by Aicardi-Goutieres, it should be noticed this syndrome in a patient with a subacute encephalopathy of debut in the first year of life, dystonia/spasticity in variable degree and important affectation/regression of psychomotor development, particularly in those with increase of pterines (neopterine) in the cerebrospinal fluid and calcifications in the basal ganglia.


TITLE: Variaciones fenotipicas en el sindrome de Aicardi-Goutieres causado por mutaciones en el gen RNASEH2B: presentacion de dos nuevos casos.Introduccion. El sindrome de Aicardi-Goutieres es un trastorno inmunitario raro debido a mutaciones en siete genes que codifican proteinas llamadas TREX1, el complejo ribonucleasa H2, SAMHD1, ADAR e IFIH1 (MAD5), las cuales estan implicadas en el metabolismo de los acidos nucleicos. A continuacion se presentan dos nuevos casos por mutacion en el gen RNASEH2B, uno de los cuales presenta una mutacion no descrita hasta la fecha. Casos clinicos. Caso 1: varon que consulto porque desde los 5 meses, coincidiendo con cuadros febriles de repeticion, presentaba perdida de los items madurativos adquiridos hasta la fecha. Caso 2: niño de 4 meses que desde los 2 meses mostraba gran irritabilidad con dificultades en la alimentacion, asociado a un grave retraso psicomotor. En ambos casos se constato un aumento de las pterinas en el liquido cefalorraquideo, principalmente de la neopterina, con calcificaciones en los ganglios basales. El diagnostico se confirmo mediante secuenciacion del gen RNASEH2B; el caso 2 presentaba una mutacion no descrita en la literatura medica. Conclusiones. Los casos corresponden a la descripcion clasica realizada por Aicardi-Goutieres. Debe tenerse en cuenta este sindrome ante un paciente con un cuadro de encefalopatia subaguda de comienzo en el primer año de vida, distonia/espasticidad en grado variable e importante afectacion/regresion del desarrollo psicomotor, especialmente si asocia aumento de las pterinas (neopterina) en el liquido cefalorraquideo y calcificaciones en los ganglios basales.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Biopterinas/líquido cefalorraquídeo , Calcinosis/etiología , Calcinosis/patología , Trastornos de Ingestión y Alimentación en la Niñez/genética , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Espasticidad Muscular/genética , Neopterin/líquido cefalorraquídeo , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/enzimología , Neuroimagen , Fenotipo , Ribonucleasa H/deficiencia , Análisis de Secuencia de ADN
11.
Plant Cell ; 26(9): 3680-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25217508

RESUMEN

The WEE1 kinase is an essential cell cycle checkpoint regulator in Arabidopsis thaliana plants experiencing replication defects. Whereas under non-stress conditions WEE1-deficient plants develop normally, they fail to adapt to replication inhibitory conditions, resulting in the accumulation of DNA damage and loss of cell division competence. We identified mutant alleles of the genes encoding subunits of the ribonuclease H2 (RNase H2) complex, known for its role in removing ribonucleotides from DNA-RNA duplexes, as suppressor mutants of WEE1 knockout plants. RNase H2 deficiency triggered an increase in homologous recombination (HR), correlated with the accumulation of γ-H2AX foci. However, as HR negatively impacts the growth of WEE1-deficient plants under replication stress, it cannot account for the rescue of the replication defects of the WEE1 knockout plants. Rather, the observed increase in ribonucleotide incorporation in DNA indicates that the substitution of deoxynucleotide with ribonucleotide abolishes the need for WEE1 under replication stress. Strikingly, increased ribonucleotide incorporation in DNA correlated with the occurrence of small base pair deletions, identifying the RNase H2 complex as an important suppressor of genome instability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Inestabilidad Genómica , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleasa H/deficiencia , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Emparejamiento Base , Secuencia de Bases , Dominio Catalítico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Genes de Plantas , Inestabilidad Genómica/efectos de los fármacos , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Mutación/genética , Tasa de Mutación , Recombinación Genética/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo
12.
J Exp Med ; 209(8): 1419-26, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-22802351

RESUMEN

Ribonucleases H (RNases H) are endonucleases which cleave the RNA moiety of RNA/DNA hybrids. Their function in mammalian cells is incompletely understood. RNase H2 mutations cause Aicardi-Goutières syndrome, an inflammatory condition clinically overlapping with lupus erythematosus. We show that RNase H2 is essential in mouse embryonic development. RNase H2-deficient cells proliferated slower than control cells and accumulated in G2/M phase due to chronic activation of a DNA damage response associated with an increased frequency of single-strand breaks, increased histone H2AX phosphorylation, and induction of p53 target genes, most prominently the cyclin-dependent kinase inhibitor 1 encoding cell cycle inhibitor p21. RNase H2-deficient cells featured an increased genomic ribonucleotide load, suggesting that unrepaired ribonucleotides trigger the DNA damage response in these cells. Collectively, we show that RNase H2 is essential to remove ribonucleotides from the mammalian genome to prevent DNA damage.


Asunto(s)
ADN/genética , ADN/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , Animales , División Celular/genética , Procesos de Crecimiento Celular/genética , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Roturas del ADN de Cadena Simple , Daño del ADN , Fase G2/genética , Genoma , Histonas/genética , Histonas/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , ARN/genética , ARN/metabolismo , Ribonucleasa H/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
DNA Repair (Amst) ; 10(9): 953-60, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21813340

RESUMEN

Non-B DNA structures are a major contributor to the genomic instability associated with repetitive sequences. Immunoglobulin switch Mu (Sµ) region sequence is comprised of guanine-rich repeats and has high potential for forming G4 DNA, in which one strand of DNA folds into an array of guanine quartets. Taking advantage of the genetic tractability of Saccharomyces cerevisiae, we developed a recombination assay to investigate mechanisms involved in maintaining stability of G-rich repetitive sequence. By embedding Sµ sequence within recombination substrates under the control of a tetracycline-regulatable promoter, we demonstrate that the rate and orientation of transcription both affect the stability of Sµ sequence. In particular, the greatest instability was observed under high-transcription conditions when the Sµ sequence was oriented with the C-rich strand as the transcription template. The effect of transcription orientation was enhanced in the absence of the Type IB topoisomerase Top1, possibly due to enhanced R-loop formation. Loss of Sgs1 helicase and RNase H activity also increased instability, suggesting they may cooperatively function to reduce the formation of non-B DNA structures in highly transcribed regions. Finally, the Sµ sequence was unstable when transcription elongation was perturbed due to a defective THO complex. In a THO-deficient background, there was further exacerbation of orientation-dependent instability associated with the ectopically expressed, single-strand cytosine deaminase AID. The implications of our findings to understanding instability associated with potential G4 DNA forming sequences are discussed.


Asunto(s)
Inestabilidad Genómica , Guanina , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transcripción Genética , Levaduras/genética , Animales , Secuencia de Bases , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/química , ADN/genética , ADN Helicasas/deficiencia , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Recombinación Homóloga/genética , Región de Cambio de la Inmunoglobulina/genética , Ratones , Datos de Secuencia Molecular , Ribonucleasa H/deficiencia , Ribonucleasa H/metabolismo , Levaduras/metabolismo
14.
Nat Chem Biol ; 6(10): 774-81, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729855

RESUMEN

Maintaining the chemical identity of DNA depends on ribonucleotide exclusion by DNA polymerases. However, ribonucleotide exclusion during DNA synthesis in vitro is imperfect. To determine whether ribonucleotides are incorporated during DNA replication in vivo, we substituted leucine or glycine for an active-site methionine in yeast DNA polymerase ϵ (Pol ϵ). Ribonucleotide incorporation in vitro was three-fold lower for M644L and 11-fold higher for M644G Pol ϵ compared to wild-type Pol ϵ. This hierarchy was recapitulated in vivo in yeast strains lacking RNase H2. Moreover, the pol2-M644G rnh201Δ strain progressed more slowly through S phase, had elevated dNTP pools and generated 2-5-base-pair deletions in repetitive sequences at a high rate and in a gene orientation-dependent manner. The data indicate that ribonucleotides are incorporated during replication in vivo, that they are removed by RNase H2-dependent repair and that defective repair results in replicative stress and genome instability via DNA strand misalignment.


Asunto(s)
ADN de Hongos/metabolismo , Inestabilidad Genómica , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , Replicación del ADN , ADN de Hongos/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma Fúngico , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fenotipo , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/enzimología , Moldes Genéticos
15.
EMBO J ; 13(22): 5338-45, 1994 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-7525276

RESUMEN

Under certain conditions, Escherichia coli cells exhibit either of two altered modes of chromosomal DNA replication. These are inducible stable DNA replication (iSDR), seen in SOS-induced cells, and constitutive stable DNA replication (cSDR), seen in rnhA mutants. Both iSDR and cSDR can continue to occur in the absence of protein synthesis. They are dependent on RecA protein, but do not require DnaA protein or the oriC site. Here we report the requirement for PriA, a protein essential for assembly of the phi X174-type primosome, for both iSDR and cSDR. In priA1(Null)::kan mutant cells, iSDR is not observed after induction by thymine starvation. Replication from one of the origins (oriM1) specific to iSDR is greatly reduced by the priA1::kan mutation. cSDR in rnhA224 mutant cells deficient in RNase HI is also completely abolished by the same priA mutation. In both cases, SDR is restored by introduction of a plasmid carrying a wild-type priA gene. Furthermore, the viability of an rnhA::cat dnaA46 strain is lost at 42 degrees C upon inactivation of the priA gene, indicating the lethal effect of priA inactivation on those cells whose viability depends on cSDR. These results demonstrate that a function of PriA protein is essential for iSDR and cSDR and suggest the involvement of the PriA-dependent phi X174-type primosome in these DnaA/oriC-independent pathways of chromosome replication. Whereas ColE1-type plasmids, known to be independent of DnaA, absolutely require PriA function for replication, DnaA-dependent plasmid replicons such as pSC101, F, R6K, Rts1 and RK2 are able to transform and to be maintained in the priA1::kan strain.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Replicación del ADN , ADN Bacteriano/biosíntesis , Proteínas de Unión al ADN/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Respuesta SOS en Genética , Alelos , Proteínas Bacterianas/fisiología , Daño del ADN , Genes Letales , Sustancias Macromoleculares , Plásmidos/genética , ARN/metabolismo , ARN Bacteriano/metabolismo , Proteína de Replicación A , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
16.
Mol Gen Genet ; 244(5): 557-62, 1994 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-8078483

RESUMEN

Constitutive stable DNA replication (cSDR), which uniquely occurs in Escherichia coli rnhA mutants deficient in ribonuclease HI activity, requires RecA function. The recA428 mutation, which inactivates the recombinase activity but imparts a constitutive coprotease activity, blocks cSDR in rnhA mutants. The result indicates that the recombinase activity of RecA, which promotes homologous pairing and strand exchange, is essential for cSDR. Despite the requirement for RecA recombinase activity, mutations in recB, recD, recJ, ruvA and ruvC neither inhibit nor stimulate cSDR. It was proposed that the property of RecA essential for homologous pairing and strand exchange is uniquely required for initiation of cSDR in rnhA mutants without involving the homologous recombination process. The possibility that RecA protein is necessary to counteract the action of Tus protein, a contra-helicase which stalls replication forks in the ter region of the chromosome, was ruled out because introduction of the tus::kan mutation, which inactivates Tus protein, did not alleviate the RecA requirement for cSDR.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli/genética , Genes Bacterianos , Rec A Recombinasas/genética , Recombinación Genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos , ADN Nucleotidiltransferasas/metabolismo , ADN Bacteriano/química , Escherichia coli/enzimología , Mutación , Conformación de Ácido Nucleico , Rec A Recombinasas/metabolismo , Ribonucleasa H/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA