Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Ann Clin Lab Sci ; 54(1): 56-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514068

RESUMEN

OBJECTIVE: Multiple Myeloma (MM) is a malignant hematological disease. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) acts as an oncogene in a variety of cancers. However, the role of HNRNPC in MM has not been reported so far. METHODS: The mRNA and protein expressions of HNRN-PC and FOXM1 were detected by qRT-PCR and western blot. CCK8, EDU staining, flow cytometry and western blot were used to detect cell viability and cell cycle. The extracellular flux analyzer XF96 was used to detect the production of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Lactic acid and glucose levels in culture medium were detected by lactic acid assay kits and glucose assay kits, respectively. Then, the binding ability of HNRNPC with FOXM1 was detected by RIP and the stability of FOXM1 mRNA was appraised with qRT-PCR. With the application of qRT-PCR and western blot, the transfection efficacy of si-HNRNPC and Oe-FOXM1 was examined. Western blot was applied for the estimation of GLUT1/LDHA signaling pathway-related proteins. RESULTS: The expression of HNRNPC in MM cell line was abnormally elevated. HNRNPC silence significantly inhibited the proliferation, facilitated the apoptosis, induced cycle arrest, and suppressed aerobic glycolysis in MM cells, which were all reversed by FOXM1 overexpression. It was also found that the regulatory effect of HNRNPC is realized by stabilizing FOXM1 mRNA and regulating GLUT1/LDHA pathway. CONCLUSION: HNRNPC regulated GLUT1/LDHA pathway by stabilizing FOXM1 mRNA to promote the progression and aerobic glycolysis of MM.


Asunto(s)
Proteína Forkhead Box M1 , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Mieloma Múltiple , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ácido Láctico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , L-Lactato Deshidrogenasa/metabolismo
2.
Mol Carcinog ; 63(5): 859-873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353359

RESUMEN

Breast cancer has become the most commonly diagnosed cancer. Heterogeneous nuclear ribonucleoprotein C (HNRNPC), a reader of N6-methyladenosine (m6A), has been observed to be upregulated in various types of cancer. Nevertheless, the role of HNRNPC in breast cancer and whether it is regulated by m6A modification deserve further investigation. The expression of HNRNPC in breast cancer was examined by quantitative real-time polymerase chain reaction and western blot analysis. RNA immunoprecipitation was performed to validate the binding relationships between HNRNPC and WD repeat domain 77 (WDR77). The effects of HNRNPC and m6A regulators on WDR77 were investigated by actinomycin D assay. The experiments in vivo were conducted in xenograft models. In this research, we found that HNRNPC was highly expressed in breast cancer, and played a crucial role in cell growth, especially in the luminal subtype. HNRNPC could combine and stabilize WDR77 mRNA. WDR77 successively drove the G1/S phase transition in the cell cycle and promoted cell proliferation. Notably, this regulation axis was closely tied to the m6A modification status of WDR77 mRNA. Overall, a critical regulatory mechanism was identified, as well as promising targets for potential treatment strategies for luminal breast cancer.


Asunto(s)
Neoplasias de la Mama , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , ARN Mensajero/genética , Factores de Transcripción/genética , Adenosina
3.
Dig Dis Sci ; 69(3): 811-820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217675

RESUMEN

Gastric cancer is a common malignant tumor, and due to its insidious onset and limited screening methods, most patients are diagnosed with advanced disease and have a poor prognosis. The circRNA in exosomes has an essential role in cancer diagnosis and treatment. However, the part of hsa_circ_0014606 within exosomes in gastric cancer progression is unclear. Firstly, we extracted exosomes from the serum of gastric cancer patients and healthy individuals by ultracentrifugation and analyzed the expression of hsa_circ_0014606 in both exosomes; then knocked down hsa_circ_0014606 in vivo and in vitro, respectively, to observe its effect on the physiological function of gastric cancer cells; finally, we used bioinformatics to screen hsa_circ_0014606 targeting miRNAs and mRNAs, and experiments were performed to verify the interrelationship between the three. The results showed that the level of hsa_circ_0014606 in the serum exosomes of gastric cancer patients was significantly higher than that of the healthy population. The knockdown of hsa_circ_0014606 slowed the proliferation of gastric cancer cells, significantly reduced migration and invasion ability, accelerated apoptosis, and reduced tumor size in mice. In addition, the expression of hsa_circ_0014606 was negatively correlated with the expression of miR-514b-3p and positively correlated with the expression of heterogeneous nuclear ribonucleoprotein C (HNRNPC). In conclusion, hsa_circ_0014606 exerted a pro-cancer effect indirectly through miR-514b-3p targeting gene HNRNPC, and this study provides a new potential target for treating gastric cancer.


Asunto(s)
Carcinoma , Exosomas , MicroARNs , Neoplasias Gástricas , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Exosomas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/patología
4.
Br J Pharmacol ; 181(5): 735-751, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37782223

RESUMEN

BACKGROUND AND PURPOSE: Peripheral nerve trauma-induced dysregulation of pain-associated genes in the primary sensory neurons of dorsal root ganglion (DRG) contributes to neuropathic pain genesis. RNA-binding proteins participate in gene transcription. We hypothesized that RALY, an RNA-binding protein, participated in nerve trauma-induced dysregulation of DRG pain-associated genes and nociceptive hypersensitivity. METHODS AND RESULTS: Immunohistochemistry staining showed that RALY was expressed exclusively in the nuclei of DRG neurons. Peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve produced time-dependent increases in the levels of Raly mRNA and RALY protein in injured DRG. Blocking this increase through DRG microinjection of adeno-associated virus 5 (AAV5)-expressing Raly shRNA reduced the CCI-induced elevation in the amount of eukaryotic initiation factor 4 gamma 2 (Eif4g2) mRNA and Eif4g2 protein in injured DRG and mitigated the development and maintenance of CCI-induced nociceptive hypersensitivity, without altering basal (acute) response to noxious stimuli and locomotor activity. Mimicking DRG increased RALY through DRG microinjection of AAV5 expressing Raly mRNA up-regulated the expression of Eif4g2 mRNA and Eif4g2 protein in the DRG and led to hypersensitive responses to noxious stimuli in the absence of nerve trauma. Mechanistically, CCI promoted the binding of RALY to the promoter of Eif4g2 gene and triggered its transcriptional activity. CONCLUSION AND IMPLICATIONS: Our findings indicate that RALY participates in nerve trauma-induced nociceptive hypersensitivity likely through transcriptionally triggering Eif4g2 expression in the DRG. RALY may be a potential target in neuropathic pain management.


Asunto(s)
Hiperalgesia , Neuralgia , Ganglios Espinales/metabolismo , Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nocicepción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo
5.
J Reprod Immunol ; 160: 104160, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37857158

RESUMEN

N6-methyladenosine methylated modification has been shown to play roles in recurrent spontaneous abortion. We aimed to explore role of heterogeneous nuclear ribonucleoprotein C in the occurrence of recurrent spontaneous abortion. We collected embryonic villous tissues from 3 patients with recurrent spontaneous abortion (RSA group) and 3 normal control pregnancy patients. Methylated RNA immunoprecipitation sequencing, RNA sequencing, methylated RNA immunoprecipitation quantitative PCR were conducted to detect the differentially expressed m6A methylation modification gene and regulatory gene in patients with recurrent spontaneous abortion. Methylated RNA immunoprecipitation sequencing and RNA sequencing results showed that the mRNA expression level of heterogeneous nuclear ribonucleoprotein C significantly decreased in RSA group and mRNA expression level of 5-methyltetrahydrofolate-homocysteine methyltransferase increased. Real-time quantitative PCR confirmed the differential expression of heterogeneous nuclear ribonucleoprotein C and 5-methyltetrahydrofolate-homocysteine methyltransferase. Methylated RNA immunoprecipitation quantitative PCR result showed that mRNA m6A modification level of 5-methyltetrahydrofolate-homocysteine methyltransferase decreased in RSA group. The results of western blotting, real-time quantitative PCR, immunofluorescence, matrigel invasion and wound healing assays indicated that heterogeneous nuclear ribonucleoprotein C might regulate the expression of 5-methyltetrahydrofolate-homocysteine methyltransferase by mediating m6A modification, thereby reducing the proliferation and migration of trophoblast cell line, ultimately leading to the occurrence of recurrent spontaneous abortion.


Asunto(s)
Aborto Habitual , Homocisteína S-Metiltransferasa , Embarazo , Femenino , Humanos , Metilación , Homocisteína S-Metiltransferasa/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , ARN Mensajero/metabolismo
6.
Cell Biol Toxicol ; 39(6): 3323-3340, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906341

RESUMEN

Human malignant gliomas are the most common and aggressive primary malignant tumors of the human central nervous system. Vasculogenic mimicry (VM), which refers to the formation of a tumor blood supply system independently of endothelial cells, contributes to the malignant progression of glioma. Therefore, VM is considered a potential target for glioma therapy. Accumulated evidence indicates that alterations in SUMOylation, a reversible post-translational modification, are involved in tumorigenesis and progression. In the present study, we found that UBA2 and RALY were upregulated in glioma tissues and cell lines. Downregulation of UBA2 and RALY inhibited the migration, invasion, and VM of glioma cells. RALY can be SUMOylated by conjugation with SUMO1, which is facilitated by the overexpression of UBA2. The SUMOylation of RALY increases its stability, which in turn increases its expression as well as its promoting effect on FOXD1 mRNA. The overexpression of FOXD1 promotes DKK1 transcription by activating its promoter, thereby promoting glioma cell migration, invasion, and VM. Remarkably, the combined knockdown of UBA2, RALY, and FOXD1 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. UBA2/RALY/FOXD1/DKK1 axis may play crucial roles in regulating VM in glioma, which may contribute to the development of potential strategies for the treatment of gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ratones , Animales , Humanos , Neoplasias Encefálicas/metabolismo , Sumoilación , Ratones Desnudos , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Glioma/genética , Glioma/metabolismo , Línea Celular Tumoral , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción Forkhead/genética
7.
Adv Sci (Weinh) ; 10(34): e2304895, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821382

RESUMEN

Chronic lymphocytic leukemia (CLL) is a hematological malignancy with high metabolic heterogeneity. N6-methyladenosine (m6A) modification plays an important role in metabolism through regulating circular RNAs (circRNAs). However, the underlying mechanism is not yet fully understood in CLL. Herein, an m6A scoring system and an m6A-related circRNA prognostic signature are established, and circTET2 as a potential prognostic biomarker for CLL is identified. The level of m6A modification is found to affect the transport of circTET2 out of the nucleus. By interacting with the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein C (HNRNPC), circTET2 regulates the stability of CPT1A and participates in the lipid metabolism and proliferation of CLL cells through mTORC1 signaling pathway. The mTOR inhibitor dactolisib and FAO inhibitor perhexiline exert a synergistic effect on CLL cells. In addition, the biogenesis of circTET2 can be affected by the splicing process and the RBPs RBMX and YTHDC1. CP028, a splicing inhibitor, modulates the expression of circTET2 and shows pronounced inhibitory effects. In summary, circTET2 plays an important role in the modulation of lipid metabolism and cell proliferation in CLL. This study demonstrates the clinical value of circTET2 as a prognostic indicator as well as provides novel insights in targeting treatment for CLL.


Asunto(s)
Ácidos Grasos , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Leucemia Linfocítica Crónica de Células B , ARN Circular , Humanos , Proliferación Celular , Ácidos Grasos/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Leucemia Linfocítica Crónica de Células B/genética , Metabolismo de los Lípidos/genética , ARN Circular/metabolismo
8.
Cell Death Dis ; 14(10): 670, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821439

RESUMEN

Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Empalme Alternativo/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Empalme del ARN , Carcinogénesis/genética , Factores de Empalme Serina-Arginina/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
9.
Biomolecules ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37759731

RESUMEN

FOXM1 is an oncogenic transcriptional factor and includes several isoforms generated by alternative splicing. Inclusion of alternative exon 9 produces FOXM1a, a transcriptionally inactive isoform. However, the role of FOXM1a in tumorigenesis remains unknown. In addition, the regulatory mechanisms of exon 9 splicing are also unclear. In the present study, we found that overexpression of FOXM1a significantly reduced cell proliferation and colony formation of oral squamous cell carcinoma (OSCC) cell proliferation in vitro. Importantly, OSCC cells with FOXM1a overexpression showed significantly slower tumor formation in nude mice. Moreover, we identified a U-rich exonic splicing suppressor (ESS) which is responsible for exon 9 skipping. Splicing factor heterogeneous nuclear ribonucleoprotein C (hnRNP C) can bind to the ESS and suppress exon 9 inclusion and FOXM1a expression. Silence of hnRNP C also significantly suppresses OSCC cell proliferation. HnRNP C is significantly co-expressed with FOXM1 in cancers. Our study uncovered a novel regulatory mechanism of oncogene FOXM1 expression in OSCC.


Asunto(s)
Proteína Forkhead Box M1 , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Ratones , Empalme Alternativo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ratones Desnudos , Neoplasias de la Boca/genética , Oncogenes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo
10.
Cancer Biol Ther ; 24(1): 2246203, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37599448

RESUMEN

Translocation of 14-3-3 protein epsilon (14-3-3ε) was found to be involved in Triptolide (Tp)-induced inhibition of colorectal cancer (CRC) cell proliferation. However, the form of cell death induced by 14-3-3ε translocation and mechanisms underlying this effect remain unclear. This study employed label-free LC-MS/MS to identify 14-3-3ε-associated proteins in CRC cells treated with or without Tp. Our results confirmed that heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C) were exported out of the nucleus by 14-3-3ε and degraded by ubiquitination. The nucleo-cytoplasmic shuttling of 14-3-3ε carrying hnRNP C mediated Tp-induced proliferation inhibition, cell cycle arrest and autophagic processes. These findings have broad implications for our understanding of 14-3-3ε function, provide an explanation for the mechanism of nucleo-cytoplasmic shuttling of hnRNP C and provide new insights into the complex regulation of autophagy.


Asunto(s)
Proteínas 14-3-3 , Autofagia , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Humanos , Cromatografía Liquida , Citoplasma , Ribonucleoproteínas Nucleares Heterogéneas , Espectrometría de Masas en Tándem , Proteínas 14-3-3/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo
11.
Cell Rep ; 42(4): 112288, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952348

RESUMEN

The tumor suppressor p53 plays a pivotal role in tumor prevention. The activity of p53 is mainly restrained by the ubiquitin E3 ligase Mdm2. However, it is not well understood how the Mdm2-p53 pathway is intricately regulated. Here we report that the RNA binding protein RALY functions as an oncogenic factor in lung cancer. RALY simultaneously binds to Mdm2 and the deubiquitinating enzyme USP7. Via these interactions, RALY not only stabilizes Mdm2 by stimulating the deubiquitinating activity of USP7 toward Mdm2 but also increases the trans-E3 ligase activity of Mdm2 toward p53. Consequently, RALY enhances Mdm2-mediated ubiquitination and degradation of p53. Functionally, RALY promotes lung tumorigenesis, at least partially, via negative regulation of p53. These findings suggest that RALY destabilizes p53 by modulating the function of Mdm2 at multiple levels. Our study also indicates a critical role for RALY in promoting lung tumorigenesis via p53 inhibition.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Humanos , Transformación Celular Neoplásica/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Pulmón/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación
12.
Nucleic Acids Res ; 51(3): 1393-1408, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36620872

RESUMEN

In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C , ARN Polimerasa II , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/genética , Células Eucariotas/metabolismo
13.
Diabetes Res Clin Pract ; 197: 110261, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681355

RESUMEN

AIM: The regulatory mechanism of m6A regulators in vascular endothelial function of type 2 diabetes mellitus (T2DM) remains largely unknown. We addressed this issue based on the data retrieved Gene Expression Omnibus (GEO) database and experimental validations. METHODS: Expression of m6A methylation regulators was evaluated in T2DM samples of GSE76894 dataset and GSE156341 dataset. Further analysis of candidate m6A methylation regulators was conducted in the thoracic aorta of db/db mice and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). Ectopic expression and depletion experiments were conducted to detect effects of m6A methylation regulators on vascular endothelial function in T2DM. RESULTS: It emerged that three m6A methylation regulators (HNRNPC, RBM15B, and ZC3H13) were highly expressed in T2DM, which were related to vascular EC function, showing diagnostic values for T2DM. HNRNPC expression in the thoracic aorta of db/db mice was higher than that in heterozygous db mice, and HNRNPC expression in HG-induced HUVECs was upregulated when compared with normal glucose-exposed HUVECs. Furthermore, HNRNPC activated PSEN1-dependent Notch pathway to induce eNOS inactivation and NO production decrease, thereby causing vascular endothelial dysfunction in T2DM. CONCLUSIONS: HNRNPC impaired vascular endothelial function to enhance the development of vascular complications in T2DM through PSEN1-mediated Notch signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Vasculares , Animales , Humanos , Ratones , Adenosina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Glucosa/farmacología , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metilación , Presenilina-1/metabolismo , ARN/metabolismo
14.
J Cancer Res Clin Oncol ; 149(8): 4639-4651, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36175801

RESUMEN

PURPOSE: Serum-derived extracellular vesicles (EVs) have been reported to play an important role in non-small cell lung cancer (NSCLC). The current study sought to explore the effect of serum-EVs delivering m6A methylation regulator heterogeneous nuclear ribonucleoprotein C (HNRNPC) on the development of NSCLC through the regulation of discs large-associated protein 5 (DLGAP5). METHODS: NSCLC-related RNA-Seq and clinical data were first obtained from the TCGA database to screen differentially expressed m6A-related regulators, which were intersected with the differential genes in NSCLC-related microarray GSE43458 obtained from the GEO database for survival analysis and clinical correlation analysis. Correlation between HNRNPC and DLGAP5 expression was evaluated. Serum-EVs were isolated and identified, and the uptake of EVs by A549 cells was visualized using fluorescence microscopy. In vivo xenograft tumor models and tumor metastasis models were constructed in nude mice to observe growth and metastasis of NSCLC cells. RESULTS: HNRNPC was associated with poor prognosis and metastasis of NSCLC, and further implicated in the regulation of DNA replication and cell cycle-related pathways. HNRNPC might promote the growth and metastasis of NSCLC by identifying m6A modification of DLGAP5 mRNA. Serum-EVs delivered HNRNPC to NSCLC cells in vitro. In vivo experimentation further confirmed that serum-EVs could deliver HNRNPC to promote the growth and metastasis of NSCLC cells in nude mice. CONCLUSIONS: Our findings highlight that serum-EVs can deliver HNRNPC to NSCLC cells, wherein HNRNPC recognizes the m6A modification of DLGAP5 mRNA, thus ultimately promoting NSCLC growth and metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Animales , Ratones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Metilación , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ratones Desnudos , ARN Mensajero/genética , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/metabolismo
15.
Sci Transl Med ; 14(672): eabo5715, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417487

RESUMEN

Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.


Asunto(s)
Insuficiencia Cardíaca , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Matriz Extracelular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Genes Immun ; 23(8): 246-254, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35941292

RESUMEN

RALY is a multifunctional RNA-binding protein involved in cancer metastasis, prognosis, and chemotherapy resistance in various cancers. However, the molecular mechanism of which is still unclear. We have established RALY overexpression cell lines and studied the effect of RALY on proliferation and apoptosis in HeLa cells. Then we used RNA-seq to analyze the transcriptomes data. Lastly, RT-qPCR experiments had performed to confirm the RNA-seq results. We found that the overexpression of RALY in HeLa cells inhibited proliferation. Moreover, the overexpression of RALY changed the gene expression profile, and the significant upregulation of genes involved immune/inflammatory response related biological process by NOD-like receptor signaling pathway cytokine-cytokine receptor interaction. The significant downregulation genes involved innate immune response by the Primary immunodeficiency pathway. Notably, IFIT1, IFIT2, IFTI3, IFI44, HERC4, and OASL expression had inhibited by the overexpression of RALY. Furthermore, RALY negatively regulates the expression of transcription factors FOS and FOSB. Notably, we found that 645 alternative splicing events had regulated by overexpression of RALY, which is highly enriched in transcription regulation, RNA splicing, and cell proliferation biological process by the metabolic pathway. We show that RALY regulates the expression of immune/inflammatory response-related genes via alternative splicing of FOS in HeLa cells. The novel role of RALY in regulating immune/inflammatory gene expression may explain its function in regulating chemotherapy resistance and provides novel insights into further exploring the molecular mechanism of RALY in regulating cancer immunity and chemo/immune therapies.


Asunto(s)
Empalme Alternativo , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Células HeLa , Proliferación Celular , Transcriptoma
17.
J Environ Pathol Toxicol Oncol ; 41(3): 77-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993957

RESUMEN

Although some evidence has validated the connection between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and the progression of tumors, a pan-cancer investigation is still required. Thus, we explored the oncogenic effect of HNRNPC across many tumors using The Cancer Genome Atlas datasets. Moreover, short hairpin RNAs (shRNAs) were found to repress HNRNPC in lung adenocarcinoma (LUAD) cells, and the effect on LUAD cells proliferation and metastasis was examined using a Cell Counting Kit-8, transwell, and invasion test. HNRNPC was found to be overexpressed in most cancers, and a divergent relationship was observed between the abnormal levels of HNRNPC and tumor prognosis. HNRNPC level was observed to correlate with the cancer-associated fibroblast infiltration, such as lung cancer. Furthermore, higher HNRNPC levels were found in LUAD tissues and cells. Subsequently, Kaplan-Meier analysis revealed that the increased HNRNPC level was connected with worse overall survival and disease-free survival in LUAD patients. Moreover, HNRNPC silencing reduced the progression of A549 and H1299 cells, including proliferation, migration, and invasion. This is the first pan-cancer investigation that presents a relatively systematic finding of the oncogenic effect of HNRNPC among many cancer types. Our data indicate that HNRNPC facilitates the biological processes of LUAD cells; nevertheless, further research on the mechanism underlying the role of HNRNPC in LUAD development is warranted.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Neoplasias Pulmonares/patología
18.
Cancer Sci ; 113(10): 3347-3361, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35848884

RESUMEN

RNA-binding protein (RBP) dysregulation is functionally linked to several human diseases, including neurological disorders, cardiovascular disease, and cancer. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RBPs involved in nucleic acid metabolism. A growing body of studies has shown that the dysregulated hnRNPs play important roles in tumorigenesis. Here, we found that heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRNPC) had good performance in distinguishing between hepatocellular carcinoma (HCC) and normal liver tissues through bioinformatics analysis. Further investigation revealed that HNRNPC was significantly correlated with multiple malignant characteristics of HCC, including tumor size, microvascular invasion, tumor differentiation, and TNM stage. Patients with HCC with positive HNRNPC expression exhibited decreased overall survival and increased recurrence rate. HNRNPC downregulation inhibited HCC invasion and metastasis. The decreased expression of hypoxia inducible factor 1 subunit alpha (HIF1A) was identified as the molecular mechanism underlying HNRNPC downregulation-inhibited HCC metastasis by RNA sequencing. Mechanistically, HNRNPC downregulation decreased HIF1A expression by destabilizing HIF1A mRNA. HIF1A overexpression rescued the decrease in invasiveness and metastasis of HCC induced by HNRNPC downregulation. Additionally, interleukin (IL)-6/STAT3 signaling upregulated HNRNPC expression in HCC cells, and knockdown of HNRNPC significantly inhibited IL-6/STAT3-enhanced HCC metastasis. Furthermore, anti-IL-6 antibody siltuximab significantly inhibited IL-6-mediated HCC metastasis. In summary, our research revealed the clinical value, functional role, and molecular mechanism of HNRNPC in HCC and showed the potential of HNRNPC as a biomarker for diagnosis, prognosis, and further therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , ARN Mensajero , Proteínas de Unión al ARN/genética , Factor de Transcripción STAT3/metabolismo
19.
Exp Mol Med ; 54(6): 812-824, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35729324

RESUMEN

MicroRNA (miRNA) processing is a critical step in mature miRNA production. Its dysregulation leads to an increase in miRNA isoforms with heterogenous 5'-ends (isomiRs), which can recognize distinct target sites because of their shifted seed sequence. Although some miRNA genes display productive expression of their 5'-isomiRs in cancers, how their production is controlled and how 5'-isomiRs affect tumor progression have yet to be explored. In this study, based on integrative analyses of high-throughput sequencing data produced by our group and publicly available data, we demonstrate that primary miR-21 (pri-miR-21) is processed into the cancer-specific isomiR isomiR-21-5p | ±1, which suppresses growth hormone receptor (GHR) in liver cancer. Treatment with antagomirs against isomiR-21-5p | ±1 inhibited the in vitro tumorigenesis of liver cancer cells and allowed the recovery of GHR, whereas the introduction of isomiR-21-5p | ±1 mimics attenuated these effects. These effects were validated in a mouse model of spontaneous liver cancer. Heterogeneous nuclear ribonucleoprotein C and U2 small nuclear RNA auxiliary factor 2 were predicted to bind upstream of pre-miR-21 via a poly-(U) motif and influence Drosha processing to induce the production of isomiR-21-5p | ±1. Our findings suggest an oncogenic function for the non-canonical isomiR-21-5p | ±1 in liver cancer, and its production was shown to be regulated by hnRNPC.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C , MicroARNs , Animales , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Isoformas de Proteínas , Procesamiento Postranscripcional del ARN
20.
Cancer Lett ; 538: 215711, 2022 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-35490918

RESUMEN

Alternative splicing is an important RNA processing event that contributes to RNA complexity and protein diversity in cancer. Accumulating evidence demonstrates the essential roles of some alternatively spliced genes in carcinogenesis. However, the potential roles of alternatively spliced genes in hepatocellular carcinoma (HCC) are still largely unknown. Here we showed that the HnRNP Associated with Lethal Yellow Protein Homolog (RALY) gene is upregulated and associated with poor outcomes in HCC patients. RALY acts as a tumor-promoting factor by cooperating with splicing factor 3b subunit 3 (SF3B3) and modulating the splicing switch of Metastasis Associated 1 (MTA1) from MTA-S to MTA1-L. Normally, MTA1-S inhibits cell proliferation by reducing the transcription of cholesterol synthesis genes. In HCC, RALY and SF3B3 cooperate to regulate the MTA1 splicing switch, leading to a reduction in the MTA1-S level, and alleviating the inhibitory effect of MTA1-S on cholesterol synthesis genes, thus promoting HCC cell proliferation. In conclusion, our results revealed that the RALY-SF3B3/MTA1/cholesterol synthesis pathway contributes essentially to hepatic carcinogenesis and could serve as a promising therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Empalme Alternativo , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Colesterol/biosíntesis , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Neoplasias Hepáticas/patología , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA