Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.942
Filtrar
1.
Adv Sci (Weinh) ; 11(35): e2403387, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018261

RESUMEN

RNA splicing is a dynamic molecular process in response to environmental stimuli and is strictly regulated by the spliceosome. Sm proteins, constituents of the spliceosome, are key components that mediate splicing reactions; however, their potential role in hepatocellular carcinoma (HCC) is poorly understood. In the study, SNRPD2 (PD2) is found to be the most highly upregulated Sm protein in HCC and to act as an oncogene. PD2 modulates DDX39A intron retention together with HNRNPL to sustain the DDX39A short variant (39A_S) expression. Mechanistically, 39A_S can mediate MYC mRNA nuclear export to maintain high MYC protein expression, while MYC in turn potentiates PD2 transcription. Importantly, digitoxin can directly interact with PD2 and has a notable cancer-suppressive effect on HCC. The study reveals a novel mechanism by which DDX39A senses oncogenic MYC signaling and undergoes splicing via PD2 to form a positive feedback loop in HCC, which can be targeted by digitoxin.


Asunto(s)
Carcinoma Hepatocelular , ARN Helicasas DEAD-box , Intrones , Neoplasias Hepáticas , Empalme del ARN , Empalmosomas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Intrones/genética , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratones , Animales , Regulación Neoplásica de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
2.
Int J Biol Macromol ; 275(Pt 2): 133663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969036

RESUMEN

Spinal muscular atrophy (SMA) is a disease that results from mutations in the Survival of Motor Neuron (SMN) gene 1, leading to muscle atrophy due to motor neurons degeneration. SMN plays a crucial role in the assembly of spliceosomal small nuclear ribonucleoprotein complexes via binding to the arginine-glycine rich C-terminal tails of Sm proteins recognized by SMN Tudor domain. E134K Tudor mutation, cause of the more severe type I SMA, compromises the SMN-Sm interaction without a perturbation of the domain fold. By molecular dynamics simulations, we investigated the mechanism of Tudor-SmD1 interaction, and the effects on it of E134K mutation. It was observed that E134 is crucial to catch the positive dimethylated arginines (DMRs) of the SmD1 tail that, wrapping around the acidic Tudor surface, enters a central DMR into an aromatic cage. The flexible cage residue Y130 must be blocked from the wrapped tail to assure a stable binding. The charge inversion in E134K mutation causes the loss of a critical anchor point, disfavoring the tail wrapping and leaving Y130 free to swing, leading to DMR detachments and exposition of the C-terminal region of the tail. This could suggest new hypotheses regarding a possible autoimmune response by anti-Sm autoantibodies.


Asunto(s)
Atrofia Muscular Espinal , Mutación , Unión Proteica , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Simulación de Dinámica Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/química
3.
PLoS Genet ; 20(6): e1011316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833506

RESUMEN

Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.


Asunto(s)
Empalme del ARN , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transcripción Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones/genética , Mutación , Empalme Alternativo/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
4.
Nature ; 630(8018): 1012-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778104

RESUMEN

Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron1. Alternatively, it can occur through an exon-defined pathway2-5, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5' splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex6,7. Exon definition promotes the splicing of upstream introns2,8,9 and plays a key part in alternative splicing regulation10-16. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5' splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.


Asunto(s)
Exones , Intrones , Empalme del ARN , Empalmosomas , Humanos , Empalme Alternativo , Microscopía por Crioelectrón , Exones/genética , Intrones/genética , Modelos Moleculares , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Empalmosomas/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura
5.
Nucleic Acids Res ; 52(12): 7245-7260, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676950

RESUMEN

Spliced leader trans-splicing of pre-mRNAs is a critical step in the gene expression of many eukaryotes. How the spliced leader RNA and its target transcripts are brought together to form the trans-spliceosome remains an important unanswered question. Using immunoprecipitation followed by protein analysis via mass spectrometry and RIP-Seq, we show that the nematode-specific proteins, SNA-3 and SUT-1, form a complex with a set of enigmatic non-coding RNAs, the SmY RNAs. Our work redefines the SmY snRNP and shows for the first time that it is essential for nematode viability and is involved in spliced leader trans-splicing. SNA-3 and SUT-1 are associated with the 5' ends of most, if not all, nascent capped RNA polymerase II transcripts, and they also interact with components of the major nematode spliced leader (SL1) snRNP. We show that depletion of SNA-3 impairs the co-immunoprecipitation between one of the SL1 snRNP components, SNA-2, and several core spliceosomal proteins. We thus propose that the SmY snRNP recruits the SL1 snRNP to the 5' ends of nascent pre-mRNAs, an instrumental step in the assembly of the trans-spliceosome.


Asunto(s)
Precursores del ARN , ARN Lider Empalmado , Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Animales , ARN Lider Empalmado/metabolismo , ARN Lider Empalmado/genética , Precursores del ARN/metabolismo , Precursores del ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/metabolismo , Empalmosomas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Trans-Empalme , Unión Proteica
6.
RNA ; 30(6): 695-709, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38443114

RESUMEN

In spliceosome assembly, the 5' splice site is initially recognized by U1 snRNA. U1 leaves the spliceosome during the assembly process, therefore other factors contribute to the maintenance of 5' splice site identity as it is loaded into the catalytic site. Recent structural data suggest that human tri-snRNP 27K (SNRP27) M141 and SNU66 H734 interact to stabilize the U4/U6 quasi-pseudo knot at the base of the U6 snRNA ACAGAGA box in pre-B complex. Previously, we found that mutations in Caenorhabditis elegans at SNRP-27 M141 promote changes in alternative 5'ss usage. We tested whether the potential interaction between SNRP-27 M141 and SNU-66 H765 (the C. elegans equivalent position to human SNU66 H734) contributes to maintaining 5' splice site identity during spliceosome assembly. We find that SNU-66 H765 mutants promote alternative 5' splice site usage. Many of the alternative 5' splicing events affected by SNU-66(H765G) overlap with those affected SNRP-27(M141T). Double mutants of snrp-27(M141T) and snu-66(H765G) are homozygous lethal. We hypothesize that mutations at either SNRP-27 M141 or SNU-66 H765 allow the spliceosome to load alternative 5' splice sites into the active site. Tests with mutant U1 snRNA and swapped 5' splice sites indicate that the ability of SNRP-27 M141 and SNU-66 H765 mutants to affect a particular 5' splice alternative splicing event is dependent on both the presence of a weaker consensus 5'ss nearby and potentially nearby splicing factor binding sites. Our findings confirm a new role for the C terminus of SNU-66 in maintenance of 5' splice site identity during spliceosome assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sitios de Empalme de ARN , ARN Nuclear Pequeño , Empalmosomas , Animales , Empalme Alternativo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutación , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Empalmosomas/metabolismo , Empalmosomas/genética
7.
PeerJ ; 12: e16876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500533

RESUMEN

Background & Aims: Small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70) as one of the components of the U1 small nuclear ribonucleoprotein (snRNP) is rarely reported in cancers. This study aims to estimate the application potential of SNRNP70 in hepatocellular carcinoma (HCC) clinical practice. Methods: Based on the TCGA database and cohort of HCC patients, we investigated the expression patterns and prognostic value of SNRNP70 in HCC. Then, the combination of SNRNP70 and alpha-fetoprotein (AFP) in 278 HCC cases was analyzed. Next, western blotting and immunohistochemistry were used to detect the expression of SNRNP70 in nucleus and cytoplasm. Finally, Cell Counting Kit-8 (CCK-8) and scratch wound healing assays were used to detect the effect of SNRNP70 on the proliferation and migration of HCC cells. Results: SNRNP70 was highly expressed in HCC. Its expression was increasingly high during the progression of HCC and was positively related to immune infiltration cells. Higher SNRNP70 expression indicated a poor outcome of HCC patients. In addition, nuclear SNRNP70/AFP combination could be a prognostic biomarker for overall survival and recurrence. Cell experiments confirmed that knockdown of SNRNP70 inhibited the proliferation and migration of HCC cells. Conclusion: SNRNP70 may be a new biomarker for HCC progression and HCC diagnosis as well as prognosis. SNRNP70 combined with serum AFP may indicate the prognosis and recurrence status of HCC patients after operation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/genética , Neoplasias Hepáticas/genética , Relevancia Clínica , Biomarcadores de Tumor/genética , Ribonucleoproteínas Nucleares Pequeñas , Ribonucleoproteína Nuclear Pequeña U1
8.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499487

RESUMEN

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Asunto(s)
ARN Helicasas DEAD-box , Factores de Empalme de ARN , ARN Nuclear Pequeño , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Humanos , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Empalme del ARN , Intrones/genética , Células HeLa , Unión Proteica , Cuerpos Enrollados/metabolismo , Células HEK293
9.
Science ; 383(6688): 1245-1252, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484052

RESUMEN

The minor spliceosome, which is responsible for the splicing of U12-type introns, comprises five small nuclear RNAs (snRNAs), of which only one is shared with the major spliceosome. In this work, we report the 3.3-angstrom cryo-electron microscopy structure of the fully assembled human minor spliceosome pre-B complex. The atomic model includes U11 small nuclear ribonucleoprotein (snRNP), U12 snRNP, and U4atac/U6atac.U5 tri-snRNP. U11 snRNA is recognized by five U11-specific proteins (20K, 25K, 35K, 48K, and 59K) and the heptameric Sm ring. The 3' half of the 5'-splice site forms a duplex with U11 snRNA; the 5' half is recognized by U11-35K, U11-48K, and U11 snRNA. Two proteins, CENATAC and DIM2/TXNL4B, specifically associate with the minor tri-snRNP. A structural analysis uncovered how two conformationally similar tri-snRNPs are differentiated by the minor and major prespliceosomes for assembly.


Asunto(s)
Intrones , ARN Nuclear Pequeño , Empalmosomas , Humanos , Microscopía por Crioelectrón , Ribonucleoproteínas Nucleares Pequeñas/química , Sitios de Empalme de ARN , Empalme del ARN , ARN Nuclear Pequeño/química , Empalmosomas/química , Conformación de Ácido Nucleico
10.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38517341

RESUMEN

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Humanos , Adenosina Trifosfatasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
11.
Thorac Cancer ; 15(11): 919-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462740

RESUMEN

BACKGROUND: Splicing factor B subunit 4 (SF3B4) has been confirmed to participate in the progression of many cancers and is considered to be a potential target for non-small cell lung cancer (NSCLC). Thus, the role and molecular mechanism of SF3B4 in NSCLC progression deserves further study. METHODS: Quantitative real-time PCR and western blot were employed to detect the mRNA and protein levels of SF3B4, Sm-like protein 4 (LSM4) and methyltransferase-like 3 (METTL3). Cell proliferation, apoptosis, invasion, migration and stemness were tested by cell counting kit-8, colony formation, flow cytometry, transwell, wound healing, and sphere formation assays. The interaction between SF3B4 and METTL3 or LSM4 was confirmed by MeRIP, RIP and Co-IP assays. Mice xenograft models were constructed to assess the effects of METTL3 and SF3B4 on NSCLC tumorigenesis. RESULTS: SF3B4 had high expression in NSCLC tissues and was associated with the shorter overall survival of NSCLC patients. Knockdown of SF3B4 suppressed NSCLC cell proliferation, invasion, migration and stemness, while inducing apoptosis. METTL3 promoted SF3B4 mRNA stability by m6A modification, and its knockdown inhibited NSCLC cell growth, metastasis and stemness by downregulating SF3B4. SF3B4 could interact with LSM4, and sh-SF3B4-mediated the inhibition on NSCLC cell functions could be reversed by LSM4 overexpression. In addition, reduced METTL3 expression restrained NSCLC tumor growth, and this effect was reversed by SF3B4 overexpression. CONCLUSION: METTL3-stablized SF3B4 promoted NSCLC cell growth, metastasis and stemness via positively regulating LSM4.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias Pulmonares/genética , Metiltransferasas/genética , Ribonucleoproteínas Nucleares Pequeñas , Factores de Empalme de ARN/genética
12.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413582

RESUMEN

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Asunto(s)
Distrofias Musculares , Niño , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo
13.
Arch Med Res ; 55(3): 102970, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401326

RESUMEN

BACKGROUND: The relationship between GEMIN4 genetic variants and cancer, especially bladder carcinoma (BLCA), has been explored without conclusive results. This study aims to elucidate the link between GEMIN4 polymorphisms and BLCA susceptibility through genetic analyses, bioinformatics, and molecular dynamics (MD) simulations. METHODS: A cohort of 249 participants (121 BLCA patients and 128 unrelated controls) was enrolled. PCR was employed for allelic discrimination of GEMIN4 variants, followed by subgroup stratification, haplotype analyses, structural prediction using the AlphaFold2 prediction tool, subsequent MD simulations, structural analysis, and residue interaction mapping using Desmond, UCSF ChimeraX, and Cytoscape softwares. RESULTS: The rs.2740348*G variant demonstrated a protective role against BLCA in allelic (OR = 0.55, p = 0.002) and recessive (OR = 0.54, p = 0.017) models, whereas the rs.7813*T variant increased BLCA risk under the recessive model (OR = 1.90, p = 0.019). Haplotype analysis revealed a significant association between GEMIN4 haplotype (rs.2740348*C/rs.7813*T) with increased BLCA risk (OR = 2.01, p = 0.004). Univariate analysis revealed associations of the variants with albumin levels and absolute neutrophil count in BLCA patients. Pathogenicity evaluation categorized p.Gln450Glu as neutral and p.Arg1033Cys as deleterious. MD simulations revealed structural alterations and conformational shifts in the GEMIN4 protein induced by the Glu450 and Cys1033 mutations. CONCLUSIONS: The study highlights the dual role of GEMIN4 variants in BLCA susceptibility, with rs.2740348 conferring protection and rs.7813 increasing risk. The Glu450 residue positively impacted protein stability, while Cys1033 had a detrimental effect on protein function. These findings underscore the significance of GEMIN4 variants in BLCA susceptibility and pave the way for future diagnostic and therapeutic initiatives.


Asunto(s)
Carcinoma , Neoplasias de la Vejiga Urinaria , Humanos , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Biología Computacional , Alelos , Antígenos de Histocompatibilidad Menor , Ribonucleoproteínas Nucleares Pequeñas
14.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301887

RESUMEN

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Asunto(s)
Actinas , Quinasa 9 Dependiente de la Ciclina , Factor B de Elongación Transcripcional Positiva , Humanos , Actinas/genética , Actinas/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética
15.
Genetics ; 226(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37982586

RESUMEN

Methylphosphate Capping Enzyme (MePCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MePCE in vitro, little is known about its functions in vivo, or what roles-if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MePCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MePCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MePCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.


Asunto(s)
Drosophila melanogaster , Metiltransferasas , Animales , Femenino , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN Nuclear Pequeño/genética
16.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958537

RESUMEN

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.


Asunto(s)
Proteínas de Unión al ARN , Proteínas Quinasas S6 Ribosómicas 70-kDa , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosforilación , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/genética , Uridina/metabolismo
17.
Nat Commun ; 14(1): 6580, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852981

RESUMEN

Spliceosomal snRNPs are multicomponent particles that undergo a complex maturation pathway. Human Sm-class snRNAs are generated as 3'-end extended precursors, which are exported to the cytoplasm and assembled together with Sm proteins into core RNPs by the SMN complex. Here, we provide evidence that these pre-snRNA substrates contain compact, evolutionarily conserved secondary structures that overlap with the Sm binding site. These structural motifs in pre-snRNAs are predicted to interfere with Sm core assembly. We model structural rearrangements that lead to an open pre-snRNA conformation compatible with Sm protein interaction. The predicted rearrangement pathway is conserved in Metazoa and requires an external factor that initiates snRNA remodeling. We show that the essential helicase Gemin3, which is a component of the SMN complex, is crucial for snRNA structural rearrangements during snRNP maturation. The SMN complex thus facilitates ATP-driven structural changes in snRNAs that expose the Sm site and enable Sm protein binding.


Asunto(s)
Precursores del ARN , ARN Nuclear Pequeño , Humanos , ARN Nuclear Pequeño/metabolismo , Proteínas del Complejo SMN/metabolismo , Precursores del ARN/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas Nucleares snRNP/genética
18.
Nucleic Acids Res ; 51(20): 10970-10991, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811895

RESUMEN

P-TEFb and CDK12 facilitate transcriptional elongation by RNA polymerase II. Given the prominence of both kinases in cancer, gaining a better understanding of their interplay could inform the design of novel anti-cancer strategies. While down-regulation of DNA repair genes in CDK12-targeted cancer cells is being explored therapeutically, little is known about mechanisms and significance of transcriptional induction upon inhibition of CDK12. We show that selective targeting of CDK12 in colon cancer-derived cells activates P-TEFb via its release from the inhibitory 7SK snRNP. In turn, P-TEFb stimulates Pol II pause release at thousands of genes, most of which become newly dependent on P-TEFb. Amongst the induced genes are those stimulated by hallmark pathways in cancer, including p53 and NF-κB. Consequently, CDK12-inhibited cancer cells exhibit hypersensitivity to inhibitors of P-TEFb. While blocking P-TEFb triggers their apoptosis in a p53-dependent manner, it impedes cell proliferation irrespective of p53 by preventing induction of genes downstream of the DNA damage-induced NF-κB signaling. In summary, stimulation of Pol II pause release at the signal-responsive genes underlies the functional dependence of CDK12-inhibited cancer cells on P-TEFb. Our study establishes the mechanistic underpinning for combinatorial targeting of CDK12 with either P-TEFb or the induced oncogenic pathways in cancer.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Neoplasias/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Línea Celular Tumoral
19.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37872381

RESUMEN

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de IgG , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Superficie , Leucemia Mieloide Aguda/tratamiento farmacológico , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Ribonucleoproteínas Nucleares Pequeñas , Microambiente Tumoral
20.
RNA ; 29(11): 1673-1690, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562960

RESUMEN

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U7 , Ribonucleoproteínas Nucleares Pequeñas , Animales , Ribonucleoproteína Nuclear Pequeña U7/química , Metilación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Histonas/metabolismo , Arginina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...