Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106304

RESUMEN

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Modelos Animales de Enfermedad , Ritmo Gamma , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Cognición/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Memoria/efectos de los fármacos , Receptores de GABA-A/metabolismo , Ratones Transgénicos , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
2.
Hippocampus ; 34(9): 464-490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38949057

RESUMEN

Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.


Asunto(s)
Ritmo beta , Ritmo Gamma , Hipocampo , Bulbo Olfatorio , Pilocarpina , Animales , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Masculino , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hipocampo/fisiología , Ratas , Pilocarpina/farmacología , Ritmo beta/efectos de los fármacos , Ritmo beta/fisiología , Ácido Kaínico/farmacología , Agonistas Muscarínicos/farmacología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Escopolamina/farmacología , Fisostigmina/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Antagonistas Muscarínicos/farmacología
3.
Schizophr Bull ; 50(5): 1104-1116, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934800

RESUMEN

BACKGROUND AND HYPOTHESIS: N-Methyl-d-aspartate receptor (NMDA-R) hypofunctioning has been hypothesized to be involved in circuit dysfunctions in schizophrenia (ScZ). Yet, it remains to be determined whether the physiological changes observed following NMDA-R antagonist administration are consistent with auditory gamma-band activity in ScZ which is dependent on NMDA-R activity. STUDY DESIGN: This systematic review investigated the effects of NMDA-R antagonists on auditory gamma-band activity in preclinical (n = 15) and human (n = 3) studies and compared these data to electro/magneto-encephalographic measurements in ScZ patients (n = 37) and 9 studies in early-stage psychosis. The following gamma-band parameters were examined: (1) evoked spectral power, (2) intertrial phase coherence (ITPC), (3) induced spectral power, and (4) baseline power. STUDY RESULTS: Animal and human pharmacological data reported a reduction, especially for evoked gamma-band power and ITPC, as well as an increase and biphasic effects of gamma-band activity following NMDA-R antagonist administration. In addition, NMDA-R antagonists increased baseline gamma-band activity in preclinical studies. Reductions in ITPC and evoked gamma-band power were broadly compatible with findings observed in ScZ and early-stage psychosis patients where the majority of studies observed decreased gamma-band spectral power and ITPC. In regard to baseline gamma-band power, there were inconsistent findings. Finally, a publication bias was observed in studies investigating auditory gamma-band activity in ScZ patients. CONCLUSIONS: Our systematic review indicates that NMDA-R antagonists may partially recreate reductions in gamma-band spectral power and ITPC during auditory stimulation in ScZ. These findings are discussed in the context of current theories involving alteration in E/I balance and the role of NMDA hypofunction in the pathophysiology of ScZ.


Asunto(s)
Ritmo Gamma , Trastornos Psicóticos , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/tratamiento farmacológico , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/tratamiento farmacológico , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Magnetoencefalografía , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Auditivos/efectos de los fármacos , Estimulación Acústica , Animales
4.
Brain Res ; 1841: 149091, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897535

RESUMEN

Auditory neural networks in the brain naturally entrain to rhythmic stimuli. Such synchronization is an accessible index of local network performance as captured by EEG. Across species, click trains delivered âˆ¼ 40 Hz show strong entrainment with primary auditory cortex (Actx) being a principal source. Imaging studies have revealed additional cortical sources, but it is unclear if they are functionally distinct. Since auditory processing evolves hierarchically, we hypothesized that local synchrony would differ between between primary and association cortices. In female SD rats (N = 12), we recorded 40 Hz click train-elicited gamma oscillations using epidural electrodes situated at two distinct sites; one above the prefrontal cortex (PFC) and another above the Actx, after dosing with saline (1 ml/kg, sc) or the NMDA antagonist, MK801 (0.025, 0.05 or 0.1 mpk), in a blocked crossover design. Post-saline, both regions showed a strong 40 Hz auditory steady state response (ASSR). The latencies for the N1 response were âˆ¼ 16 ms (Actx) and âˆ¼ 34 ms (PFC). Narrow band (38-42 Hz) gamma oscillations appeared rapidly (<40 ms from stim onset at Actx but in a more delayed fashion (∼200 ms) at PFC. MK801 augmented gamma synchrony at Actx while dose-dependently disrupting at the PFC. Event-related gamma (but not beta) coherence, an index of long-distance connectivity, was disrupted by MK801. In conclusion, local network gamma synchrony in a higher order association cortex performs differently from that of the primary auditory cortex. We discuss these findings in the context of evolving sound processing across the cortical hierarchy.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Maleato de Dizocilpina , Potenciales Evocados Auditivos , Ritmo Gamma , Corteza Prefrontal , Ratas Sprague-Dawley , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Auditiva/fisiología , Corteza Auditiva/efectos de los fármacos , Femenino , Maleato de Dizocilpina/farmacología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Ratas , Antagonistas de Aminoácidos Excitadores/farmacología , Percepción Auditiva/fisiología , Percepción Auditiva/efectos de los fármacos , Electroencefalografía/métodos
5.
Exp Neurol ; 378: 114833, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782350

RESUMEN

Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs). Phase-amplitude coupling (PAC), power, coherence, and Granger causality analyses were conducted for electrophysiological data. The findings demonstrated increased beta oscillations with directionality from M1 to Str in parkinsonian state. During on-state dyskinesia, elevated broadband gamma activity was modulated by the phase of theta activity in Str, while M1 â†’ Str gamma causality mediated narrowband gamma oscillations in Str. Striatal gamma power (both periodic and aperiodic power), periodic power, peak frequency, and PAC at 80 min (corresponding to the peak dyskinesia) after repeated levodopa injections across recording days (day 30, 33, 36, 39, and 42) increased progressively, correlating with total AIMs. Additionally, a time-dependent parabolic trend of PAC, peak frequency and gamma power was observed after levodopa injection on day 42 from 20 to 120 min, which also correlated with corresponding AIMs. Fenobam effectively alleviates dyskinesia, suppresses enhanced gamma oscillations in the M1-Str directionality, and reduces PAC in Str. The temporal characteristics of gamma oscillations provide parameters for classifying LID severity. Antagonizing striatal mGluR5, a promising therapeutic target for dyskinesia, exerts its effects by modulating gamma activity.


Asunto(s)
Cuerpo Estriado , Discinesia Inducida por Medicamentos , Ritmo Gamma , Animales , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Ratas , Masculino , Discinesia Inducida por Medicamentos/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Ratas Sprague-Dawley , Levodopa/efectos adversos , Levodopa/farmacología , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Imidazoles
6.
Epilepsia ; 65(7): 2138-2151, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780490

RESUMEN

OBJECTIVE: Sex determines cognitive outcome in animal models of early life seizure, where males exhibit impaired hippocampal-dependent learning and memory compared with females. The physiological underpinnings of this sex effect are unclear. Cholinergic signaling is essential for the generation of hippocampal oscillations, and supplementation of cholinergic precursors prior to status epilepticus in immature male rats prevents subsequent memory deficits. We hypothesized that there are sex differences in acetylcholine circuits and their response to experimental febrile status epilepticus (eFSE). METHODS: eFSE was induced in male and female rat pups. We transversed the hippocampus of postnatal day >60 control (CTL) and eFSE rats with a 64-channel laminar silicon probe to assay cholinergic-dependent theta oscillations under urethane anesthesia. Local field potential properties were compared during (1) baseline sensory stimulation, (2) pharmacological stimulation via acetylcholine reuptake blockade, and (3) sensory stimulation after muscarinic acetylcholine receptor block (atropine). RESULTS: In all groups, a baseline tail pinch could elicit theta oscillations via corticohippocampal synaptic input. Following atropine, a tail pinch response could no longer be elicited in CTL male, CTL female, or eFSE female rats. In contrast, induced slow theta power in eFSE males after atropine was not decreased to spontaneous levels. Analysis of oscillation bandwidths revealed sex differences in acetylcholine modulation of theta frequency and slow gamma frequency and power. This study also identified significant effects of both sex and eFSE on baseline theta-gamma comodulation, indicating a loss of coupling in eFSE males and a potential gain of function in eFSE females. SIGNIFICANCE: There are differences in cholinergic modulation of theta and gamma signal coordination between male and female rats. These differences may underlie worse cognitive outcomes in males following eFSE. Promoting the efficacy of muscarinic acetylcholine signaling prior to or following early life seizures could elucidate a mechanism for the temporal discoordination of neural signals within and between hippocampus and neocortex and provide a novel therapeutic approach for improving cognitive outcomes.


Asunto(s)
Ritmo Gamma , Hipocampo , Caracteres Sexuales , Estado Epiléptico , Ritmo Teta , Animales , Femenino , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ratas , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Estado Epiléptico/fisiopatología , Estado Epiléptico/tratamiento farmacológico , Ratas Sprague-Dawley , Convulsiones Febriles/fisiopatología , Acetilcolina/metabolismo , Atropina/farmacología
7.
Neuropharmacology ; 254: 109970, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685343

RESUMEN

Pharmacological approaches to induce N-methyl-d-aspartate receptor (NMDAR) hypofunction have been intensively used to understand the aetiology and pathophysiology of schizophrenia. Yet, the precise cellular and molecular mechanisms that relate to brain network dysfunction remain largely unknown. Here, we used a set of complementary approaches to assess the functional network abnormalities present in male mice that underwent a 7-day subchronic phencyclidine (PCP 10 mg/kg, subcutaneously, once daily) treatment. Our data revealed that pharmacological intervention with PCP affected cognitive performance and auditory evoked gamma oscillations in the prefrontal cortex (PFC) mimicking endophenotypes of some schizophrenia patients. We further assessed PFC cellular function and identified altered neuronal intrinsic membrane properties, reduced parvalbumin (PV) immunostaining and diminished inhibition onto L5 PFC pyramidal cells. A decrease in the strength of optogenetically-evoked glutamatergic current at the ventral hippocampus to PFC synapse was also demonstrated, along with a weaker shunt of excitatory transmission by local PFC interneurons. On a macrocircuit level, functional ultrasound measurements indicated compromised functional connectivity within several brain regions particularly involving PFC and frontostriatal circuits. Herein, we reproduced a panel of schizophrenia endophenotypes induced by subchronic PCP application in mice. We further recapitulated electrophysiological signatures associated with schizophrenia and provided an anatomical reference to critical elements in the brain circuitry. Together, our findings contribute to a better understanding of the physiological underpinnings of deficits induced by subchronic NMDAR antagonist regimes and provide a test system for characterization of pharmacological compounds.


Asunto(s)
Modelos Animales de Enfermedad , Fenciclidina , Corteza Prefrontal , Receptores de N-Metil-D-Aspartato , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Masculino , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Esquizofrenia/inducido químicamente , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología
8.
Mov Disord ; 39(5): 778-787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532269

RESUMEN

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Electromiografía , Levodopa , Enfermedad de Parkinson , Temblor , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Femenino , Temblor/fisiopatología , Temblor/etiología , Persona de Mediana Edad , Anciano , Levodopa/uso terapéutico , Levodopa/farmacología , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Ritmo beta/fisiología , Ritmo beta/efectos de los fármacos , Electroencefalografía/métodos , Antiparkinsonianos/uso terapéutico
9.
Neuron ; 112(11): 1862-1875.e5, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537642

RESUMEN

A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.


Asunto(s)
Acetilcolina , Hipocampo , Oxitocina , Oxitocina/metabolismo , Acetilcolina/metabolismo , Hipocampo/fisiología , Hipocampo/metabolismo , Animales , Masculino , Optogenética , Neuronas/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Ratones , Ratas , Vigilia/fisiología
10.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489023

RESUMEN

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Asunto(s)
Amidohidrolasas , Benzamidas , Carbamatos , Fenciclidina , Piperidinas , Esquizofrenia , Animales , Masculino , Ratas , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Carbamatos/farmacología , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Fenciclidina/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Pirazoles/farmacología , Ratas Sprague-Dawley , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Esquizofrenia/tratamiento farmacológico
11.
CNS Neurosci Ther ; 29(10): 2998-3013, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37122156

RESUMEN

AIM: Parkinson's disease (PD) is a pervasive neurodegenerative disease, and levodopa (L-dopa) is its preferred treatment. The pathophysiological mechanism of levodopa-induced dyskinesia (LID), the most common complication of long-term L-dopa administration, remains obscure. Accumulated evidence suggests that the dopaminergic as well as non-dopaminergic systems contribute to LID development. As a 5-hydroxytryptamine 1A/1B receptor agonist, eltoprazine ameliorates dyskinesia, although little is known about its electrophysiological mechanism. The aim of this study was to investigate the cumulative effects of chronic L-dopa administration and the potential mechanism of eltoprazine's amelioration of dyskinesia at the electrophysiological level in rats. METHODS: Neural electrophysiological analysis techniques were conducted on the acquired local field potential (LFP) data from primary motor cortex (M1) and dorsolateral striatum (DLS) during different pathological states to obtain the information of power spectrum density, theta-gamma phase-amplitude coupling (PAC), and functional connectivity. Behavior tests and AIMs scoring were performed to verify PD model establishment and evaluate LID severity. RESULTS: We detected exaggerated gamma activities in the dyskinetic state, with different features and impacts in distinct regions. Gamma oscillations in M1 were narrowband manner, whereas that in DLS had a broadband appearance. Striatal exaggerated theta-gamma PAC in the LID state contributed to broadband gamma oscillation, and aperiodic-corrected cortical beta power correlated robustly with aperiodic-corrected gamma power in M1. M1-DLS coherence and phase-locking values (PLVs) in the gamma band were enhanced following L-dopa administration. Eltoprazine intervention reduced gamma oscillations, theta-gamma PAC in the DLS, and coherence and PLVs in the gamma band to alleviate dyskinesia. CONCLUSION: Excessive cortical gamma oscillation is a compelling clinical indicator of dyskinesia. The detection of enhanced PAC and functional connectivity of gamma-band oscillation can be used to guide and optimize deep brain stimulation parameters. Eltoprazine has potential clinical application for dyskinesia.


Asunto(s)
Antiparkinsonianos , Discinesia Inducida por Medicamentos , Ritmo Gamma , Levodopa , Piperazinas , Agonistas de Receptores de Serotonina , Agonistas de Receptores de Serotonina/farmacología , Agonistas de Receptores de Serotonina/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Ritmo Gamma/efectos de los fármacos , Levodopa/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Antiparkinsonianos/efectos adversos , Animales , Ratas , Modelos Animales de Enfermedad , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología
12.
J Neurophysiol ; 127(2): 586-595, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080449

RESUMEN

General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.NEW & NOTEWORTHY In this study, we found that esketamine significantly increased the cortical concentration of multiple neurotransmitters in mice. However, esketamine dynamically simplified the overall network of cortical neurotransmitters at different behavioral states during the perianesthesia period. The concentration of 5-HT in the medial prefrontal cortex (mPFC) was highly correlated with the esketamine-increased gamma oscillation. These findings suggested that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.


Asunto(s)
Anestésicos/farmacología , Ritmo Gamma/efectos de los fármacos , Ketamina/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Serotonina/metabolismo , Anestesia , Animales , Ratones , Corteza Prefrontal/metabolismo
13.
J Psychopharmacol ; 35(11): 1356-1364, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34694190

RESUMEN

BACKGROUND: Delta-9 tetrahydrocannabinol (THC) is a major exogenous psychoactive agent, which acts as a partial agonist on cannabinoid (CB1) receptors. THC is known to inhibit presynaptic neurotransmission and has been repeatedly linked to acute decrements in cognitive function across multiple domains. Previous electrophysiological studies of sensory gating have shown specific deficits in inhibitory processing in cannabis-users, but to date these findings have been limited to the auditory cortices, and the degree to which these aberrations extend to other brain regions remains largely unknown. METHODS: We used magnetoencephalography (MEG) and a paired-pulse somatosensory stimulation paradigm to probe inhibitory processing in 29 cannabis-users (i.e. at least four times per month) and 41 demographically matched non-user controls. MEG responses to each stimulation were imaged in both the oscillatory and time domain, and voxel time-series data were extracted to quantify the dynamics of sensory gating, oscillatory gamma activity, evoked responses, and spontaneous neural activity. RESULTS: We observed robust somatosensory responses following both stimulations, which were used to compute sensory gating ratios. Cannabis-users exhibited significantly impaired gating relative to non-users in somatosensory cortices, as well as decreased spontaneous neural activity. In contrast, oscillatory gamma activity did not appear to be affected by cannabis use. CONCLUSIONS: We observed impaired gating of redundant somatosensory information and altered spontaneous activity in the same cortical tissue in cannabis-users compared to non-users. These data suggest that cannabis use is associated with a decline in the brain's ability to properly filter repetitive information and impairments in cortical inhibitory processing.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Ritmo Gamma/efectos de los fármacos , Uso de la Marihuana/efectos adversos , Inhibición Neural/efectos de los fármacos , Filtrado Sensorial/efectos de los fármacos , Corteza Somatosensorial/efectos de los fármacos , Adulto , Femenino , Humanos , Magnetoencefalografía , Masculino , Adulto Joven
14.
PLoS Comput Biol ; 17(7): e1009235, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329297

RESUMEN

Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.


Asunto(s)
Neuronas Colinérgicas/fisiología , Ritmo Gamma/fisiología , Modelos Neurológicos , Ritmo Teta/fisiología , Acetilcolina/farmacología , Acetilcolina/fisiología , Animales , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Biología Computacional , Simulación por Computador , Ritmo Gamma/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiología , Receptores Colinérgicos/efectos de los fármacos , Receptores Colinérgicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ritmo Teta/efectos de los fármacos
15.
Brain Res Bull ; 174: 84-91, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090935

RESUMEN

Hypertension is the most common chronic disease accompanied by cognitive decline and anxiety-like behavior. Angiotensin II (Ang II) induces hypertension by activating angiotensin II receptor subtype 1 (AT1R). The purpose of the study was to examine the potential underlying mechanism of alterations in cognition and anxiety-like behavior induced by Ang II. Adult C57 mice were intraperitoneal injected with either 1 mg/kg/d Ang II or saline individually for 14 consecutive days. Ang II resulted in cognitive decline and anxious like behavior in C57 mice. Moreover, Ang II disturbed bidirectional synaptic plasticity and neural oscillation coupling between high theta and gamma on PP (perforant pathway)-DG (dentate gyrus) pathway. In addition, Ang II decreased the expression of N-methyl-d-aspartate receptor (NR) 2A and NR 2B and increased the expression of GABAAR α1. The data suggest that Ang II disturb neural oscillations via altering excitatory and inhibitory (E/I) balance and eventually damage cognition and anxiety-like behavior in mice.


Asunto(s)
Angiotensina II/toxicidad , Ansiedad/inducido químicamente , Ansiedad/patología , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/psicología , Ritmo Gamma/efectos de los fármacos , Ritmo Teta/efectos de los fármacos , Animales , Giro Dentado/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/biosíntesis , Reconocimiento en Psicología/efectos de los fármacos
16.
Psychopharmacology (Berl) ; 238(8): 2325-2334, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33944972

RESUMEN

RATIONALE: Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. OBJECTIVE: We investigated the long-term psychometric stability of these measures in a rodent model. METHODS: Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025-0.15 mg/kg) to disrupt the evoked response. RESULTS: We found that 40-Hz ASSR showed good reliability (ICC=0.60-0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33-0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. CONCLUSION: Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Estimulación Acústica/métodos , Estimulación Acústica/normas , Animales , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Reproducibilidad de los Resultados
17.
Exp Neurol ; 343: 113743, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34000250

RESUMEN

Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Nootrópicos/administración & dosificación , Ritmo Teta/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/fisiología , Colinérgicos/administración & dosificación , Dopaminérgicos/administración & dosificación , Evaluación Preclínica de Medicamentos/métodos , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Ritmo Gamma/fisiología , Humanos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/fisiopatología , Red Nerviosa/fisiología , Ritmo Teta/fisiología , Resultado del Tratamiento
18.
Neurobiol Dis ; 155: 105393, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34000417

RESUMEN

Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.


Asunto(s)
Ritmo beta/fisiología , Ritmo Gamma/fisiología , Corteza Motora/fisiopatología , Trastornos Motores/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/fisiopatología , Animales , Ritmo beta/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Prueba de Esfuerzo/métodos , Ritmo Gamma/efectos de los fármacos , Masculino , Corteza Motora/efectos de los fármacos , Trastornos Motores/inducido químicamente , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Long-Evans , Receptores de Dopamina D1/antagonistas & inhibidores
19.
Exp Neurol ; 340: 113670, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662379

RESUMEN

L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks-long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 h. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine's therapeutic effects are region specific. Our findings also have clinical implications, as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.


Asunto(s)
Discinesia Inducida por Medicamentos/prevención & control , Discinesia Inducida por Medicamentos/fisiopatología , Ritmo Gamma/efectos de los fármacos , Ketamina/uso terapéutico , Levodopa/toxicidad , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiparkinsonianos/toxicidad , Relación Dosis-Respuesta a Droga , Ritmo Gamma/fisiología , Ketamina/farmacología , Masculino , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Sprague-Dawley
20.
Neuromolecular Med ; 23(3): 416-427, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33398803

RESUMEN

Theta and gamma rhythms in hippocampus are important to cognitive performance. The cognitive impairments following cerebral ischemia is linked with the dysfunction of theta and gamma oscillations. As the primary mechanism for learning and memory, synaptic plasticity is in connection with these neural oscillations. Although vascular endothelial growth factor (VEGF) is thought to protect synaptic function in the ischemia rats to relieve cognitive impairment, little has been done on its effect of neural dynamics with this process. The present study investigated whether the alternation of neural oscillations in the hippocampus of ischemia rats is one of the potential neuroprotective mechanisms of VEGF. Rats were treated with the intranasal administration of VEGF at 72 h following chronic global cerebral ischemia procedure. Then local field potentials (LFPs) in hippocampal CA1 and CA3 regions were recorded and analyzed. Our results showed that VEGF can improve the power of theta and gamma rhythms in CA1 region after ischemia. Chronic global cerebral ischemia reduced the theta-gamma phase-amplitude coupling (PAC) not only within CA1 area but also in the pathway from CA3 to CA1, while VEGF alleviated the decreased coupling strength. Despite these notable differences, there were no obvious changes in the PAC within CA3 region. Surprisingly, the ischemia state did not affect the phase-phase interaction of hippocampus. In conclusion, our findings demonstrated that VEGF enhanced the theta-gamma PAC strength of CA3-CA1 pathway in ischemia rats, which may futher improve the information transmission within the hippocampus. These results illustrated the potential electrophysiologic mechanism of VEGF on cognitive improvement.


Asunto(s)
Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Administración Intranasal , Animales , Isquemia Encefálica/metabolismo , Estenosis Carotídea , Enfermedad Crónica , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Ritmo Gamma/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Modelos Animales , Distribución Aleatoria , Ratas , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Método Simple Ciego , Ritmo Teta/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...