Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros












Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 706, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030489

RESUMEN

BACKGROUND: According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS: In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS: This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.


Asunto(s)
Frutas , Redes Reguladoras de Genes , Metaboloma , Polygonatum , Rizoma , Transcriptoma , Rizoma/metabolismo , Rizoma/genética , Polygonatum/genética , Polygonatum/metabolismo , Frutas/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Flavonoides/metabolismo
2.
Theor Appl Genet ; 137(8): 194, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080105

RESUMEN

KEY MESSAGE: Rhizome formation of Oryza longistaminata was dependent on the bud shape. The loci qBS3.1, qBS3.2 and qBS3.3 for controlling rhizome formation were functional redundant under Oryza longistaminata background. The rhizome, a root-like underground stem, is the key organ for grasses to achieve perennial growth. Oryza longistaminata, the only rhizomatous wild Oryza species with the same AA genome as cultivated rice, is an important germplasm for developing perennial rice. Our study found that the rhizome formation of O. longistaminata was dependent on the bud shape: the dome-like axillary bud (dome bud) usually penetrated through the leaf sheaths, developing into rhizome (extravaginal branching), but the flat axillary bud (flat bud) wrapped by the leaf sheaths only developed into tiller (intravaginal branching). The genetic loci (QTL) controlling the bud shape (BS) were mapped by entire population genotyping method (F2 population from crossing O. longistaminata with Balilla (Oryza sativa) and selective genotyping mapping method (BC1F2 population from backcrossing F1 with Balilla). A total of twelve loci were identified, including four major-effect QTL: qBS2, qBS3.1, qBS3.2 and qBS3.3, and the genetic network of these twelve loci was established. The dome bud lost the potential to develop into rhizome with the increase in backcross generations under Balilla background. Considering the rapid loss of rhizome under Balilla background, the near-isogenic lines under O. longistaminata background were used to identify the effect of major-effect loci. According to the BC3F2, BC4F2 and BC5F2 under O. longistaminata background, there was some functional redundancy among qBS3.1, qBS3.2 and qBS3.3. Our results provided a new perspective for analyzing the genetic basis of perenniality and laid the foundation for fine mapping and verification of related genes.


Asunto(s)
Mapeo Cromosómico , Oryza , Fenotipo , Sitios de Carácter Cuantitativo , Rizoma , Oryza/genética , Oryza/crecimiento & desarrollo , Rizoma/genética , Rizoma/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Genotipo , Cruzamientos Genéticos
3.
PeerJ ; 12: e17699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006032

RESUMEN

Background: Polygonatum odoratum (Mill.) Druce is a traditional Chinese herb that is widely cultivated in China. Polysaccharides are the major bioactive components in rhizome of P. odoratum and have many important biological functions. Methods: To better understand the regulatory mechanisms of polysaccharide accumulation in P. odoratum rhizomes, the rhizomes of two P. odoratum cultivars 'Y10' and 'Y11' with distinct differences in polysaccharide content were used for transcriptome and metabolome analyses, and the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified. Results: A total of 14,194 differentially expressed genes (DEGs) were identified, of which 6,689 DEGs were down-regulated in 'Y10' compared with those in 'Y11'. KEGG enrichment analysis of the down-regulated DEGs revealed a significant enrichment of 'starch and sucrose metabolism', and 'amino sugar and nucleotide sugar metabolism'. Meanwhile, 80 differentially accumulated metabolites (DAMs) were detected, of which 52 were significantly up-regulated in 'Y11' compared to those in 'Y10'. The up-regulated DAMs were significantly enriched in 'tropane, piperidine and pyridine alkaloid biosynthesis', 'pentose phosphate pathway' and 'ABC transporters'. The integrated metabolomic and transcriptomic analysis have revealed that four DAMs, glucose, beta-D-fructose 6-phosphate, maltose and 3-beta-D-galactosyl-sn-glycerol were significantly enriched for polysaccharide accumulation, which may be regulated by 17 DEGs, including UTP-glucose-1-phosphate uridylyltransferase (UGP2), hexokinase (HK), sucrose synthase (SUS), and UDP-glucose 6-dehydrogenase (UGDH). Furthermore, 8 DEGs (sacA, HK, scrK, GPI) were identified as candidate genes for the accumulation of glucose and beta-D-fructose 6-phosphate in the proposed polysaccharide biosynthetic pathways, and these two metabolites were significantly associated with the expression levels of 13 transcription factors including C3H, FAR1, bHLH and ERF. This study provided comprehensive information on polysaccharide accumulation and laid the foundation for elucidating the molecular mechanisms of medicinal quality formation in P. odoratum rhizomes.


Asunto(s)
Metaboloma , Polygonatum , Polisacáridos , Rizoma , Transcriptoma , Polygonatum/genética , Polygonatum/metabolismo , Polisacáridos/metabolismo , Rizoma/genética , Rizoma/metabolismo , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812229

RESUMEN

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Asunto(s)
Atractylodes , Lactonas , Hojas de la Planta , Sesquiterpenos , Atractylodes/genética , Atractylodes/química , Atractylodes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Sesquiterpenos/metabolismo , Sesquiterpenos/análisis , Lactonas/metabolismo , Lactonas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Furanos/metabolismo , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica de las Plantas , Rizoma/genética , Rizoma/química , Rizoma/metabolismo , Sesquiterpenos de Eudesmano
5.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345936

RESUMEN

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Asunto(s)
Oryza , Rizoma , Transcriptoma , Rizoma/genética , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Genoma de Planta/genética
6.
Plant J ; 118(3): 682-695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251816

RESUMEN

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Asunto(s)
Catecoles , Alcoholes Grasos , Genoma de Planta , Zingiber officinale , Zingiber officinale/genética , Zingiber officinale/metabolismo , Alcoholes Grasos/metabolismo , Catecoles/metabolismo , Genoma de Planta/genética , Evolución Molecular , Retroelementos/genética , Haplotipos , Rizoma/genética , Rizoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
7.
Physiol Plant ; 175(5): e14045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882296

RESUMEN

Lotus rhizome rot caused by Fusarium oxysporum is a common vascular fungal disease in plants that significantly impacts the yield. However, only a few studies have studied the mechanism of Nelumbo nucifera responding to lotus rhizome rot. Here, we investigated the pathogenic genes and miRNAs in lotus rhizome rot to uncover the pathogenic resistant mechanisms by transcriptome and small RNA sequencing of lotus roots after inoculation with Fusarium oxysporum. GO and KEGG functional enrichment analysis showed that differential miRNAs were mostly enriched in starch and sucrose metabolism, biosynthesis of secondary metabolites, glutathione metabolism, brassinosteroid biosynthesis and flavonoid biosynthesis pathways. Twenty-seven upregulated miRNAs, 19 downregulated miRNAs and their target genes were identified. Correlation analysis found that miRNAs negatively regulate target genes, which were also enriched in starch and sucrose metabolism and glutathione metabolism pathways. Their expression was measured by reverse transcription quantitative PCR (qRT-PCR), and the results were consistent with the transcriptome analysis, thus verifying the reliability of transcriptome data. We selected three miRNAs (miRNA858-y, miRNA171-z and a novel miRNA novel-m0005-5p) to test the relationship between miRNAs and their target genes. The activity of the GUS testing assay indicated that miRNA could decrease the GUS activity by inhibiting the expression of their target genes. Collectively, this study provides a comprehensive analysis of transcriptome and small RNA sequencing of lotus root after inoculation with Fusarium oxysporum, and we identified candidate miRNAs and their target genes for breeding strategies of Nelumbo nucifera.


Asunto(s)
MicroARNs , Nelumbo , Rizoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Nelumbo/genética , Almidón/metabolismo , Glutatión/metabolismo , Sacarosa/metabolismo
8.
PLoS One ; 18(7): e0287969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450442

RESUMEN

The rhizome is an economically important part of ginger (Zingiber officinale Rosc.). However, the mechanism of ginger rhizome enlargement remains unclear. In this study, we performed an integrated analysis of the hormone content and transcriptome of ginger at three rhizome enlargement stages: initial enlargement (S1), middle enlargement (S2), and peak enlargement (S3). With rhizome enlargement, the levels of the hormones zeatin (ZT), gibberellic acid (GA), indole acetic acid (IAA), and jasmonic acid (JA) were significantly increased, and this increase was positively correlated with rhizome diameter. Transcriptomic analysis identified a large number of differentially expressed genes (DEGs); the number of DEGs were 2,206 in the transition from S1 to S2, and 1,151 in the transition from S2 to S3. The expression of several genes related to hormone biosynthesis and signalling and cell division or expansion, and transcription factors was significantly altered, which suggests that these genes play essential roles in rhizome enlargement. The results of correlation analysis suggested that the process of ginger rhizome enlargement may be primarily related to the regulation of endogenous cytokinin, GA3, auxin, and JA biosynthesis pathways and signal transduction; GRAS, HB, MYB, MYB122, bZIP60, ARF1, ARF2, E2FB1, and E2FB2, which may regulate the expression of rhizome formation-related genes; and CYC2, CDKB1, CDKB2, EXPA1, and XTH7, which may mediate cell division and expansion. These results provide gene resources and information that will be useful for the molecular breeding in ginger.


Asunto(s)
Rizoma , Zingiber officinale , Rizoma/genética , Rizoma/metabolismo , Zingiber officinale/genética , Perfilación de la Expresión Génica , Transcriptoma , Hormonas/metabolismo
9.
Int J Biol Macromol ; 248: 125921, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499707

RESUMEN

Moso bamboo (Phyllostachys edulis), typically a monopodial scattering bamboo, is famous for its rapid growth. The rhizome-root system of Moso bamboo plays a crucial role in its clonal growth and spatial distribution. However, few studies have focused on rhizome-root systems. Here we collected LBs, RTs, and RGFNSs, the most important parts of the rhizome-root system, to study the molecular basis of the rapid growth of Moso bamboo due to epigenetic changes, such as DNA modifications and small RNAs. The angle of the shoot apical meristem of LB gradually decreased with increasing distance from the mother plant, and the methylation levels of LB were much higher than those of RT and RGFNS. 24 nt small RNAs and mCHH exhibited similar distribution patterns in transposable elements, suggesting a potential association between these components. The miRNA abundance of LB gradually increased with increasing distance from the mother plant, and a negative correlation was observed between gene expression levels and mCG and mCHG levels in the gene body. This study paves the way for further exploring the effects of epigenetic factors on the physiology of Moso bamboo.


Asunto(s)
Metilación de ADN , MicroARNs , Rizoma/genética , Poaceae/genética , Poaceae/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas
10.
J Plant Physiol ; 287: 154003, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301035

RESUMEN

Leymus chinensis, a perennial native forage grass, is widely distributed in the steppes of Inner Mongolia as the dominant species. The main reproductive strategy of this grass is clonal propagation, which occurs via the proliferation of subterranean horizontal stems known as rhizomes. To elucidate the mechanism underlying rhizome development in this grass, we collected 60 accessions of L. chinensis and evaluated their rhizome development. One accession, which we named SR-74 (Strong Rhizomes), had significantly better rhizome development capacity than the accession WR-16 (Weak Rhizomes) in terms of rhizome number, total and primary rhizome length, and number of rhizome seedlings. Rhizome elongation was positively correlated with the number of internodes in the rhizome, which affected plant biomass. Compared to WR-16, SR-74 had higher rhizome tip hardness, higher abundance of transcripts participating in the biosynthesis of cell wall components, and higher levels of the metabolites L-phenylalanine, trans-cinnamic acid, 3-coumaric acid, ferulic acid, and coniferin. These metabolites in the phenylpropanoid biosynthesis pathway are precursors of lignin. In addition, SR-74 rhizomes contained higher amounts of auxin and auxin metabolites, including L-Trp, IPA, IBA, IAA and IAA-Asp, as well as upregulated expression of the auxin biosynthesis and signaling genes YUCCA6, YUCCA8, YUCCA10, YUCCA11, PIN1, PIN2, UGT1, UGT2, UGT4, UGT10, GH3, IAA7, IAA23, and IAA30. We propose a network between auxin signaling and the cell wall underlying rhizome development in L. chinensis.


Asunto(s)
Poaceae , Rizoma , Rizoma/genética , Poaceae/genética , Biomasa , Plantones , Pared Celular
11.
Plant Signal Behav ; 17(1): 2114642, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36189888

RESUMEN

The rhizomes and tubers of Curcuma kwangsiensis have extensive medicinal value in China. However, the inflorescences of C. kwangsiensis are rarely known in horticulture, because of its low field flowering rate. In order to improve the flowering rate of C. kwangsiensis, we conducted drought stress treatment on the rhizome of C. kwangsiensis. The flowering rate of rhizome was the highest after 4d of drought stress treatment, and the buds on the rhizome could be obviously swell on the 4th day of rehydration culture. In order to identify the genes regulating the flowering time of Curcuma kwangsiensis, comparative transcriptome analysis was performed on the buds on rhizomes before drought stress treatment, 4 d after drought stress treatment and 4 d after rehydration culture. During this process, a total of 20 DEGs controlling flowering time and 23 DEGs involved in ABA synthesis and signal transduction were identified, which might regulate the flowering of C. kwangsiensis under drought stress. Some floral integration factors, such as SOC1 and FTIP, were up-regulated under drought stress for 4 d, indicating that C. kwangsiensis had flowering trend under drought stress. The results of the present study will provide theoretical support for the application of Curcuma kwangsiensis in gardening.


Asunto(s)
Curcuma , Sequías , Curcuma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Rizoma/genética , Transcriptoma/genética
12.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4895-4907, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164899

RESUMEN

This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.


Asunto(s)
Atractylodes , Sesquiterpenos , Triterpenos , Atractylodes/genética , Ácido Mevalónico/metabolismo , Rizoma/genética , Sesquiterpenos/metabolismo , Transcriptoma , Triterpenos/metabolismo
13.
J Food Sci ; 87(9): 4250-4263, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35986703

RESUMEN

Lotus (Nelumbo nucifera) is one of the main aquatic vegetables in China. Its seed and rhizome are main edible parts which are rich in starch. Preliminary experiments of starch contents revealed that seed and rhizome expressed great differences in amylose and amylopectin contents. The rhizomes have higher amylopectin content, while the seeds have higher amylose content. In this study, we have estimated 16 varieties of lotus seeds and found that the amylose content of lotus seeds ranged from 30% to 50%, with an average amylose content of 43%, which showed high-amylose content characteristics. Morphological analysis of lotus seed shown that starch rapid accumulated in 20 DAF (day after fertilization) ∼ 26 DAF. Transcriptome of lotus seeds indicated that starch genes played an important role in seed development. Especially in 22 DAF, the genes which controlled amylose synthesis significantly increased, in contrast, the expression of amylopectin-related genes was stable and might limit the synthesis of amylopectin. We further analyzed the expression patterns of 11 key related genes between lotus seeds and rhizomes, and found that the expression of amylose-related genes to were higher in lotus seed, while the expression of genes related to amylopectin synthesis were higher in rhizome. This study provided a comprehensive research of molecular basis for starch in lotus seed and rhizome. Different expression among key genes during starch accumulation might be the principal cause of the differences in starch properties between seed and rhizome. PRACTICAL APPLICATION: Differential expression involved in starch synthesis pathway genes is the main reason for various starch characteristics of seed and rhizome in lotus. High amylose content in lotus seed is a valuable trait for developing functional food.


Asunto(s)
Nelumbo , Amilopectina , Amilosa , Nelumbo/genética , Rizoma/genética , Semillas , Almidón/metabolismo
14.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35886954

RESUMEN

Internode starch biosynthesis is one of the most important traits in lotus rhizome because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to lotus internode starch biosynthesis would help develop molecular improvement strategies, but they are not yet well-investigated. To identify genes and miRNAs involved in internode starch biosynthesis, the cDNA and small RNA libraries of Z6-1, Z6-2, and Z6-3 were sequenced, and their expression were further studied. Through combined analyses of transcriptome data and small RNA sequencing data, a complex co-expression regulatory network was constructed, in which 20 miRNAs could modulate starch biosynthesis in different internodes by tuning the expression of 10 target genes. QRT-PCR analysis, transient co-expression experiment and dual luciferase assay comprehensively confirmed that NnumiR396a down-regulated the expression of NnSS2 and ultimately prevents the synthesis of amylopectin, and NnumiR396b down-regulated the expression of NnPGM2 and ultimately prevents the synthesis of total starch. Our results suggest that miRNAs play a critical role in starch biosynthesis in lotus rhizome, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing lotus rhizome.


Asunto(s)
Lotus , MicroARNs , Nelumbo , Perfilación de la Expresión Génica/métodos , Lotus/genética , MicroARNs/genética , MicroARNs/metabolismo , Nelumbo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rizoma/genética , Rizoma/metabolismo , Análisis de Secuencia de ARN , Almidón/metabolismo
15.
Microbiol Spectr ; 10(4): e0017522, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35867414

RESUMEN

Fusarium wilt, a vascular wilt caused by F. commune, has been a serious problem for the lotus. Although some F. commune isolate genomes have been sequenced, little is known about the genomic information of the strain that causes Fusarium wilt of aquatic plants. In this study, the genome of F. commune FCN23 isolated from lotuses in China was sequenced using Illumina and PacBio sequencing platforms. The FCN23 genome consisted of 53 scaffolds with a combined size of 46,211,149 bp. According to the reference genome, F. oxysporum f. sp. lycopersici 4287 isolated from tomato, it was finally assembled into 14 putative chromosomes, including 10 core and 4 lineage-specific chromosomes. The genome contains about 3.45% repeats and encodes 14,698 putative protein-coding genes. Among these, 1,038 and 296 proteins were potentially secreted proteins and candidate effector proteins, respectively. Comparative genomic analysis showed that the CAZyme-coding genes and secondary metabolite biosynthesis genes of FCN23 were similar to those of other Ascomycetes. Additionally, the transcriptome of FCN23 during infection of lotus was analyzed and 7,013 differentially expressed genes were identified. Eight putative effectors that were upregulated in the infection stage were cloned. Among them, F23a002499 exhibited strong hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. Our results provide a valuable genetic basis for understanding the molecular mechanism of the interaction between F. commune and aquatic plants. IMPORTANCE Fusarium commune is an important soilborne pathogen with a wide range of hosts and can cause Fusarium wilt of land plants. However, there are few studies on Fusarium wilt of aquatic plants. Lotus rhizome rot mainly caused by F. commune is a devastating disease that causes extensive yield and quality losses in China. Here, we obtained high-quality genomic information of the FCN23 using Illumina NovaSeq and the third-generation sequencing technology PacBio Sequel II. Compared to the reference genome F. oxysporum f. sp. lycopersici strain 4287, it contains 11 core and 3 lineage-specific chromosomes. Many differentially expressed genes associated with pathogenicity were identified by RNA sequencing. The genome and transcriptome sequences of FCN23 will provide important genomic information and insights into the infection mechanisms of F. commune on aquatic plants.


Asunto(s)
Fusarium , Lotus , Fusarium/genética , Lotus/genética , Enfermedades de las Plantas , Rizoma/genética , Transcriptoma
16.
Plant Mol Biol ; 110(1-2): 23-36, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648325

RESUMEN

KEY MESSAGE: QTL mapping studies identified three reliable QTLs of rhizome enlargement in lotus. NnBEL6 located within the confidence interval of the major QTL cqREI-LG2 is a key candidate gene enhancing rhizome enlargement. Lotus (Nelumbo) is perennial aquatic plant with nutritional, pharmacological, and ornamental significance. Rhizome is an underground lotus stem that acts as a storage organ and as a reproductive tissue for asexual production. The enlargement of lotus rhizome is an important adaptive strategy for surviving the cold winter. The aims of this study were to identify quantitative trait loci (QTLs) for rhizome enlargement traits including rhizome enlargement index (REI) and number of enlarged rhizome (NER), and to uncover their associated candidate genes. A high-density genetic linkage map was constructed, consisting of 2935 markers binned from 236,840 SNPs. A total of 14 significant QTLs were detected for REI and NER, which explained 6.7-22.3% of trait variance. Three QTL regions were repeatedly identified in at least 2 years, and a major QTL, designated cqREI-LG2, with a rhizome-enlargement effect and about 20% of the phenotypic contribution was identified across the 3 climatic years. A candidate NnBEL6 gene located within the confidence interval of cqREI-LG2 was considered to be putatively involved in lotus rhizome enlargement. The expression of NnBEL6 was exclusively induced by rhizome swelling. Sequence comparison of NnBEL6 among lotus cultivars revealed a functional Indel site in its promoter that likely initiates the rhizome enlargement process. Transgenic potato assay was used to confirm the role of NnBEL6 in inducing tuberization. The successful identification QTLs and functional validation of NnBEL6 gene reported in this study will enrich our knowledge on the genetic basis of rhizome enlargement in lotus.


Asunto(s)
Lotus , Nelumbo , Mapeo Cromosómico , Lotus/genética , Nelumbo/genética , Sitios de Carácter Cuantitativo/genética , Rizoma/genética , Rizoma/metabolismo
17.
Mol Biol Rep ; 49(8): 7753-7763, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35670929

RESUMEN

BACKGROUND: Ensuring the authenticity of raw materials is a key step prior to producing Chinese patent medicines. Pinellia ternata (Thunb.) Breit. is the botanical origin of Pinelliae Rhizoma (Banxia), a traditional Chinese medicine used to treat cough, insomnia, nausea, inflammation, epilepsy, and so on. Unfortunately, authentic Pinelliae Rhizoma is often adulterated by morphologically indistinguishable plant material due to the insufficient regulatory procedures of processed medicinal plant products. Thus, it is important to develop a molecular assay based on species-specific nucleotide signatures and primers to efficiently distinguish authentic Pinelliae Rhizoma from its adulterants. METHODS AND RESULTS: The ITS2 region of 67 Pinelliae Rhizoma and its common adulterants were sequenced. Eight single nucleotide polymorphisms within a 28-43 bp stretch of ITS2 were used to develop six primer pairs to amplify these species-specific regions. We assayed 56 Pinelliae Rhizoma products sold on the Chinese market, including medicinal slices, powder and Chinese patent medicines, which revealed that about 66% of products were adulterated. The most common adulterants were Pinellia pedatisecta (found in 57% of the assayed products), Arisaema erubescens (9%), Typhonium giganteum (2%) and Typhonium flagelliforme (2%). CONCLUSIONS: A severe adulteration condition was revealed in the traditional medicine market. The species-specific nucleotide assays developed in this study can be applied to reliably identify Pinelliae Rhizoma and its adulterants, aiding in the authentication and quality control of processed products on the herbal market.


Asunto(s)
Medicamentos Herbarios Chinos , Pinellia , Medicamentos sin Prescripción , Nucleótidos , Pinellia/genética , Rizoma/genética
18.
J Exp Bot ; 73(16): 5671-5681, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35595538

RESUMEN

Plants have evolved complex mechanisms to reprogram growth in response to drought stress. In herbaceous perennial plant species, the rhizome, which is normally an organ for propagation and food storage, can also support plant growth in stressful environments, and allows the plant to perennate and survive stress damage. However, the mechanisms that regulate rhizome growth in perennial herbs during abiotic stresses are unknown. Here, we identified a chrysanthemum (Chrysanthemum morifolium) DEAD-box RNA helicase gene, CmRH56, that is specifically expressed in the rhizome shoot apex. Knock down of CmRH56 transcript levels decreased the number of rhizomes and enhanced drought stress tolerance. We determined that CmRH56 represses the expression of a putative gibberellin (GA) catabolic gene, GA2 oxidase6 (CmGA2ox6). Exogenous GA treatment and silencing of CmGA2ox6 resulted in more rhizomes. These results demonstrate that CmRH56 suppresses rhizome outgrowth under drought stress conditions by blocking GA biosynthesis.


Asunto(s)
Chrysanthemum , Sequías , Chrysanthemum/genética , Chrysanthemum/metabolismo , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rizoma/genética , Rizoma/metabolismo , Estrés Fisiológico
19.
Funct Plant Biol ; 49(8): 689-703, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35379382

RESUMEN

Ginger (Zingiber officinale Roscoe) is an important spice crop in China, and fresh ginger rhizomes are consumed as vegetable in Sichuan and Chongqing. However, tissue lignification accelerates with rhizome maturation, resulting in the loss of edible quality. To understand the molecular mechanisms of texture modification during rhizome development, we investigated lignin accumulation patterns and identified the key genes associated with lignin biosynthesis using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA-sequencing (RNA-Seq). Results showed that the contents of total lignin and its precursors exhibited notable declines with tissue maturation. However, the lignin composition was remarkably modified and syringyl lignin was deposited in mature rhizomes, leading to ginger lignification. Transcriptome analysis displayed 32 lignin biosynthetic genes were dramatically downregulated with rhizome development, including caffeoylshikimate esterase (CSE ), 4-coumarate-CoA ligase , laccase , cinnamoyl-CoA reductase , cinnamyl-alcohol dehydrogenase , peroxidase and caffeic acid 3-O-methyltransferase , indicating that lignin reduction might be attributed to deficiency in intermediates or the downregulation of key biosynthetic enzymes. Furthermore, overexpressing ZoCSE in Nicotiana benthamiana L. enhanced the total lignin content, suggesting its fundamental role in lignin biosynthesis. RNA-Seq also identified candidate lignin production regulators, including hormone-related genes and NAC/MYB transcription factors (ZoNAC1 , ZoNAC4 , ZoMYB14 and ZoMYB17 ). This result provides a molecular basis for lignin accumulation in ginger.


Asunto(s)
Zingiber officinale , Cromatografía Liquida , Zingiber officinale/genética , Lignina/análisis , Rizoma/genética , Espectrometría de Masas en Tándem , Transcriptoma/genética
20.
Physiol Plant ; 174(2): e13674, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35306669

RESUMEN

Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.


Asunto(s)
Germinación , Rizoma , Ácido Abscísico/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Hormonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poaceae/genética , Rizoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...