Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928085

RESUMEN

An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Plantas Medicinales , Plantas Medicinales/metabolismo , Fenoles/metabolismo , Fenol/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rizoma/microbiología , Rizoma/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Espectrometría de Masas en Tándem , ARN Ribosómico 16S/genética
2.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898415

RESUMEN

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Asunto(s)
Arachis , Microbiología del Suelo , Arachis/microbiología , Arachis/genética , Micobioma , Hongos/fisiología , Hongos/genética , Florida , Rizoma/microbiología , Filogenia
3.
Sci Rep ; 14(1): 9318, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654024

RESUMEN

Endophytes of Panax have the potential to produce their host plant secondary metabolites, ginsenosides. Panax sokpayensis, an endemic traditional medicinal plant of the Sikkim Himalayas was explored for the isolation of endophytic fungi. In the present study, we have isolated 35 endophytic fungal cultures from the rhizome of P. sokpayensis and screened for ginsenosides production by HPLC by comparing the peak retention time with that of standard ginsenosides. The HPLC analysis revealed that out of 35 isolates, the mycelial extracts of four fungal endophytes (PSRF52, PSRF53, PSRF49 and PSRF58) exhibited peaks with a similar retention time of the standard ginsenoside, Compound K (CK). LC-ESI-MS/MS analysis led to the confirmation of ginsenoside CK production by the four fungal endophytes which showed a compound with m/z 639.6278, similar to that of standard ginsenoside CK with yield in potato dextrose broth flask fermentation ranging from 0.0019 to 0.0386 mg/g of mycelial mass in dry weight basis. The four prospective fungal endophyte isolates were identified as Thermothielavioides terrestris PSRF52, Aspergillus sp. PSRF49, Rutstroemiaceae sp. strain PSRF53, and Phaeosphaeriaceae sp. strain PSRF58 based on ITS sequencing. The present finding highlights the need for further study on growth optimization and other culture parameters to exploit the endophytes as an alternative source for ginsenoside CK production.


Asunto(s)
Endófitos , Fermentación , Ginsenósidos , Panax , Ginsenósidos/metabolismo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Panax/microbiología , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Hongos/metabolismo , Hongos/aislamiento & purificación , Rizoma/microbiología
4.
J Basic Microbiol ; 64(7): e2300643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578065

RESUMEN

Bacterial endophytes from plants harbor diverse metabolites that play major roles in biocontrol and improve plant growth. In this study, a total of 12 endophytic bacteria were isolated from the ginger rhizome. The strain K3 was highly effective in preventing mycelia growth of Pythium myriotylum (78.5 ± 1.5% inhibition) in dual culture. The cell-free extract (2.5%) of endophyte K3 inhibited 76.3 ± 4.8% mycelia growth, and 92.4 ± 4.2% inhibition was observed at a 5% sample concentration. The secondary metabolites produced by Bacillus licheniformis K3 showed maximum activity against Pseudomonas syringae (24 ± 1 mm zone of inhibition) and Xanthomonas campestris (28 ± 3 mm zone of inhibition). The strain K3 produced 28.3 ± 1.7 IU mL-1 protease, 28.3 ± 1.7 IU mL-1 cellulase, and 2.04 ± 0.13 IU mL-1 chitinase, respectively. The ginger rhizome treated with K3 in the greenhouse registered 53.8 ± 1.4% soft rot incidence, and the streptomycin-treated pot registered 78.3 ± 1.7% disease incidence. The selected endophyte K3 improved ascorbate peroxidase (1.37 ± 0.009 µmole ASC min-1 mg-1 protein), catalase (8.7 ± 0.28 µmole min-1 mg-1 protein), and phenylalanine ammonia-lyase (26.2 ± 0.99 Umg-1) in the greenhouse. In addition, K3 treatment in the field trial improved rhizome yield (730 ± 18.4 g) after 180 days (p < 0.01). The shoot length was 46 ± 8.3 cm in K3-treated plants, and it was about 31% higher than the control treatment (p < 0.01). The lytic enzyme-producing and growth-promoting endophyte is useful in sustainable crop production through the management of biotic stress.


Asunto(s)
Bacillus licheniformis , Endófitos , Enfermedades de las Plantas , Pythium , Zingiber officinale , Pythium/crecimiento & desarrollo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Zingiber officinale/microbiología , Zingiber officinale/crecimiento & desarrollo , Bacillus licheniformis/crecimiento & desarrollo , Bacillus licheniformis/metabolismo , Rizoma/microbiología , Rizoma/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Antibiosis , Agentes de Control Biológico/farmacología , Metabolismo Secundario , Quitinasas/metabolismo
5.
Arch Microbiol ; 205(6): 221, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149500

RESUMEN

The study aims to select potent bacterial antagonists to be used as biocontrol agents against rhizome rot disease in turmeric (Curcuma longa L.). A total of 48 bacterial isolates were isolated from the rhizosphere of turmeric. These isolates were screened for their in vitro antagonism against Fusarium solani FS-01 and Pythium aphanidermatum (ITCC 7908). Production of volatile organic compounds and chitinase activity were also performed. Among the tested isolates, two bacterial isolates (IJ2 and IJ10) showed the highest inhibitory activity against these fungal pathogens. GC/MS analysis of the crude extract produced by Pseudomonas sp. IJ2 and B. subtilis IJ10 was found to contain many bioactive compounds with antifungal and antimicrobial activities. The rhizome treatment with these isolates exhibited the lowest percent disease severity with high biocontrol efficacy against the tested pathogens. These isolates with promising antagonistic potential, therefore, can be used as biocontrol agents against rhizome rot in turmeric.


Asunto(s)
Curcuma , Rizoma , Rizoma/microbiología , Curcuma/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Antifúngicos/farmacología , Bacterias
6.
Protoplasma ; 259(2): 327-342, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34075471

RESUMEN

Sowing depth significantly affects ginger (Zingiber officinale Roscoe) yields, and sowing depth can affect rhizosphere community structure through root exudates. However, the relationship between the reaction process in root zone and ginger rhizome development is unclear. In this study, we investigated the rhizome and root development and rhizosphere environment at different sowing depths (2 cm (SD2), 5 cm (SD5), and 10 cm (SD10)). It was found that SD10 significantly increased ginger yield, which is related to the development of vascular bundles and the expression of aquaporin. PLS-PM analysis found that root length, root absorption capacity, and soil enzymes have the strongest correlation with yield, while root diameter is negatively correlated with yield. Under SD10, the increase of auxin and ethylene content together with the expression of ARF7, LBD16, and PIN1 promoted the development of lateral roots. In addition, SD10 increased the secretion of root organic acids, amino acids, and carbohydrates, which in turn promoted the development of rhizosphere bacteria. The promotion of SD10 on nitrogen cycle and nitrogen fixation ability in turn promoted the development of ginger.


Asunto(s)
Zingiber officinale , Zingiber officinale/química , Extractos Vegetales , Rizoma/microbiología , Rizosfera , Suelo
7.
World J Microbiol Biotechnol ; 38(1): 15, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878606

RESUMEN

Pairs polyphylla var. yunnanensis (Paris L.) is a valuable medicinal plant used in traditional Chinese medicine. The market demand for P. polyphylla has increased over time, but it has slow growth and a low natural propagation rate. Endophytic bacteria are bioactive microorganisms that form a mutualistic relationship with host plants in long-term coordinated evolution, and they can promote the growth and accumulation of effective components in host plants. The aims of this study were to identify endophytic bacteria of P. polyphylla and to characterize their properties in promoting plant growth. A total of 10 endophytic bacteria were isolated from rhizomes of P. polyphylla. The isolated endophytes exhibited a variable capacity for indole acetic acid production, phosphate solubilization and nitrogen fixation. To investigate the effects of the endophytes on plant growth, four endophyte strains, G5, J2, G20, and Y2, were selected to compare their ability to promote plant growth. The results indicated that microbial endophytes isolated from P. polyphylla rhizomes play a vital role in improving P. polyphylla plant growth and could be used as inoculants to establish a sustainable crop production system.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Endófitos/fisiología , Melanthiaceae/crecimiento & desarrollo , Melanthiaceae/microbiología , Desarrollo de la Planta , Rizoma/microbiología , ADN Bacteriano , Interacciones Microbiota-Huesped , Ácidos Indolacéticos/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología , Simbiosis
8.
Pol J Microbiol ; 70(3): 359-372, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34584530

RESUMEN

Latent pathogenic fungi (LPFs) affect plant growth, but some of them may stably colonize plants. LPFs were isolated from healthy Houttuynia cordata rhizomes to reveal this mechanism and identified as Ilyonectria liriodendri, an unidentified fungal sp., and Penicillium citrinum. Sterile H. cordata seedlings were cultivated in sterile or non-sterile soils and inoculated with the LPFs, followed by the plants' analysis. The in vitro antifungal activity of H. cordata rhizome crude extracts on LPF were determined. The effect of inoculation of sterile seedlings by LPFs on the concentrations of rhizome phenolics was evaluated. The rates of in vitro growth inhibition amongst LPFs were determined. The LPFs had a strong negative effect on H. cordata in sterile soil; microbiota in non-sterile soil eliminated such influence. There was an interactive inhibition among LPFs; the secondary metabolites also regulated their colonization in H. cordata rhizomes. LPFs changed the accumulation of phenolics in H. cordata. The results provide that colonization of LPFs in rhizomes was regulated by the colonizing microbiota of H. cordata, the secondary metabolites in the H. cordata rhizomes, and the mutual inhibition and competition between the different latent pathogens.


Asunto(s)
Hongos , Houttuynia , Interacciones Microbianas , Extractos Vegetales , Plantas Medicinales , Rizoma , Hongos/efectos de los fármacos , Houttuynia/microbiología , Interacciones Microbianas/fisiología , Extractos Vegetales/farmacología , Plantas Medicinales/microbiología , Rizoma/química , Rizoma/microbiología , Microbiología del Suelo
9.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34530138

RESUMEN

Two-component systems (TCS) are one of the signal transduction mechanisms, which sense physiological/biological restraints and respond to changing environmental conditions by regulating the gene expression. Previously, by employing a forward genetic screen (INSeq), we identified that cbrA gene is essential for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. Here, we report the functional characterization of cbrAB TCS in PGPR2 during root colonization. We constructed insertion mutants in cbrA and its cognate response regulator cbrB. Genetic characterization revealed drastic down-regultion of sRNA crcZ gene in both mutant strains which play a critical role in carbon catabolite repression (CCR). The mutant strains displayed 10-fold decreased root colonization efficiency when compared to the wild-type strain. On the other hand, mutant strains formed higher biofilm on the abiotic surface, and the expression of pelB and pslA genes involved in biofilm matrix formation was up-regulated. In contrast, the expression of algD, responsible for alginate production, and its associated sigma factor algU was significantly down-regulated in mutant strains. We further analyzed the transcript levels of rsmA, controlled by the algU sigma factor, and found that the expression of rsmA was hampered in both mutants. The ability of mutant strains to swim and swarm was significantly hindered. Also, the expression of genes associated with type III secretion system (T3SS) was dysregulated in mutant strains. Taken together, regulation of gene expression by CbrAB TCS is intricate, and we confirm its role beyond carbon and nitrogen assimilation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Rizoma/microbiología , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Carbono/metabolismo , Mutación , Nitrógeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
10.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073251

RESUMEN

Living organisms interact with each other during their lifetime, leading to genomes rearrangement and sequences transfer. These well-known phenomena give these organisms mosaic genomes, which challenge their classification. Moreover, many findings occurred between the IXXth and XXIst century, especially the discovery of giant viruses and candidate phyla radiation (CPR). Here, we tried to provide an updated classification, which integrates 216 representative genomes of the current described organisms. The reclassification was expressed through a genetic network based on the total genomic content, not on a single gene to represent the tree of life. This rhizomal exploration represents, more accurately, the evolutionary relationships among the studied species. Our analyses show a separated branch named fifth TRUC (Things Resisting Uncompleted Classifications). This taxon groups CPRs together, independently from Bacteria, Archaea (which regrouped also Nanoarchaeota and Asgard members), Eukarya, and the giant viruses (recognized recently as fourth TRUC). Finally, the broadening of analysis methods will lead to the discovery of new organisms, which justify the importance of updating the classification at every opportunity. In this perspective, our pragmatic representation could be adjusted along with the progress of evolutionary studies.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Rizoma , Microbiología del Suelo , Virus/clasificación , Rizoma/microbiología , Rizoma/virología
11.
Plant Signal Behav ; 16(9): 1929731, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34092178

RESUMEN

Endophytic fungi usually establish a symbiotic relationship with the host plant and affect its growth. In order to evaluate the impact of endophytic fungi on the Chinese herbal medicinal plant Houttuynia cordata Thunb., three endophytes isolated from the rhizomes of H. cordata, namely Ilyonectria liriodendra (IL), unidentified fungal sp. (UF), and Penicillium citrinum (PC), were co-cultured individually with H. cordata in sterile soil for 60 days. Analysis of the results showed that the endophytes stimulated the host plant in different ways: IL increased the growth of rhizomes and the accumulation of most of the phenolics and volatiles, UF promoted the accumulation of the medicinal compounds afzelin, decanal, 2-undecanone, and borneol without influencing host plant growth, and PC increased the fresh weight, total leaf area and height of the plants, as well as the growth of the rhizomes, but had only a small effect on the concentration of major secondary metabolites. Our results proved that the endophytic fungi had potential practical value in terms of the production of Chinese herbal medicines, having the ability to improve the yield and accumulation of medicinal metabolites.


Asunto(s)
Endófitos/metabolismo , Houttuynia/química , Houttuynia/crecimiento & desarrollo , Houttuynia/microbiología , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo , Rizoma/microbiología , Hypocreales/metabolismo , Penicillium/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología , Simbiosis
12.
Sci Rep ; 11(1): 6092, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731746

RESUMEN

The individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.


Asunto(s)
Alternaria/crecimiento & desarrollo , Bacillus subtilis/crecimiento & desarrollo , Carbón Orgánico/farmacología , Compostaje , Enfermedades de las Plantas/microbiología , Rizoma/microbiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo
13.
PLoS One ; 16(2): e0246687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556120

RESUMEN

Compared with root-associated habitats, little is known about the role of microbiota inside other rice organs, especially the rhizome of perennial wild rice, and this information may be of importance for agriculture. Oryza longistaminata is perennial wild rice with various agronomically valuable traits, including large biomass on poor soils, high nitrogen use efficiency, and resistance to insect pests and disease. Here, we compared the endophytic bacterial and archaeal communities and network structures of the rhizome to other compartments of O. longistaminata using 16S rRNA gene sequencing. Diverse microbiota and significant variation in community structure were identified among different compartments of O. longistaminata. The rhizome microbial community showed low taxonomic and phylogenetic diversity as well as the lowest network complexity among four compartments. Rhizomes exhibited less phylogenetic clustering than roots and leaves, but similar phylogenetic clustering with stems. Streptococcus, Bacillus, and Methylobacteriaceae were the major genera in the rhizome. ASVs belonging to the Enhydrobacter, YS2, and Roseburia are specifically present in the rhizome. The relative abundance of Methylobacteriaceae in the rhizome and stem was significantly higher than that in leaf and root. Noteworthy type II methanotrophs were observed across all compartments, including the dominant Methylobacteriaceae, which potentially benefits the host by facilitating CH4-dependent N2 fixation under nitrogen nutrient-poor conditions. Our data offers a robust knowledge of host and microbiome interactions across various compartments and lends guidelines to the investigation of adaptation mechanisms of O. longistaminata in nutrient-poor environments for biofertilizer development in agriculture.


Asunto(s)
Oryza/microbiología , Rizoma/microbiología , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Perfilación de la Expresión Génica/métodos , Microbiota/genética , Oryza/genética , Oryza/metabolismo , Filogenia , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizoma/genética , Rizoma/metabolismo
14.
Sci Rep ; 11(1): 1574, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452327

RESUMEN

The plant microbiota play a key role in plant productivity, nutrient uptake, resistance to stress and flowering. The flowering of moso bamboo has been a focus of study. The mechanism of flowering is related to nutrient uptake, temperature, hormone balance and regulation of key genes. However, the connection between microbiota of moso bamboo and its flowering is unknown. In this study, samples of rhizosphere soil, rhizomes, roots and leaves of flowering and nonflowering plants were collected, and 16S rRNA amplicon Illumina sequencing was utilized to separate the bacterial communities associated with different flowering stages of moso bamboo. We identified 5442 OTUs, and the number of rhizosphere soil OTUs was much higher than those of other samples. Principal component analysis (PCA) and hierarchical clustering (Bray Curtis dis) analysis revealed that the bacterial microorganisms related to rhizosphere soil and endophytic tissues of moso bamboo differed significantly from those in bulk soil and rhizobacterial and endosphere microbiomes. In addition, the PCA analyses of root and rhizosphere soil revealed different structures of microbial communities between bamboo that is flowering and not flowering. Through the analysis of core microorganisms, it was found that Flavobacterium, Bacillus and Stenotrophomonas played an important role in the absorption of N elements, which may affect the flowering time of moso bamboo. Our results delineate the complex host-microbe interactions of this plant. We also discuss the potential influence of bacterial microbiome in flowering, which can provide a basis for the development and utilization of moso bamboo.


Asunto(s)
Rizoma/microbiología , Sasa/microbiología , Bacillus/genética , Bacillus/metabolismo , Bacterias/genética , Bacterias/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Flores/genética , Flores/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Nutrientes/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Poaceae/genética , Poaceae/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Sasa/genética , Suelo/química , Microbiología del Suelo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo
15.
Probiotics Antimicrob Proteins ; 13(1): 32-39, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32537712

RESUMEN

Pitchers are the unique structures of carnivorous plants used for the trapping of insects and other small invertebrates. The digestion of captured prey here is assisted by the bacteria, which have been associated with pitchers. These bacterial communities can therefore expect to have a variety of plant beneficial functions. In this study, the bacterial isolate NhPBG1 from the pitcher of Nepenthes hamblack was screened for activity against Pythium aphanidermatum, Rhizoctonia solani, Fusarium oxysporum, and Colletotrichum accutatum and was found to have the inhibitory activity towards all the tested phytopathogens. Interestingly, the isolate was found to have hyper-inhibitory effect against P. aphanidermatum. Further to this, the isolate was also shown to be positive for plant beneficial traits such as indole-3-acetic acid (IAA) and ammonia production, phosphate, potassium and zinc solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. BLAST analysis of the 16S rDNA sequence of NhPBG1 has identified it as Paraburkholderia sp. Also, the Zingiber officinale rhizome pre-treated with NhPBG1 was found to get protected from P. aphanidermatum induced infection, whereas the control showed symptoms of infection. This was further confirmed by the microscopic evaluation of the presence of fungal mycelia in the tissues of control. However, the mycelial invasion could not be detected in the NhPBG1 treated rhizome. The metabolite profiling of NhPBG1 by GC-MS has identified variety of general metabolites, while the antifungal compounds pyocyanin and 1-hydroxyphenazine could be identified by the LC-MS/MS analysis.


Asunto(s)
Antifúngicos , Agentes de Control Biológico , Burkholderiaceae/aislamiento & purificación , Hongos/crecimiento & desarrollo , Rizoma/microbiología , Zingiber officinale/microbiología , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Agentes de Control Biológico/aislamiento & purificación , Agentes de Control Biológico/farmacología
16.
Methods Mol Biol ; 2232: 23-29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33161535

RESUMEN

The microbiome is known to influence plant fitness and differs significantly between plant compartments. To characterize the communities associated with different plant compartments, it is necessary to separate plant tissues in a manner that is suitable for microbiome analysis. Here, we describe a standardized protocol for sampling the microbiomes associated with bulk soil, the apical and basal ectorhizosphere, the apical and ectorhizosphere, the rhizome, pseudostem, and leaves of Musa spp. The approach can easily be modified for work with other plants.


Asunto(s)
Microbiota/genética , Biología Molecular/métodos , Hojas de la Planta/microbiología , Rizoma/genética , Musa/genética , Musa/microbiología , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Rizoma/microbiología
17.
PLoS One ; 15(12): e0241057, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33351824

RESUMEN

By assessing diversity variations of bacterial communities under different rhizocompartment types (i.e., roots, rhizosphere soil, root zone soil, and inter-shrub bulk soil), we explore the structural difference of bacterial communities in different root microenvironments under desert leguminous plant shrubs. Results will enable the influence of niche differentiation of plant roots and root soil on the structural stability of bacterial communities under three desert leguminous plant shrubs to be examined. High-throughput 16S rRNA genome sequencing was used to characterize diversity and structural differences of bacterial microbes in the rhizocompartments of three xeric leguminous plants. Results from this study confirm previous findings relating to niche differentiation in rhizocompartments under related shrubs, and they demonstrate that diversity and structural composition of bacterial communities have significant hierarchical differences across four rhizocompartment types under leguminous plant shrubs. Desert leguminous plants showed significant hierarchical filtration and enrichment of the specific bacterial microbiome across different rhizocompartments (P < 0.05). The dominant bacterial microbiome responsible for the differences in microbial community structure and composition across different niches of desert leguminous plants mainly consisted of Proteobacteria, Actinobacteria, and Bacteroidetes. All soil factors of rhizosphere and root zone soils, except for NO3-N and TP under C. microphylla and the two Hedysarum spp., recorded significant differences (P < 0.05). Moreover, soil physicochemical factors have a significant impact on driving the differentiation of bacterial communities under desert leguminous plant shrubs. By investigating the influence of niches on the structural difference of soil bacterial communities with the differentiation of rhizocompartments under desert leguminous plant shrubs, we provide data support for the identification of dominant bacteria and future preparation of inocula, and provide a foundation for further study of the host plants-microbial interactions.


Asunto(s)
Fabaceae/microbiología , Microbiota/genética , Rizosfera , Biodiversidad , Caragana/microbiología , China , Biología Computacional , Clima Desértico , Genoma Bacteriano , Interacciones Microbiota-Huesped/genética , Raíces de Plantas/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Rizoma/microbiología , Microbiología del Suelo
18.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957914

RESUMEN

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Asunto(s)
Flavonoides/biosíntesis , Glycyrrhiza uralensis/microbiología , Glycyrrhiza/microbiología , Raíces de Plantas/microbiología , Rizoma/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Amoníaco/farmacología , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Código de Barras del ADN Taxonómico , ADN Bacteriano/genética , Endófitos/fisiología , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Flavanonas/biosíntesis , Flavanonas/aislamiento & purificación , Flavonoides/clasificación , Flavonoides/aislamiento & purificación , Glucósidos/biosíntesis , Glucósidos/aislamiento & purificación , Glycyrrhiza/efectos de los fármacos , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/efectos de los fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/metabolismo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , Nitratos/farmacología , Filogenia , Raíces de Plantas/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Rizoma/metabolismo , Estaciones del Año , Metabolismo Secundario , Suelo/química , Microbiología del Suelo , Simbiosis
19.
Fitoterapia ; 146: 104711, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32860875

RESUMEN

Penctrimertone (1), a novel citrinin dimer bearing a 6/6/6/6 tetracyclic ring scaffold, along with two known compounds xerucitrinic acid A (2) and citrinin (3) were isolated from the endophytic fungus Penicillium sp. T2-11. Their structures were unequivocally established by a comprehensive interpretation of the spectroscopic data, with the stereochemistry for 1 was defined by a combination of TDDFT-ECD calculations and the DP4+ probability analysis based on NMR chemical shift calculations. Bioassays revealed that compound 1 exhibited noticeable antimicrobial activities and moderate cytotoxicity. A plausible biosynthetic pathway of 1 was also proposed.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Citrinina/farmacología , Gastrodia/microbiología , Penicillium/química , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Línea Celular Tumoral , Mentón , Citrinina/aislamiento & purificación , Endófitos/química , Humanos , Estructura Molecular , Rizoma/microbiología
20.
World J Microbiol Biotechnol ; 36(5): 77, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32399738

RESUMEN

Protease mediated proteolysis has been widely implicated in virulence of necrotrophic fungal pathogens. This is counteracted in plants by evolving new and effective antimicrobial peptides (AMP) that constitute important components of innate immune system. Peptide extraction from rhizome of Zingiber zerumbet was optimized using ammonium sulphate (50-80% w/v) and acetone (60 and 100% v/v) with maximal protein recovery of 1.2 ± 0.4 mg/g obtained using 100% acetone. Evaluation of inhibitory potential of Z. zerumbet rhizome protein extract to prominent hydrolases of necrotrophic Pythium myriotylum revealed maximal inhibition of proteases (75.8%) compared to other hydrolytic enzymes. Protein was purified by Sephacryl S200HR resin resulting in twofold purification and protease inhibition of 84.4%. Non-reducing polyacrylamide gel electrophoresis (PAGE) of the fractions yielded two bands of 75 kDa and 25 kDa molecular size. Peptide mass fingerprint of the protein bands using matrix assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectroscopy (MS) and subsequent MASCOT searches revealed peptide match to methylesterase from Arabidopsis thaliana (15%) and to hypothetical protein from Oryza sativa (98%) respectively. Further centrifugal filter purification using Amicon Ultra (10,000 MW cut-off) filter, yielded a prominent band of 25 kDa size. Concentration dependent inhibition of zoospore viability by Z. zerumbet AMP designated as ZzAMP was observed with maximal inhibition of 89.5% at 4 µg protein and an IC50 value of 0.59 µg. Studies are of particular relevance in the context of identifying the molecules involved in imparting below ground defense in Z. zerumbet as well in development of AMPs as potential candidate molecules for control of necrotrophic pathogens of agricultural relevance.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptido Hidrolasas/efectos de los fármacos , Extractos Vegetales/farmacología , Pythium/efectos de los fármacos , Rizoma/microbiología , Zingiberaceae/microbiología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Arabidopsis , Inhibidores Enzimáticos , Hongos/efectos de los fármacos , Oryza , Péptidos/farmacología , Extractos Vegetales/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zingiberaceae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...