Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
2.
Biol Pharm Bull ; 44(10): 1357-1363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602542

RESUMEN

In life science research, methods to control biological activities with stimuli such as light, heat, pressure and chemicals have been widely utilized to understand their molecular mechanisms. The knowledge obtained by those methods has built a basis for the development of medicinal products. Among those various stimuli, light has the advantage of a high spatiotemporal resolution that allows for the precise control of biological activities. Photoactive membrane protein rhodopsins from microorganisms (called microbial rhodopsins) absorb visible light and that light absorption triggers the trans-cis photoisomerization of the chromophore retinal, leading to various functions such as ion pumps, ion channels, transcriptional regulators and enzymes. In addition to their biological significance, microbial rhodopsins are widely utilized as fundamental molecular tools for optogenetics, a method to control biological activities by light. In this review, we briefly introduce the molecular basis of representative rhodopsin molecules and their applications for optogenetics. Based on those examples, we discuss the high potential of rhodopsin-based optogenetics tools for basic and clinical research in pharmaceutical sciences.


Asunto(s)
Desarrollo de Medicamentos/métodos , Proteínas de la Membrana/metabolismo , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Animales , Humanos , Luz , Proteínas de la Membrana/efectos de la radiación , Modelos Animales , Fototerapia/métodos , Rodopsinas Microbianas/efectos de la radiación
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753488

RESUMEN

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Rodopsinas Microbianas/metabolismo , Cationes Monovalentes/metabolismo , Canales de Cloruro/aislamiento & purificación , Canales de Cloruro/efectos de la radiación , Canales de Cloruro/ultraestructura , Cristalografía/métodos , Radiación Electromagnética , Rayos Láser , Simulación de Dinámica Molecular , Nocardioides , Conformación Proteica en Hélice alfa/efectos de la radiación , Estructura Terciaria de Proteína/efectos de la radiación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Proteínas Recombinantes/ultraestructura , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsinas Microbianas/aislamiento & purificación , Rodopsinas Microbianas/efectos de la radiación , Rodopsinas Microbianas/ultraestructura , Agua/metabolismo
4.
Commun Biol ; 4(1): 362, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742139

RESUMEN

Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were suggested by a protein BLAST search in several protein databases, the ML-based method selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experimentally determined by expressing proteins with the Escherichia coli system, and 32 (82%, p = 7.025 × 10-5) actually showed red-shift gains. In addition, four showed red-shift gains >20 nm, and two were found to have desirable ion-transporting properties, indicating that they would be potentially useful in optogenetics. These findings suggest that data-driven ML-based approaches play effective roles in the experimental design of rhodopsin and other photobiological studies. (141/150 words).


Asunto(s)
Canales Iónicos/metabolismo , Aprendizaje Automático , Optogenética , Rodopsinas Microbianas/metabolismo , Secuencia de Aminoácidos , Teorema de Bayes , Color , Bases de Datos de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Canales Iónicos/genética , Canales Iónicos/efectos de la radiación , Luz , Prueba de Estudio Conceptual , Conformación Proteica en Hélice alfa , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/efectos de la radiación , Análisis de Secuencia de Proteína
5.
Adv Exp Med Biol ; 1293: 3-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398804

RESUMEN

The first light-sensing proteins used in optogenetics were rhodopsins. The word "rhodopsin" originates from the Greek words "rhodo" and "opsis," indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. We are able to find ion-transporting proteins in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. In this chapter, historical aspects and molecular properties of rhodopsins are introduced. In the first part, "what is rhodopsin?", general introduction of rhodopsin is presented. Then, molecular mechanism of bacteriorodopsin, a light-driven proton pump and the best-studied microbial rhodopsin, is described. In the section of channelrhodopsin, the light-gated ion channel, molecular properties, and several variants are introduced. As the history has proven, understanding the molecular mechanism of microbial rhodopsins is a prerequisite for useful functional design of optogenetics tools in future.


Asunto(s)
Luz , Rodopsina/metabolismo , Animales , Transporte Iónico/efectos de la radiación , Optogenética/métodos , Rodopsina/genética , Rodopsina/efectos de la radiación , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación
6.
Adv Exp Med Biol ; 1293: 55-71, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398807

RESUMEN

Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.


Asunto(s)
Cloruros/metabolismo , Bombas de Protones/metabolismo , Protones , Rodopsinas Microbianas/metabolismo , Animales , Bacteriorodopsinas/metabolismo , Halorrodopsinas/metabolismo , Luz , Bombas de Protones/química , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación
7.
Adv Exp Med Biol ; 1293: 89-126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398809

RESUMEN

Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.


Asunto(s)
Bombas Iónicas/metabolismo , Bombas Iónicas/efectos de la radiación , Luz , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Bombas Iónicas/genética , Transporte Iónico/efectos de la radiación , Rodopsinas Microbianas/genética
8.
Phys Chem Chem Phys ; 23(3): 2072-2079, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33433533

RESUMEN

We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroidetes/química , Proteínas de Transporte de Catión/metabolismo , Rodopsinas Microbianas/metabolismo , Sodio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Transporte Biológico Activo , Dominio Catalítico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/efectos de la radiación , Frío , Cristalografía por Rayos X , Diterpenos/química , Conformación Molecular , Mutación , Retinaldehído/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/efectos de la radiación , Espectrometría Raman
9.
Methods Mol Biol ; 2191: 67-84, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32865739

RESUMEN

Electrophysiological experiments are required to determine the ion transport properties of light-activated currents from microbial rhodopsin expressing cells. The recordings set the quantitative basis for correlation with spectroscopic data and for understanding of channel gating, ion transport vectoriality, or ion selectivity. This chapter focuses on voltage-clamp recordings of channelrhodopsin-2-expressing cells, and it will describe different illumination protocols that reveal the kinetic properties of gating. While the opening and closing reaction is determined from a single turnover upon a short laser flash, desensitization of the light-gated currents is studied under continuous illumination. Recovery from the desensitized state is probed after prolonged illumination with a subsequent light activation upon different dark intervals. Compiling the experimental data will define a minimum number of states in kinetic schemes used to describe the light-gated currents in channelrhodopsins, and emphasis will be given on how to correlate the results with the different time-resolved spectroscopic experiments.


Asunto(s)
Channelrhodopsins/química , Fenómenos Electrofisiológicos/efectos de la radiación , Biología Molecular/métodos , Rodopsinas Microbianas/química , Channelrhodopsins/efectos de la radiación , Activación del Canal Iónico/efectos de la radiación , Transporte Iónico/efectos de la radiación , Cinética , Luz , Potenciales de la Membrana/efectos de la radiación , Rodopsinas Microbianas/efectos de la radiación
10.
Nature ; 583(7815): 314-318, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499654

RESUMEN

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Asunto(s)
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/efectos de la radiación , Sitios de Unión , Cristalografía , Electrones , Transporte Iónico , Isomerismo , Rayos Láser , Protones , Teoría Cuántica , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff/química , Sodio/metabolismo , Análisis Espectral , Electricidad Estática , Factores de Tiempo
11.
J Phys Chem B ; 123(19): 4242-4250, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30998011

RESUMEN

Microbial rhodopsins constitute a key protein family in optobiotechnological applications such as optogenetics and voltage imaging. Spectral tuning of rhodopsins into the deep-red and near-infrared spectral regions is of great demand in such applications because more bathochromic light into the near-infrared range penetrates deeper in living tissue. Recently, retinal analogues have been successfully used in ion transporting and fluorescent rhodopsins to achieve red-shifted absorption, activity, and emission properties. Understanding their photochemical mechanism is essential for further design of appropriate retinal analogues but is yet only poorly understood for most retinal analogue pigments. Here, we report the photoreaction dynamics of red-shifted analogue pigments of the proton pump proteorhodopsin (PR) containing A2 (all- trans-3,4-dehydroretinal), MOA2 (all- trans-3-methoxy-3,4-dehydroretinal), or DMAR (all- trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto- to submillisecond transient absorption spectroscopy. We found that the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510 nm light illumination, which is comparable to the native retinal (A1) in PR. On the other hand, the deprotonation of the A2 pigment Schiff base was observed with a dominant time constant of 67 µs, which is significantly slower than the A1 pigment. In the MOA2 pigment, no isomerization or photoproduct formation was detected upon 520 nm excitation, implying that all the excited molecules returned to the initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very slow excited state dynamics similar to the previously studied MMAR pigment, but only very little photoproduct was formed. The low efficiency of the photoproduct formation likely is the reason why DMAR analogue pigments of PR showed very weak proton pumping activity.


Asunto(s)
Retinaldehído/análogos & derivados , Rodopsinas Microbianas/química , Luz , Retinaldehído/efectos de la radiación , Rodopsinas Microbianas/efectos de la radiación
12.
J Phys Chem B ; 123(19): 4180-4192, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30924654

RESUMEN

The diverse functionalities of membrane proteins (MPs) have garnered much interest in leveraging these biomolecules for technological applications. One challenge of studying MPs in artificial micellar surfactant environments is that many factors modulate their structures and functionalities, including the surfactants that interact with the MP or their assembly into oligomers. As oligomerization offers a means by which MPs could selectively interact among the copious environmental factors in biological environments, we hypothesized that MP function is predominantly modified by oligomerization rather than interactions with local surfactants that, by comparison, largely interact with MPs nonspecifically. To test this, we study the light-activated proton pump proteorhodopsin (PR) in micellar surfactant solutions because it is functionally active in monomeric and oligomeric forms, the light-activated functionalities of which can be assessed in detail. The surfactant composition and oligomerization are correlated with PR function, as measured by the protonation behaviors of aspartic acid residue 97, which mediates light-activated proton transport, and the associated photocycle kinetics. The results demonstrate that oligomerization dominantly mediates PR function in different surfactant environments, whereas some surfactants can subtly modulate proton-pumping kinetics. This work underscores the importance of understanding and controlling oligomerization of MPs to study and exploit their function.


Asunto(s)
Proteínas de Escherichia coli/química , Micelas , Rodopsinas Microbianas/química , Tensoactivos/química , Escherichia coli/química , Proteínas de Escherichia coli/efectos de la radiación , Cinética , Multimerización de Proteína , Rodopsinas Microbianas/efectos de la radiación
13.
Phys Chem Chem Phys ; 21(8): 4461-4471, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30734791

RESUMEN

We report a comparative study on the structural dynamics of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 wild type under sodium and proton pumping conditions by means of time-resolved IR spectroscopy. The kinetics of KR2 under sodium pumping conditions exhibits a sequential character, whereas the kinetics of KR2 under proton pumping conditions involves several equilibrium states. The sodium translocation itself is characterized by major conformational changes of the protein backbone, such as distortions of the α-helices and probably of the ECL1 domain, indicated by distinct marker bands in the amide I region. Carbonyl stretch modes of specific amino acid residues helped to elucidate structural changes in the retinal Schiff base moiety, including the protonation and deprotonation of D116, which is crucial for a deeper understanding of the mechanistic features in the photocycle of KR2.


Asunto(s)
Flavobacteriaceae/metabolismo , Rodopsinas Microbianas/metabolismo , Canales de Sodio/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Flavobacteriaceae/efectos de la radiación , Transporte Iónico , Cinética , Luz , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Rodopsinas Microbianas/efectos de la radiación , Canales de Sodio/efectos de la radiación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espectrofotometría Infrarroja , Termodinámica
14.
Biochemistry ; 57(33): 5041-5049, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30036039

RESUMEN

Rhodopsins are heptahelical transmembrane photoactive protein families: type 1 (microbial rhodopsins) and type 2 (animal rhodopsins). Both families share similar topologies and chromophore retinal, which is linked covalently as a protonated Schiff base to a Lys at the transmembrane 7 helix. Recently, through functional metagenomics analysis, we reported an unnoticed diverse family, heliorhodopsins (HeRs), which are abundant and distributed globally in archaea, bacteria, eukarya, and viruses. The sequence identity is <15% between HeRs and type 1 rhodopsins, so that many aspects of the molecular properties of HeRs remain unknown. Herein, to gain information about the residues responsible for the interaction with the chromophore, we applied Ala scanning to 30 candidate residues in HeR 48C12. As a result, 12 mutants showed no absorption change, eight exhibited a spectral blue-shift, six exhibited a spectral red-shift, and four did not form a pigment. R104, Y108, G145, and K241 play crucial roles in pigment formation. A combination of single mutants successfully engineered pigments absorbing at 523 nm (S112A/M141A) and 571 nm (H80A/S237A), covering more than ∼50 nm. These results provide fundamental knowledge about the molecular properties of HeRs.


Asunto(s)
Rodopsinas Microbianas/genética , Sitios de Unión , Color , Escherichia coli/genética , Luz , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación , Bases de Schiff/química
15.
Nature ; 558(7711): 595-599, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925949

RESUMEN

Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.


Asunto(s)
Metagenómica , Rodopsina/análisis , Rodopsina/clasificación , Secuencia de Aminoácidos , Eucariontes/química , Evolución Molecular , Rodopsina/química , Rodopsina/efectos de la radiación , Rodopsinas Microbianas/análisis , Rodopsinas Microbianas/química , Rodopsinas Microbianas/clasificación , Rodopsinas Microbianas/efectos de la radiación
16.
J Am Chem Soc ; 139(45): 16143-16153, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29027800

RESUMEN

Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite extensive efforts, structural data for PR photointermediate states have not been obtained. On the basis of dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light-induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the deprotonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Bombas de Protones/química , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/efectos de la radiación , Bases de Schiff/química
17.
IEEE Trans Nanobioscience ; 15(7): 775-780, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27775530

RESUMEN

Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.


Asunto(s)
Biotecnología/métodos , Modelos Biológicos , Nanotecnología/métodos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación , Luz
18.
Acc Chem Res ; 49(11): 2518-2526, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27786461

RESUMEN

Photons are a fascinating reagent, flowing and reacting quite differently compared to more massive and less ephemeral particles of matter. The optogenetic palette comprises an ever growing set of light-responsive proteins, which open the possibility of using light to perturb and to measure biological processes with great precision in space and time. Yet there are limits on what light can achieve. Diffraction limits the smallest features, and scattering in tissue limits the largest. Photobleaching, diffusion of photogenerated products, and optical crosstalk between overlapping absorption spectra further muddy the optogenetic picture, particularly when one wants to use multiple optogenetic tools simultaneously. But these obstacles are surmountable. Most light-responsive proteins and small molecules undergo more than one light-driven transition, often with different action spectra and kinetics. By overlapping multiple laser beams, carefully patterned in space, time, and wavelength, one can steer molecules into fluorescent or nonfluorescent, active or inactive conformations. By doing so, one can often circumvent the limitations of simple one-photon excitation and achieve new imaging and stimulation capabilities. These include subdiffraction spatial resolution, optical sectioning, robustness to light scattering, and multiplexing of more channels than can be achieved with simple one-photon excitation. The microbial rhodopsins are a particularly rich substrate for this type of multiphoton optical control. The natural diversity of these proteins presents a huge range of starting materials. The spectroscopy and photocycles of microbial rhodopsins are relatively well understood, providing states with absorption maxima across the visible spectrum, which can be accessed on experimentally convenient time scales. A long history of mutational studies in microbial rhodopsins allows semirational protein engineering. Mutants of Archaerhodopsin 3 (Arch) come in all the colors of the rainbow. In a solution of purified Arch-eGFP, a focused green laser excites eGFP fluorescence throughout the laser path, while a focused red laser excites fluorescence of Arch only near the focus, indicative of multiphoton fluorescence. This nonlinearity occurs at a laser intensity ∼1010-fold lower than in conventional two-photon microscopy! The mutant Arch(D95H) shows photoswitchable optical bistability. In a lawn of E. coli expressing this mutant, illumination with patterned blue light converts the molecule into a state that is fluorescent. Illumination with red light excites this fluorescence, and gradually resets the molecules back to the non-fluorescent state. This review describes the new types of molecular logic that can be implemented with multi-photon control of microbial rhodopsins, from whole-brain activity mapping to measurements of absolute membrane voltage. Part of our goal in this Account is to describe recent work in nonlinear optogenetics, but we also present a variety of interesting things one could do if only the right optogenetic molecules were available. This latter component is intended to inspire future spectroscopic, protein discovery, and protein engineering work.


Asunto(s)
Optogenética/métodos , Rodopsinas Microbianas/efectos de la radiación , Animales , Fluorescencia , Fotones , Rodopsinas Microbianas/química
19.
Biochim Biophys Acta ; 1857(12): 1900-1908, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27659506

RESUMEN

Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.


Asunto(s)
Actinobacteria/efectos de la radiación , Adenosina Trifosfato/metabolismo , Metabolismo Energético/efectos de la radiación , Luz , Procesos Fototróficos/efectos de la radiación , Rodopsinas Microbianas/efectos de la radiación , Actinobacteria/genética , Actinobacteria/metabolismo , Transferencia de Energía , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Concentración de Iones de Hidrógeno , Cinética , Fotólisis , Conformación Proteica , Protones , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Análisis Espectral , Relación Estructura-Actividad
20.
ISME J ; 10(9): 2331-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26894445

RESUMEN

Ion-translocating retinylidene rhodopsins are widely distributed among marine and freshwater microbes. The translocation is light-driven, contributing to the production of biochemical energy in diverse microbes. Until today, most microbial rhodopsins had been detected using bioinformatics based on homology to other rhodopsins. In the past decade, there has been increased interest in microbial rhodopsins in the field of optogenetics since microbial rhodopsins were found to be most useful in vertebrate neuronal systems. Here we report on a functional metagenomic assay for detecting microbial rhodopsins. Using an array of narrow pH electrodes and light-emitting diode illumination, we were able to screen a metagenomic fosmid library to detect diverse marine proteorhodopsins and an actinorhodopsin based solely on proton-pumping activity. Our assay therefore provides a rather simple phenotypic means to enrich our understanding of microbial rhodopsins without any prior knowledge of the genomic content of the environmental entities screened.


Asunto(s)
Metagenómica , Familia de Multigenes , Rodopsinas Microbianas/genética , Agua de Mar/microbiología , Electrodos , Biblioteca de Genes , Concentración de Iones de Hidrógeno , Océano Índico , Luz , Filogenia , Bombas de Protones , Rodopsinas Microbianas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...