Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 23(6): 468-74, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273629

RESUMEN

Membrane-protein NMR occupies a unique niche for determining structures, assessing dynamics, examining folding, and studying the binding of lipids, ligands and drugs to membrane proteins. However, NMR analyses of membrane proteins also face special challenges that are not encountered with soluble proteins, including sample preparation, size limitation, spectral crowding and sparse data accumulation. This Perspective provides a snapshot of current achievements, future opportunities and possible limitations in this rapidly developing field.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas de la Membrana Bacteriana Externa/química , Halorrodopsinas/química , Membrana Dobles de Lípidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Receptores de GABA/química , Rodopsinas Sensoriales/química , Adhesinas Bacterianas/fisiología , Animales , Archaea/química , Bacterias/química , Proteínas de la Membrana Bacteriana Externa/fisiología , Halorrodopsinas/fisiología , Ligandos , Lípidos/química , Ratones , Micelas , Modelos Moleculares , Medicamentos bajo Prescripción/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptores de GABA/fisiología , Rodopsinas Sensoriales/fisiología
2.
Curr Biol ; 23(1): R22-3, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23305665
3.
Biochemistry ; 51(30): 5958-66, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22757657

RESUMEN

The complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRII-HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1-136) of Natronomonas pharaonis linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures. Helix F of SRII showed an outward motion, and the C-terminal end of transmembrane domain 2 (TM2) in HtrII rotated by ∼10°. The most significant structural changes were observed in the overall orientations of the two SRII molecules, closed in the ground state and open in the M-state. This change was attributed to substantial differences in the structure of the four-helix bundle of the HtrII dimer causing the apparent rotation of TM2. These simulation results established the structural basis for the various experimental observations explaining the structural differences between the ground state and the M-intermediate state.


Asunto(s)
Proteínas Arqueales/química , Simulación por Computador , Halorrodopsinas/química , Modelos Moleculares , Rodopsinas Sensoriales/química , Proteínas Arqueales/fisiología , Cristalografía por Rayos X/métodos , Halorrodopsinas/fisiología , Simulación de Dinámica Molecular , Natronobacterium/química , Estructura Terciaria de Proteína , Rodopsinas Sensoriales/fisiología
4.
PLoS Comput Biol ; 8(2): e1002357, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319431

RESUMEN

The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs) are organized in bundles of eight cells with two major types - inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh): inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K(50) homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network.


Asunto(s)
Drosophila/fisiología , Modelos Genéticos , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsinas Sensoriales/fisiología , Animales , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Células Fotorreceptoras de Invertebrados/metabolismo , Reproducibilidad de los Resultados , Retina/citología , Rodopsinas Sensoriales/análisis , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Procesos Estocásticos
5.
Annu Rev Plant Biol ; 62: 515-48, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21438681

RESUMEN

Energy conversion of sunlight by photosynthetic organisms has changed Earth and life on it. Photosynthesis arose early in Earth's history, and the earliest forms of photosynthetic life were almost certainly anoxygenic (non-oxygen evolving). The invention of oxygenic photosynthesis and the subsequent rise of atmospheric oxygen approximately 2.4 billion years ago revolutionized the energetic and enzymatic fundamentals of life. The repercussions of this revolution are manifested in novel biosynthetic pathways of photosynthetic cofactors and the modification of electron carriers, pigments, and existing and alternative modes of photosynthetic carbon fixation. The evolutionary history of photosynthetic organisms is further complicated by lateral gene transfer that involved photosynthetic components as well as by endosymbiotic events. An expanding wealth of genetic information, together with biochemical, biophysical, and physiological data, reveals a mosaic of photosynthetic features. In combination, these data provide an increasingly robust framework to formulate and evaluate hypotheses concerning the origin and evolution of photosynthesis.


Asunto(s)
Evolución Biológica , Fotosíntesis/fisiología , Plantas/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Clorofila/fisiología , Transporte de Electrón , Proteínas Hierro-Azufre/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Proteínas de Plantas/fisiología , Plantas/microbiología , Quinonas/metabolismo , Rodopsinas Sensoriales/fisiología , Luz Solar , Simbiosis
6.
Biochemistry ; 50(4): 574-80, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21162553

RESUMEN

Archaea are able to sense light via the complexes of sensory rhodopsins I and II and their corresponding chemoreceptor-like transducers HtrI and HtrII. Though generation of the signal has been studied in detail, the mechanism of its propagation to the cytoplasm remains obscured. The cytoplasmic part of the transducer consists of adaptation and kinase activity modulating regions, connected to transmembrane helices via two HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, phosphatases) domains. The inter-HAMP region of Natronomonas pharaonis HtrII (NpHtrII) was found to be α-helical [Hayashi, K., et al. (2007) Biochemistry 46, 14380-14390]. We studied the inter-HAMP regions of NpHtrII and other phototactic signal transducers by means of molecular dynamics. Their structure is found to be a bistable asymmetric coiled coil, in which the protomers are longitudinally shifted by ~1.3 Å. The free energy penalty for the symmetric structure is estimated to be 1.2-1.5 kcal/mol depending on the molarity of the solvent. Both flanking HAMP domains are mechanistically coupled to the inter-HAMP region and are asymmetric. The longitudinal shift in the inter-HAMP region is coupled with the in-plane displacement of the cytoplasmic part by 8.6 Å relative to the transmembrane part. The established properties suggest that (1) the signal may be transduced through the inter-HAMP domain switching and (2) the inter-HAMP region may allow cytoplasmic parts of the transducers to come sufficiently close to each other to form oligomers.


Asunto(s)
Adenilil Ciclasas/química , Proteínas Arqueales/química , Proteínas Bacterianas/química , Halobacteriaceae/metabolismo , Fototransducción/fisiología , Proteínas de la Membrana/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Quinasas/química , Rodopsinas Sensoriales/química , Adenilil Ciclasas/fisiología , Proteínas Arqueales/fisiología , Proteínas Bacterianas/fisiología , Citoplasma/enzimología , Citoplasma/metabolismo , Citoplasma/fisiología , Halobacteriaceae/enzimología , Histidina Quinasa , Proteínas de la Membrana/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas Quinasas/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Rodopsinas Sensoriales/fisiología
7.
J Vis Exp ; (25)2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19289998

RESUMEN

The Drosophila larval neuromuscular preparation has proven to be a useful tool for studying synaptic physiology. Currently, the only means available to evoke excitatory junctional potentials (EJPs) in this preparation involves the use of suction electrodes. In both research and teaching labs, students often have difficulty maneuvering and manipulating this type of stimulating electrode. In the present work, we show how to remotely stimulate synaptic potentials at the larval NMJ without the use of suction electrodes. By expressing channelrhodopsin2 (ChR2) in Drosophila motor neurons using the GAL4-UAS system, and making minor changes to a basic electrophysiology rig, we were able to reliably evoke EJPs with pulses of blue light. This technique could be of particular use in neurophysiology teaching labs where student rig practice time and resources are limited.


Asunto(s)
Drosophila/fisiología , Electrofisiología/métodos , Unión Neuromuscular/fisiología , Rodopsinas Sensoriales/fisiología , Sinapsis/fisiología , Animales , Drosophila/genética , Drosophila/metabolismo , Femenino , Masculino , Neuronas Motoras/fisiología , Rodopsinas Sensoriales/biosíntesis , Rodopsinas Sensoriales/genética
8.
Plant Cell ; 20(6): 1665-77, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18552201

RESUMEN

Channelrhodopsins (CHR1 and CHR2) are light-gated ion channels acting as sensory photoreceptors in Chlamydomonas reinhardtii. In neuroscience, they are used to trigger action potentials by light in neuronal cells, tissues, or living animals. Here, we demonstrate that Chlamydomonas cells with low CHR2 content exhibit photophobic and phototactic responses that strictly depend on the availability of CHR1. Since CHR1 was described as a H+-channel, the ion specificity of CHR1 was reinvestigated in Xenopus laevis oocytes. Our experiments show that, in addition to H+, CHR1 also conducts Na+, K+, and Ca2+. The kinetic selectivity analysis demonstrates that H+ selectivity is not due to specific translocation but due to selective ion binding. Purified recombinant CHR1 consists of two isoforms with different absorption maxima, CHR1505 and CHR1463, that are in pH-dependent equilibrium. Thus, CHR1 is a photochromic and protochromic sensory photoreceptor that functions as a light-activated cation channel mediating phototactic and photophobic responses via depolarizing currents in a wide range of ionic conditions.


Asunto(s)
Proteínas Algáceas/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Rodopsinas Sensoriales/fisiología , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Chlorocebus aethiops , Electrofisiología , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Concentración de Iones de Hidrógeno , Immunoblotting , Activación del Canal Iónico/efectos de la radiación , Oocitos/metabolismo , Oocitos/fisiología , Potasio/metabolismo , Protones , Interferencia de ARN , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Sodio/metabolismo , Xenopus laevis
9.
Photochem Photobiol ; 84(4): 863-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18346091

RESUMEN

Membrane-inserted complexes consisting of two photochemically reactive sensory rhodopsin (SR) subunits flanking a homodimer of a transducing protein subunit (Htr) are used by halophilic archaea for sensing light gradients to modulate their swimming behavior (phototaxis). The SR-Htr complexes extend into the cytoplasm where the Htr subunits bind a his-kinase that controls a phosphorylation system that regulates the flagellar motors. This review focuses on current progress primarily on the mechanism of signal relay within the SRII-HtrII complexes from Natronomonas pharaonis and Halobacterium salinarum. The recent elucidation of a photoactive site steric trigger crucial for signal relay, advances in understanding the role of proton transfer from the chromophore to the protein in SRII activation, and the localization of signal relay to the membrane-embedded portion of the SRII-HtrII interface, are beginning to produce a clear picture of the signal transfer process. The SR-Htr complexes offer unprecedented opportunities to resolve first examples of the chemistry of signal relay between membrane proteins at the atomic level, which would provide a major contribution to the general understanding of dynamic interactions between integral membrane proteins.


Asunto(s)
Euryarchaeota/fisiología , Rodopsinas Sensoriales/fisiología , Sitios de Unión , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/fisiología , Rodopsinas Sensoriales/química , Transducción de Señal
10.
Biophys J ; 91(12): 4519-27, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17012323

RESUMEN

Light-induced electric signals in intact E. coli cells generated by heterologously expressed full-length and C-terminally truncated versions of Anabaena sensory rhodopsin (ASR) demonstrate that the charge movements within the membrane-embedded part of the molecule are stringently controlled by the cytoplasmic domain. In particular, truncation inverts the direction of proton movement during Schiff base deprotonation from outward to cytoplasmic. Truncation also alters faster charge movements that occur before Schiff base deprotonation. Asp(217) as previously shown by FTIR serves as a proton acceptor in the truncated ASR but not in the full-length version, and its mutation to Asn restores the natural outward direction of proton movement. Introduction of a potential negative charge (Ser(86) to Asp) on the cytoplasmic side favors a cytoplasmic direction of proton release from the Schiff base. In contrast, mutation of the counterion Asp(75) to Glu reverses the photocurrent to the outward direction in the truncated pigment, and in both truncated and full-length versions accelerates Schiff base deprotonation more than 10-fold. The communication between the cytoplasmic domain and the membrane-embedded photoactive site of ASR demonstrated here is likely to derive from the receptor's use of a cytoplasmic protein for signal transduction, as has been suggested previously from binding studies.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/fisiología , Bases de Schiff/metabolismo , Rodopsinas Sensoriales/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/fisiología , Citoplasma/metabolismo , Escherichia coli/fisiología , Escherichia coli/efectos de la radiación , Luz , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Protones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo
11.
Trends Microbiol ; 14(11): 480-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17005405

RESUMEN

Sensory rhodopsins are photoactive, membrane-embedded seven-transmembrane helix receptors that use retinal as a chromophore. They are widespread in the microbial world in each of the three domains of life: Archaea, Bacteria and Eukarya. A striking characteristic of these photoreceptors is their different modes of signaling in different organisms, including interaction with other membrane proteins, interaction with cytoplasmic transducers and light-controlled Ca(2+) channel activity. More than two decades since the discovery of the first sensory rhodopsins in the archaeon Halobacterium salinarum, genome projects have revealed a widespread presence of homologous photosensors. New work on cyanobacteria, algae, fungi and marine proteobacteria is revealing how evolution has modified the common design of these proteins to produce a remarkably rich diversity in their signaling biochemistry.


Asunto(s)
Rodopsinas Microbianas/fisiología , Rodopsinas Sensoriales/fisiología , Transducción de Señal/fisiología , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Rodopsinas Microbianas/química , Rodopsinas Sensoriales/química
12.
Nat Methods ; 3(10): 785-92, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16990810

RESUMEN

Electrically excitable cells are important in the normal functioning and in the pathophysiology of many biological processes. These cells are typically embedded in dense, heterogeneous tissues, rendering them difficult to target selectively with conventional electrical stimulation methods. The algal protein Channelrhodopsin-2 offers a new and promising solution by permitting minimally invasive, genetically targeted and temporally precise photostimulation. Here we explore technological issues relevant to the temporal precision, spatial targeting and physiological implementation of ChR2, in the context of other photostimulation approaches to optical control of excitable cells.


Asunto(s)
Proteínas Algáceas/fisiología , Rodopsinas Sensoriales/fisiología , Proteínas Algáceas/química , Proteínas Algáceas/efectos de la radiación , Membrana Celular/fisiología , Membrana Celular/efectos de la radiación , Eucariontes , Luz , Fotoquímica , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/efectos de la radiación
13.
Biochemistry ; 45(6): 1579-90, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16460005

RESUMEN

The absorption maximum of blue proteorhodopsin (BPR) is the most blue-shifted of all retinal proteins found in archaea or bacteria, with the exception of sensory rhodopsin II (SRII). The absorption spectrum also exhibits a pH dependence larger than any other retinal protein. We examine the structural origins of these two properties of BPR by using optical spectroscopy, homology modeling, and molecular orbital theory. Bacteriorhodopsin (BR) and SRII are used as homology parents for comparative purposes. We find that the tertiary structure of BPR based on SRII is more realistic with respect to free energy, dynamic stability, and spectroscopic properties. Molecular orbital calculations including full single- and double-configuration interaction within the chromophore pi-electron system provide perspectives on the wavelength regulation in this protein and indicate that Arg-95, Gln-106, Glu-143, and Asp-229 play important, and in some cases pH-dependent roles. A possible model for the 0.22 eV red shift of BPR at low pH is examined, in which Glu-143 becomes protonated and releases Arg-95 to rotate up into the binding site, altering the electrostatic environment of the chromophore. At high pH, BPR has spectroscopic properties similar to SRII, but at low pH, BPR has spectroscopic properties more similar to BR. Nevertheless, SRII is a significantly better homology model for BPR and opens up the question of whether this protein serves as a proton pump, as commonly believed, or is a light sensor with structure-function properties more comparable to those of SRII. The function of BPR in the native organism is discussed with reference to the results of the homology model.


Asunto(s)
Rodopsina/química , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Arginina/química , Ácido Aspártico/química , Cromatóforos Bacterianos/química , Cromatóforos Bacterianos/metabolismo , Ácido Glutámico/química , Glutamina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Retina/química , Rodopsina/metabolismo , Rodopsinas Microbianas , Bases de Schiff/química , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/fisiología , Espectrofotometría/métodos , Electricidad Estática
14.
Biophys J ; 89(6): 3911-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16169986

RESUMEN

Two rhodopsins with intrinsic ion conductance have been identified recently in Chlamydomonas reinhardtii. They were named "channelrhodopsins" ChR1 and ChR2. Both were expressed in Xenopus laevis oocytes, and their properties were studied qualitatively by two electrode voltage clamp techniques. ChR1 is specific for H+, whereas ChR2 conducts Na+, K+, Ca2+, and guanidinium. ChR2 responds to the onset of light with a peak conductance, followed by a smaller steady-state conductance. Upon a second stimulation, the peak is smaller and recovers to full size faster at high external pH. ChR1 was reported to respond with a steady-state conductance only but is demonstrated here to have a peak conductance at high light intensities too. We analyzed quantitatively the light-induced conductance of ChR1 and developed a reaction scheme that describes the photocurrent kinetics at various light conditions. ChR1 exists in two dark states, D1 and D2, that photoisomerize to the conducting states M1 and M2, respectively. Dark-adapted ChR1 is completely arrested in D1. M1 converts into D1 within milliseconds but, in addition, equilibrates with the second conducting state M2 that decays to the second dark state D2. Thus, light-adapted ChR1 represents a mixture of D1 and D2. D2 thermally reconverts to D1 in minutes, i.e., much slower than any reaction of the two photocycles.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Luz , Modelos Biológicos , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Animales , Simulación por Computador , Oscuridad , Relación Dosis-Respuesta en la Radiación , Fotoquímica , Dosis de Radiación , Rodopsinas Sensoriales/fisiología , Rodopsinas Sensoriales/efectos de la radiación
15.
J Biol Chem ; 280(31): 28365-9, 2005 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15951432

RESUMEN

The photoactivation mechanism of the sensory rho-dopsin II (SRII)-HtrII receptor-transducer complex of Natronomonas pharaonis was investigated by time-resolved Fourier transform infrared difference spectroscopy to identify structural changes associated with early events in the signal relay mechanism from the receptor to the transducer. Several prominent bands in the wild-type SRII-HtrII spectra are affected by amino acid substitutions at the receptor Tyr(199) and transducer Asn(74) residues, which form a hydrogen bond between the two proteins near the middle of the bilayer. Our results indicate disappearance of this hydrogen bond in the M and O photointermediates, the likely signaling states of the complex. This event represents one of the largest light-induced alterations in the binding contacts between the receptor and transducer. The vibrational frequency changes suggest that Asn(74) and Tyr(199) form other stronger hydrogen bonds in the M state. The light-induced disruption of the Tyr(199)-Asn(74) bond also occurs when the Schiff base counterion Asp(75) is replaced with a neutral asparagine. We compared the decrease in intensity of difference bands assigned to the Tyr(199)-Asn(74) pair and to chromophore and protein groups of the receptor at various time points during the recovery of the initial state. All difference bands exhibit similar decay kinetics indicating that reformation of the Tyr(199)-Asn(74) hydrogen bond occurs concomitantly with the decay of the M and O photointermediates. This work demonstrates that the signal relay from SRII to HtrII involves early structural alterations in the deeply membrane-embedded domain of the complex and provides a spectroscopic signal useful for correlation with the downstream events in signal transduction.


Asunto(s)
Membrana Celular/fisiología , Euryarchaeota/fisiología , Halorrodopsinas/fisiología , Rodopsinas Sensoriales/fisiología , Sustitución de Aminoácidos , Comunicación Celular , Cristalografía por Rayos X , Cartilla de ADN , Oscuridad , Halorrodopsinas/genética , Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Rodopsinas Sensoriales/genética , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier
16.
Photochem Photobiol Sci ; 3(6): 519-30, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15170480

RESUMEN

The purple photosynthetic bacteria contain a large variety of sensory and regulatory proteins, and those responding to light are among the most interesting. These currently include bacteriophytochrome (Bph), sensory rhodopsin (SR), and photoactive yellow protein (PYP), which all appear to function as light sensors. We herein interpret new findings within the context of current knowledge. For greater detail, the reader is referred to comprehensive reviews on these topics. Of the three proteins, only PYP has been well-characterized in terms of structure and physical-chemical properties in the purple bacteria, although none have well-defined functions. New findings include a cluster of six genes in the Thermochromatium tepidum genome that encodes presumed sensory rhodopsin and phototaxis proteins. T. tepidum also has a gene for PYP fused to bacteriophytochrome and diguanylate cyclase domains. The genes for PYP and its biosynthetic enzymes are associated with those for gas vesicle formation in Rhodobacter species, suggesting that one function of PYP is to regulate cell buoyancy. The association of bacteriophytochrome genes with those for reaction centers and light-harvesting proteins in Rhodopseudomonas palustris suggests that the photosynthetic antenna as well as the reaction center are regulated by Bphs. Furthermore, Rc. centenum PPR is reversibly photobleached at 702 nm rather than red-shifted as in other phytochromes, suggesting that PPR senses the intensity of white light rather than light quality. PYP from Halorhodospira(aka Ectothiorhodospira)halophila is of special interest because it has become the structural prototype for the PAS domain, a motif that is found throughout the phylogenetic tree and which plays important roles in many signaling pathways. Thus, the structural and photochemical characterization of PYP, utilizing site-directed mutagenesis, provides insights into the mechanism of signal transduction.


Asunto(s)
Proteínas Bacterianas/fisiología , Chromatiaceae/fisiología , Proteínas Luminiscentes/fisiología , Fitocromo/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Halorrodopsinas/genética , Halorrodopsinas/fisiología , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Familia de Multigenes , Fitocromo/genética , Estructura Secundaria de Proteína , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
Biochim Biophys Acta ; 1565(2): 196-205, 2002 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-12409195

RESUMEN

The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 A resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.


Asunto(s)
Halorrodopsinas , Proteínas de la Membrana/química , Natronobacterium/química , Rodopsinas Sensoriales/química , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/fisiología , Sitios de Unión , Carotenoides/química , Cristalografía , Citoplasma/química , Modelos Moleculares , Datos de Secuencia Molecular , Natronobacterium/fisiología , Retinaldehído/química , Rodopsinas Sensoriales/fisiología , Transducción de Señal , Espectrofotometría , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...