Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819436

RESUMEN

The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/fisiología , Neuronas/metabolismo , Relaxina/metabolismo , Relaxina/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistemas CRISPR-Cas , Rombencéfalo/fisiología , Rombencéfalo/metabolismo
2.
Curr Biol ; 33(18): 3911-3925.e6, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37689065

RESUMEN

In many brain areas, neuronal activity is associated with a variety of behavioral and environmental variables. In particular, neuronal responses in the zebrafish hindbrain relate to oculomotor and swimming variables as well as sensory information. However, the precise functional organization of the neurons has been difficult to unravel because neuronal responses are heterogeneous. Here, we used dimensionality reduction methods on neuronal population data to reveal the role of the hindbrain in visually driven oculomotor behavior and swimming. We imaged neuronal activity in zebrafish expressing GCaMP6s in the nucleus of almost all neurons while monitoring the behavioral response to gratings that rotated with different speeds. We then used reduced-rank regression, a method that condenses the sensory and motor variables into a smaller number of "features," to predict the fluorescence traces of all ROIs (regions of interest). Despite the potential complexity of the visuo-motor transformation, our analysis revealed that a large fraction of the population activity can be explained by only two features. Based on the contribution of these features to each ROI's activity, ROIs formed three clusters. One cluster was related to vergent movements and swimming, whereas the other two clusters related to leftward and rightward rotation. Voxels corresponding to these clusters were segregated anatomically, with leftward and rightward rotation clusters located selectively to the left and right hemispheres, respectively. Just as described in many cortical areas, our analysis revealed that single-neuron complexity co-exists with a simpler population-level description, thereby providing insights into the organization of visuo-motor transformations in the hindbrain.


Asunto(s)
Rombencéfalo , Pez Cebra , Animales , Pez Cebra/fisiología , Rotación , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación
3.
Sci Rep ; 13(1): 11458, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454229

RESUMEN

During embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase. Our results showed that, even if kreisler mice are able to generate eyelid reflex responses, there are differences with wild-types in the first component of the response (R1), modulated by the noradrenergic system. The acquisition of conditioned motor responses is impaired in kreisler mice when using the trace but not the delay paradigm, suggesting a functional impairment in the hippocampus, subsequently confirmed by reduced quantification of alpha2a receptor mRNA expression in this area but not in the cerebellum. Moreover, we demonstrate the involvement of adrenergic projection in eyelid classical conditioning, as clonidine prevents the appearance of eyelid conditioned responses in wild-type mice. In addition, hippocampal motor learning ability was restored in kreisler mice by administration of adrenergic antagonist drugs, and a synergistic effect was observed following simultaneous administration of idazoxan and naloxone.


Asunto(s)
Condicionamiento Clásico , Condicionamiento Palpebral , Ratones , Animales , Condicionamiento Clásico/fisiología , Neuronas/fisiología , Condicionamiento Palpebral/fisiología , Párpados , Rombencéfalo/fisiología , Proteínas de Homeodominio
4.
Curr Biol ; 33(12): R677-R679, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37339593

RESUMEN

Using functional imaging and neural circuit reconstructions, a recent study reveals head direction neurons in the anterior hindbrain of zebrafish that resemble insect head-direction cells to a surprising degree.


Asunto(s)
Neuronas , Pez Cebra , Animales , Pez Cebra/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología
5.
Cell ; 186(1): 14-16, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608650

RESUMEN

How the neocortex modulates hindbrain and spinal circuits is of fundamental interest for understanding motor control and adaptive behaviors. New work from Yang, Kanodia, and Arber demonstrates that there is an exquisite anatomical organization and functional modulation from the anterior (motor) cortex on downstream medulla populations during forelimb behaviors in mice.


Asunto(s)
Miembro Anterior , Neocórtex , Animales , Ratones , Corteza Motora/fisiología , Rombencéfalo/fisiología , Columna Vertebral/fisiología
6.
Cell ; 185(26): 5011-5027.e20, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563666

RESUMEN

To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.


Asunto(s)
Neuronas , Pez Cebra , Animales , Pez Cebra/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación/fisiología , Homeostasis , Mamíferos
7.
Sci Rep ; 12(1): 1097, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058502

RESUMEN

Fast and accurate threat detection is critical for animal survival. Reducing perceptual ambiguity by integrating multiple sources of sensory information can enhance perception and reduce response latency. However, studies addressing the link between behavioral correlates of multisensory integration and its underlying neural basis are rare. Fish that detect an urgent threat escape with an explosive behavior known as C-start. The C-start is driven by an identified neural circuit centered on the Mauthner cell, an identified neuron capable of triggering escapes in response to visual and auditory stimuli. Here we demonstrate that goldfish can integrate visual looms and brief auditory stimuli to increase C-start probability. This multisensory enhancement is inversely correlated to the salience of the stimuli, with weaker auditory cues producing a proportionally stronger multisensory effect. We also show that multisensory stimuli reduced C-start response latency, with most escapes locked to the presentation of the auditory cue. We make a direct link between behavioral data and its underlying neural mechanism by reproducing the behavioral data with an integrate-and-fire computational model of the Mauthner cell. This model of the Mauthner cell circuit suggests that excitatory inputs integrated at the soma are key elements in multisensory decision making during fast C-start escapes. This provides a simple but powerful mechanism to enhance threat detection and survival.


Asunto(s)
Reacción de Fuga/fisiología , Tiempo de Reacción/fisiología , Rombencéfalo/fisiología , Estimulación Acústica , Animales , Percepción Auditiva/fisiología , Señales (Psicología) , Femenino , Carpa Dorada/fisiología , Masculino , Neuronas/fisiología , Percepción Visual/fisiología
8.
PLoS Comput Biol ; 17(12): e1009654, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898604

RESUMEN

How does the brain process sensory stimuli, and decide whether to initiate locomotor behaviour? To investigate this question we develop two whole body computer models of a tadpole. The "Central Nervous System" (CNS) model uses evidence from whole-cell recording to define 2300 neurons in 12 classes to study how sensory signals from the skin initiate and stop swimming. In response to skin stimulation, it generates realistic sensory pathway spiking and shows how hindbrain sensory memory populations on each side can compete to initiate reticulospinal neuron firing and start swimming. The 3-D "Virtual Tadpole" (VT) biomechanical model with realistic muscle innervation, body flexion, body-water interaction, and movement is then used to evaluate if motor nerve outputs from the CNS model can produce swimming-like movements in a volume of "water". We find that the whole tadpole VT model generates reliable and realistic swimming. Combining these two models opens new perspectives for experiments.


Asunto(s)
Anuros/fisiología , Toma de Decisiones/fisiología , Larva/fisiología , Modelos Neurológicos , Natación/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Biología Computacional , Técnicas de Placa-Clamp , Rombencéfalo/fisiología
9.
J Neurophysiol ; 126(5): 1814-1830, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705593

RESUMEN

Xenopus laevis has a lateral line mechanosensory system throughout its full life cycle, and a previous study on prefeeding stage tadpoles revealed that it may play a role in motor responses to both water suction and water jets. Here, we investigated the physiology of the anterior lateral line system in newly hatched tadpoles and the motor outputs induced by its activation in response to brief suction stimuli. High-speed videoing showed tadpoles tended to turn and swim away when strong suction was applied close to the head. The lateral line neuromasts were revealed by using DASPEI staining, and their inactivation with neomycin eliminated tadpole motor responses to suction. In immobilized preparations, suction or electrically stimulating the anterior lateral line nerve reliably initiated swimming but the motor nerve discharges implicating turning was observed only occasionally. The same stimulation applied during ongoing fictive swimming produced a halting response. The anterior lateral line nerve showed spontaneous afferent discharges at rest and increased activity during stimulation. Efferent activities were only recorded during tadpole fictive swimming and were largely synchronous with the ipsilateral motor nerve discharges. Finally, calcium imaging identified neurons with fluorescence increase time-locked with suction stimulation in the hindbrain and midbrain. A cluster of neurons at the entry point of the anterior lateral line nerve in the dorsolateral hindbrain had the shortest latency in their responses, supporting their potential sensory interneuron identity. Future studies need to reveal how the lateral line sensory information is processed by the central circuit to determine tadpole motor behavior.NEW & NOTEWORTHY We studied Xenopus tadpole motor responses to anterior lateral line stimulation using high-speed videos, electrophysiology and calcium imaging. Activating the lateral line reliably started swimming. At high stimulation intensities, turning was observed behaviorally but suitable motor nerve discharges were seen only occasionally in immobilized tadpoles. Suction applied during swimming produced a halting response. We analyzed afferent and efferent activities of the tadpole anterior lateral line nerve and located sensory interneurons using calcium imaging.


Asunto(s)
Larva/fisiología , Sistema de la Línea Lateral/fisiología , Actividad Motora/fisiología , Rombencéfalo/fisiología , Animales , Conducta Animal/fisiología , Interneuronas/fisiología , Larva/crecimiento & desarrollo , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Xenopus laevis
10.
Brain Res ; 1768: 147574, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274325

RESUMEN

Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.


Asunto(s)
Nivel de Alerta/fisiología , Canales de Potasio/metabolismo , Rombencéfalo/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Cultivo Primario de Células , Rombencéfalo/metabolismo
11.
Nat Commun ; 12(1): 4145, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230474

RESUMEN

Organisms have the capacity to make decisions based solely on internal drives. However, it is unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide a comprehensive map of the activity patterns underlying the generation of saccades made in the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover a range of responses surrounding spontaneous saccades, from cells that display tonic discharge only during fixations to neurons whose activity rises in advance of saccades by multiple seconds. When we lesion cells in these populations we find that ablation of neurons with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation using a ramp-to-threshold model and are able to predict the times of upcoming saccades using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a bound is a critical component of self-initiated saccadic movements.


Asunto(s)
Regulación de la Población , Rombencéfalo/patología , Rombencéfalo/fisiología , Movimientos Sacádicos/fisiología , Animales , Potenciales Evocados Visuales , Movimientos Oculares , Tecnología de Seguimiento Ocular/psicología , Larva , Neuronas/patología , Neuronas/fisiología , Tiempo de Reacción/fisiología , Pez Cebra
12.
Nat Genet ; 53(8): 1221-1232, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34294917

RESUMEN

Driver mutations in genes encoding histone H3 proteins resulting in p.Lys27Met substitutions (H3-K27M) are frequent in pediatric midline brain tumors. However, the precise mechanisms by which H3-K27M causes tumor initiation remain unclear. Here, we use human hindbrain neural stem cells to model the consequences of H3.3-K27M on the epigenomic landscape in a relevant developmental context. Genome-wide mapping of epitope-tagged histone H3.3 revealed that both the wild type and the K27M mutant incorporate abundantly at pre-existing active enhancers and promoters, and to a lesser extent at Polycomb repressive complex 2 (PRC2)-bound regions. At active enhancers, H3.3-K27M leads to focal H3K27ac loss, decreased chromatin accessibility and reduced transcriptional expression of nearby neurodevelopmental genes. In addition, H3.3-K27M deposition at a subset of PRC2 target genes leads to increased PRC2 and PRC1 binding and augmented transcriptional repression that can be partially reversed by PRC2 inhibitors. Our work suggests that, rather than imposing de novo transcriptional circuits, H3.3-K27M drives tumorigenesis by locking initiating cells in their pre-existing, immature epigenomic state, via disruption of PRC2 and enhancer functions.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas/metabolismo , Células-Madre Neurales/fisiología , Complejo Represivo Polycomb 2/genética , Rombencéfalo/citología , Animales , Neoplasias Encefálicas/genética , Diferenciación Celular/genética , Línea Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigenoma , Regulación del Desarrollo de la Expresión Génica , Glioma/genética , Histonas/genética , Humanos , Lisina/metabolismo , Masculino , Ratones Endogámicos , Mutación , Células-Madre Neurales/trasplante , Oncogenes , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Rombencéfalo/fisiología
13.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323269

RESUMEN

During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.


Asunto(s)
Tipificación del Cuerpo/fisiología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/fisiología , Vertebrados/crecimiento & desarrollo , Vertebrados/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Humanos
14.
Curr Biol ; 31(15): 3343-3357.e4, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34289386

RESUMEN

Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.


Asunto(s)
Reacción de Fuga , Neuronas/fisiología , Rombencéfalo/fisiología , Pez Cebra , Animales , Larva , Vías Nerviosas , Natación , Pez Cebra/fisiología
15.
Nutrients ; 13(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068091

RESUMEN

The mesencephalic trigeminal nucleus (Mes5) processes oral sensory-motor information, but its role in the control of energy balance remains unexplored. Here, using fluorescent in situ hybridization, we show that the Mes5 expresses the melanocortin-4 receptor. Consistent with MC4R activation in other areas of the brain, we found that Mes5 microinjection of the MC4R agonist melanotan-II (MTII) suppresses food intake and body weight in the mouse. Furthermore, NTS POMC-projecting neurons to the Mes5 can be chemogenetically activated to drive a suppression in food intake. Taken together, these findings highlight the Mes5 as a novel target of melanocortinergic control of food intake and body weight regulation, although elucidating the endogenous role of this circuit requires future study. While we observed the sufficiency of Mes5 MC4Rs for food intake and body weight suppression, these receptors do not appear to be necessary for food intake or body weight control. Collectively, the data presented here support the functional relevance of the NTS POMC to Mes5 projection pathway as a novel circuit that can be targeted to modulate food intake and body weight.


Asunto(s)
Regulación del Apetito/fisiología , Peso Corporal/fisiología , Proopiomelanocortina/fisiología , Rombencéfalo/fisiología , Tegmento Mesencefálico/fisiología , Animales , Ingestión de Alimentos/fisiología , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología , Rombencéfalo/anatomía & histología , Técnicas Estereotáxicas
16.
Sci Rep ; 11(1): 12644, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135354

RESUMEN

Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.


Asunto(s)
Movimientos Sacádicos/fisiología , Visión Binocular/fisiología , Pez Cebra/fisiología , Animales , Neuronas/fisiología , Rombencéfalo/citología , Rombencéfalo/fisiología
17.
Curr Biol ; 31(15): 3315-3329.e5, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146485

RESUMEN

In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.


Asunto(s)
Actividad Motora/fisiología , Rombencéfalo , Células Receptoras Sensoriales , Médula Espinal/citología , Pez Cebra , Animales , Rombencéfalo/fisiología , Células Receptoras Sensoriales/fisiología
18.
Sci Rep ; 11(1): 10840, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035395

RESUMEN

Understanding how neural populations encode natural stimuli with complex spatiotemporal structure to give rise to perception remains a central problem in neuroscience. Here we investigated population coding of natural communication stimuli by hindbrain neurons within the electrosensory system of weakly electric fish Apteronotus leptorhynchus. Overall, we found that simultaneously recorded neural activities were correlated: signal but not noise correlations were variable depending on the stimulus waveform as well as the distance between neurons. Combining the neural activities using an equal-weight sum gave rise to discrimination performance between different stimulus waveforms that was limited by redundancy introduced by noise correlations. However, using an evolutionary algorithm to assign different weights to individual neurons before combining their activities (i.e., a weighted sum) gave rise to increased discrimination performance by revealing synergistic interactions between neural activities. Our results thus demonstrate that correlations between the neural activities of hindbrain electrosensory neurons can enhance information about the structure of natural communication stimuli that allow for reliable discrimination between different waveforms by downstream brain areas.


Asunto(s)
Pez Eléctrico/fisiología , Rombencéfalo/fisiología , Comunicación Animal , Animales , Órgano Eléctrico/fisiología , Modelos Neurológicos , Neuronas/fisiología , Transmisión Sináptica
19.
Integr Comp Biol ; 61(1): 269-282, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33974077

RESUMEN

In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.


Asunto(s)
Batrachoidiformes , Dopamina , Oído Interno/inervación , Rombencéfalo/fisiología , Estaciones del Año , Testosterona/farmacología , Animales , Batrachoidiformes/fisiología , Regulación hacia Abajo , Oído Interno/efectos de los fármacos , Femenino
20.
Cells ; 10(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807497

RESUMEN

BACKGROUND: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular-subventricular zone of the lateral wall of the lateral ventricles (V-SVZ) and has been controversially discussed in so-called "non-neurogenic" brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. OBJECTIVE/HYPOTHESIS: To analyze the influence of chronic-progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V-SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). METHODS: We used Thy1-m[A30P]h α synuclein mice and Leu9'Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V-SVZ, the aqueduct and the fourth ventricle. RESULTS: In both animal models, overall proliferative activity in the V-SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V-SVZ in Leu9'Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. CONCLUSIONS: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.


Asunto(s)
Dopamina/deficiencia , Mesencéfalo/fisiología , Neurogénesis , Animales , Proliferación Celular , Humanos , Ventrículos Laterales/fisiología , Ratones Endogámicos C57BL , Receptores Nicotínicos/metabolismo , Rombencéfalo/fisiología , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA