Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Plant Physiol Biochem ; 214: 108874, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981208

RESUMEN

Calmodulin-like proteins (CMLs) are an essential family of calcium sensors involved in multiple Ca2+-mediated cellular processes in plants. Rosa roxburghii Tratt, known for the abundance of L-ascorbic acid (AsA) in its fruits, is widely distributed in calcium-rich soil of the karst region in southwestern China. The aim of this study was to identify key CMLs that respond to exogenous Ca2+ levels and regulate AsA biosynthesis in R. roxburghii. A genome-wide scan revealed the presence of 41 RrCML genes with 1-4 EF-hand motif (s) unevenly distributed across the 7 chromosomes of R. roxburghii. qRT-PCR analysis revealed that RrCML13, RrCML10, and RrCML36 responded significantly to exogenous Ca2+ treatment, and RrCML13 was positively correlated with GDP-L-galactose phosphorylase encoding gene (RrGGP2) expression and AsA content in the developing fruit. Overexpression of RrCML13 in fruits and roots significantly promoted the transcription of RrGGP2 and the accumulation of AsA, while virus-induced silencing of RrCML13 reduced the transcription of RrGGP2 and the content of AsA. Furthermore, Moreover, the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analysis confirmed the interaction between RrCML13 and RrGGP2 proteins, indicating that RrCML13 plays a regulatory role in calcium-mediated AsA biosynthesis. This study enhances our understanding of R. roxburghii CMLs and sheds light on the calcium-mediated regulation of AsA biosynthesis.


Asunto(s)
Ácido Ascórbico , Calcio , Calmodulina , Proteínas de Plantas , Rosa , Rosa/genética , Rosa/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Calcio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Calmodulina/metabolismo , Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Frutas/metabolismo , Frutas/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genes de Plantas
2.
Curr Biol ; 34(15): 3550-3563.e8, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39043188

RESUMEN

It is unknown why roses are terpene-rich, what the terpene biosynthetic pathways in roses are, and why only a few rose species produce the major components of rose essential oil. Here, we assembled two high-quality chromosome-level genomes for Rosa rugosa and Rosa multiflora. We also re-sequenced 132 individuals from the F1 progeny of Rosa chinensis and Rosa wichuraiana and 36 of their related species. Comparative genomics revealed that expansions of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and terpene synthases (TPSs) gene families led to the enrichment of terpenes in rose scent components. We constructed a terpene biosynthesis network and discovered a TPS-independent citronellol biosynthetic pathway in roses through gene functional identification, genome-wide association studies (GWASs), and multi-omic analysis. Heterologous co-expression of rose citronellol biosynthetic genes in Nicotiana benthamiana led to citronellol production. Our genomic and metabolomic analyses suggested that the copy number of NUDX1-1a determines the citronellol content in different rose species. Our findings not only provide additional genome and gene resources and reveal the evolution of the terpene biosynthetic pathways but also present a nearly complete scenario for terpenoid metabolism that will facilitate the breeding of fragrant roses and the production of rose oil.


Asunto(s)
Vías Biosintéticas , Rosa , Terpenos , Rosa/genética , Rosa/metabolismo , Terpenos/metabolismo , Vías Biosintéticas/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Estudio de Asociación del Genoma Completo , Odorantes , Evolución Molecular , Genoma de Planta , Monoterpenos Acíclicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999097

RESUMEN

This study delves into the chemical and genetic determinants of petal color and fragrance in Rosa canina L., a wild rose species prized for its pharmacological and cosmetic uses. Comparative analysis of white and dark pink R. canina flowers revealed that the former harbors significantly higher levels of total phenolics (TPC) and flavonoids (TFC), while the latter is distinguished by elevated total anthocyanins (TAC). Essential oils in the petals were predominantly composed of aliphatic hydrocarbons, with phenolic content chiefly constituted by flavonols and anthocyanins. Notably, gene expression analysis showed an upregulation in most genes associated with petal color and scent biosynthesis in white buds compared to dark pink open flowers. However, anthocyanin synthase (ANS) and its regulatory gene RhMYB1 exhibited comparable expression levels across both flower hues. LC-MS profiling identified Rutin, kaempferol, quercetin, and their derivatives as key flavonoid constituents, alongside cyanidin and delphinidin as the primary anthocyanin compounds. The findings suggest a potential feedback inhibition of anthocyanin biosynthesis in white flowers. These insights pave the way for the targeted enhancement of R. canina floral traits through metabolic and genetic engineering strategies.


Asunto(s)
Antocianinas , Flavonoides , Flores , Regulación de la Expresión Génica de las Plantas , Fitoquímicos , Rosa , Rosa/química , Rosa/genética , Rosa/metabolismo , Flores/química , Flores/metabolismo , Flores/genética , Fitoquímicos/química , Flavonoides/análisis , Flavonoides/metabolismo , Flavonoides/química , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Pigmentación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Odorantes/análisis
4.
Sci Rep ; 14(1): 13917, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886497

RESUMEN

Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Rosa , Almidón Fosforilasa , Estrés Fisiológico , Estrés Fisiológico/genética , Rosa/genética , Rosa/enzimología , Rosa/metabolismo , Almidón Fosforilasa/genética , Almidón Fosforilasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Sequías , Genoma de Planta , Salinidad
5.
Genes (Basel) ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927736

RESUMEN

The WRKY gene family is a key transcription factor family for plant development and the stress response. However, few studies have investigated the WRKY gene family in Chinese rose (Rosa chinensis). In this study, 68 RcWRKY genes were identified from the Chinese rose genome and classified into three primary groups and five subgroups based on the structural and phylogenetic characteristics. The analysis of the conserved domains, motifs, and gene structure revealed that the RcWRKY genes within the same group had the same exon-intron organization and composition. Chromosome mapping and gene duplication revealed that the RcWRKY genes were randomly dispersed across seven chromosomes. Fragment duplication and refined selection may have influenced the evolution of the WRKY gene family in Chinese rose. The cis-acting elements in the WRKY promoter region revealed that the RcWRKY genes contained numerous abiotic stress response elements. The results of qRT-PCR revealed that the expression of RcWRKY was tissue-specific, with high expression being observed under drought, heat, and salt stress. Notably, RcWRKY49's expression increased more than fivefold following salt stress, indicating that it is a crucial gene mediating the salt stress response of Chinese rose. These findings shed light on the regulatory role of RcWRKY in the growth and development of Chinese rose, and they serve as a foundation for future molecular breeding programs and gene discovery.


Asunto(s)
Sequías , Familia de Multigenes , Proteínas de Plantas , Rosa , Estrés Salino , Factores de Transcripción , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Rosa/genética , Estrés Salino/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791554

RESUMEN

Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title 'king of vitamin C'. Despite this recognition, the mechanisms underlying the biosynthesis and regulation of triterpenoid compounds in R. roxburghii remain largely unresolved. In this study, we conducted high-performance liquid chromatography profiling across various organs of R. roxburghii, including fruit, root, stem, and leaves, revealing distinct distributions of triterpenoid compounds among different plant parts. Notably, the fruit exhibited the highest total triterpenoid content, followed by root and stem, with leaf containing the lowest levels, with leaf containing the lowest levels. Transcriptomic analysis unveiled preferential expression of members from the cytochrome P450 (CYP) and glycosyltransferase (UGT) families, likely contributing to the higher accumulation of both ascorbate and triterpenoid compounds in the fruits of R. roxburghii compared to other tissues of R. roxburghii. Transcriptomic analysis unveiled a potential gene network implicated in the biosynthesis of both ascorbate and triterpenoid compounds in R. roxburghii. These findings not only deepen our understanding of the metabolic pathways in this species but also have implications for the design of functional foods enriched with ascorbate and triterpenoids in R. roxburghii.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Rosa , Triterpenos , Triterpenos/metabolismo , Perfilación de la Expresión Génica/métodos , Rosa/genética , Rosa/metabolismo , Transcriptoma , Ácido Ascórbico/metabolismo , Frutas/metabolismo , Frutas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética
7.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760710

RESUMEN

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Rosa , Rosa/genética , Rosa/metabolismo , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Metabolismo Secundario/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis
8.
BMC Plant Biol ; 24(1): 345, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684952

RESUMEN

BACKGROUND: During the pandemic, the interest in colorful wild small fruits increased due to their positive effects on health. Also it has become very important to offer species with high nutritional value as fresh or processed products for human consumption due to increasing world population and decreasing arable land. In this context, we characterized the horticultural characteristics of 11 rosehip genotypes grown from seeds. RESULTS: Citric acid was determined as the main organic acid in all the genotypes investigated. The mean values of the organic acids obtained from all the genotypes were found to be as follows: citric acid (7177 mg L-1), malic acid (3669 mg L-1), tartaric acid (1834 mg L-1), oxalic acid (1258 mg L-1), carboxylic acid (631.9 mg L-1), shikimic acid (157.8 mg L-1), ascorbic acid (155 mg L-1), and acetic acid (20.9 mg L-1). Ellagic acid was the dominant phenolic compound (90.1 mg L-1 - 96.2 mg L-1) in all genotypes. The average values obtained from all genotypes for total phenolics, total flavonoids, and antioxidant activity were 37 261 mg GAE L-1, 526.2 mg quercetin L-1, and 93.6%, respectively. These characteristics had the lowest coefficients of variation, which indicated that all genotypes were similar regarding high biochemical with antioxidant effect. In addition, fruit width, fruit length, and fruit weight varied between 13.0 and 17.3 mm, 20.7 and 25.5 mm, and 1.4 and 2.7 g, respectively. CONCLUSIONS: The genotypes were categorized according to different purposes, such as suitability for wine production, making vinegar, etc. While the pomological characteristics were strongly positively correlated among themselves, they were generally found to be negatively correlated with the phytochemical characteristics. Categorizing genotypes according to different usage purposes can improve the agricultural and industrial application of rosehip and enhance their breeding efficacy.


Asunto(s)
Genotipo , Rosa , Rosa/genética , Antioxidantes/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Fenoles , Horticultura , Flavonoides
9.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684962

RESUMEN

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Virus de Plantas , Rosa , Rosa/genética , Rosa/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/fisiología , Acetatos/farmacología , Plantas Modificadas Genéticamente
10.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609856

RESUMEN

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Rosa , Rosa/genética , Etilenos , Regeneración , Desarrollo Embrionario , Factores de Transcripción
11.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612838

RESUMEN

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Asunto(s)
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Flavonoides , Glucósidos
12.
Genes (Basel) ; 15(3)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540336

RESUMEN

The flower's color is regarded as one of the most outstanding features of the rose. Rosa praelucens Byhouwer, an endemic and critically endangered decaploid wild rose species, is abundant in phenotypic diversity, especially in flower color variation, from white to different degrees of pink. The mechanism underlying this variation, e.g., the level of petal-color-related genes, is worth probing. Seven candidate reference genes for qRT-PCR analysis, including tubulin α chain (TUBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H2B (Histone2A), eukaryotic translation elongation factor 1-α (EEF1A), 60S ribosomal protein (RPL37), eukaryotic translation initiation factor 1-α (EIF1A), and aquaporins (AQP), were detected from the transcriptome datasets of full blooming flowers of white-petaled and pink-petaled individuals, and their expression stabilities were evaluated through qRT-PCR analysis. According to stability rankings analysis, EEF1A showed the highest stability and could be chosen as the most suitable reference gene. Moreover, the reliability of EEF1A was demonstrated via qRT-PCR analysis of six petal-color-related target genes, the expression patterns of which, through EEF1A normalization, were found to be consistent with the findings of transcriptome analysis. The result provides an optimal reference gene for exploring the expression level of petal-color-related genes in R. praelucens, which will accelerate the dissection of petal-color-variation mechanisms in R. praelucens.


Asunto(s)
Rosa , Humanos , Rosa/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Transcriptoma , Reacción en Cadena de la Polimerasa
13.
J Exp Bot ; 75(10): 2965-2981, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452221

RESUMEN

Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Rosa , Factores de Transcripción , Rosa/genética , Rosa/metabolismo , Rosa/crecimiento & desarrollo , Rosa/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta al Choque por Frío/genética , Frío
15.
Plant J ; 118(5): 1486-1499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457289

RESUMEN

The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.


Asunto(s)
Flores , Histonas , Intrones , Proteínas de Plantas , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Histonas/metabolismo , Histonas/genética , Intrones/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Frío , Metilación , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Lisina/metabolismo
16.
PeerJ ; 12: e16929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435988

RESUMEN

Rosa rugosa, a renowned ornamental plant, is cultivated for its essential oil containing valuable monoterpenes, sesquiterpenes, and other compounds widely used in the floriculture industry. Farnesyl diphosphate synthase (FPPS) is a key enzyme involved in the biosynthesis of sesquiterpenes and triterpenes for abiotic or biotic stress. In this study, we successfully cloned and characterized a full-length FPPS- encoding cDNA identified as RrFPPS1 using RT-PCR from R. rugosa. Phylogenetic analysis showed that RrFPPS1 belonged to the angiosperm-FPPS clade. Transcriptomic and RT-qPCR analyses revealed that the RrFPPS1 gene had tissue-specific expression patterns. Subcellular localization analysis using Nicotiana benthamiana leaves showed that RrFPPS1 was a cytoplasmic protein. In vitro enzymatic assays combined with GC-MS analysis showed that RrFPPS1 produced farnesyl diphosphate (FPP) using isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to provide a precursor for sesquiterpene and triterpene biosynthesis in the plant. Additionally, our research found that RrFPPS1 was upregulated under salt treatment. These substantial findings contribute to an improved understanding of terpene biosynthesis in R. rugosa and open new opportunities for advancements in horticultural practices and fragrance industries by overexpression of the RrFPPS1 gene in vivo increased FPP production and subsequently led to elevated sesquiterpene yields in the future. The knowledge gained from this study can potentially lead to the development of enhanced varieties of R. rugosa with improved aroma, medicinal properties, and resilience to environmental stressors.


Asunto(s)
Hemiterpenos , Compuestos Organofosforados , Rosa , Sesquiterpenos , Geraniltranstransferasa/genética , Rosa/genética , Filogenia , Estrés Salino , Clonación Molecular
17.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315889

RESUMEN

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Asunto(s)
Etilenos , Proteínas F-Box , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacología , Giberelinas/metabolismo , Giberelinas/farmacología , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efectos de los fármacos , Rosa/metabolismo , Flores/genética , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Senescencia de la Planta/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
18.
J Exp Bot ; 75(5): 1633-1646, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38180121

RESUMEN

The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.


Asunto(s)
Rosa , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rosa/genética , Lignina/metabolismo , Regulación de la Expresión Génica , Botrytis/fisiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
19.
Plant Cell Environ ; 47(4): 1185-1206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164066

RESUMEN

Ethylene-responsive factors (ERFs) participate in a wide range of physiological and biological processes. However, many of the functions of ERFs in cold stress responses remain unclear. We, therefore, characterised the cold responses of RmERF54 in Rosa multiflora, a rose-related cold-tolerant species. Overexpression of RmERF54, which is a nuclear transcription factor, increases the cold resistance of transgenic tobacco and rose somatic embryos. In contrast, virus-induced gene silencing (VIGS) of RmERF54 increased cold susceptibility of R. multiflora. The overexpression of RmERF54 resulted in extensive transcriptional reprogramming of stress response and antioxidant enzyme systems. Of these, the levels of transcripts encoding the PODP7 peroxidase and the cold-related COR47 protein showed the largest increases in the somatic embryos with ectopic expression of RmERF54. RmERF54 binds to the promoters of the RmPODP7 and RmCOR47 genes and activates expression. RmERF54-overexpressing lines had higher antioxidant enzyme activities and considerably lower levels of reactive oxygen species. Opposite effects on these parameters were observed in the VIGS plants. RmERF54 was identified as a target of Dehydration-Responsive-Element-Binding factor (RmDREB1E). Taken together, provide new information concerning the molecular mechanisms by which RmERF54 regulates cold tolerance.


Asunto(s)
Proteínas de Plantas , Rosa , Proteínas de Plantas/metabolismo , Rosa/genética , Antioxidantes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque por Frío , Frío , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
20.
PeerJ ; 12: e16568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188163

RESUMEN

Background: Basic helix-loop-helix (bHLH) transcription factors are involved in plant growth and development, secondary metabolism, and abiotic stress responses have been studied in a variety of plants. Despite their importance in plant biology, the roles and expression patterns of bHLH family genes in Rosa persica have not been determined. Methods: In this study, the RbebHLH family genes were systematically analyzed using bioinformatics methods, and their expression patterns under low-temperature stress were analyzed by transcriptome and related physiological index measurements. Results: In total, 142 RbebHLHs were identified in the genome of R. persica, distributed on seven chromosomes. Phylogenetic analysis including orthologous genes in Arabidopsis divided RbebHLHs into 21 subfamilies, with similar structures and motifs within a subfamily. A collinearity analysis revealed seven tandem duplications and 118 segmental duplications in R. persica and 127, 150, 151, 172, and 164 segmental duplications between R. persica and Arabidopsis thaliana, Prunus mume, Fragaria vesca, Rosa chinensis, and Prunus persica, respectively. A number of cis-regulatory elements associated with abiotic stress response and hormone response were identified in RbebHLHs, and 21 RbebHLHs have potential interactions with the CBF family. In addition, the expression results showed that part of bHLH may regulate the tolerance of R. persica to low-temperature stress through the jasmonic acid and pathway. Transcriptomic data showed that the expression levels of different RbebHLHs varied during overwintering, and the expression of some RbebHLHs was significantly correlated with relative conductivity and MDA content, implying that RbebHLHs play important regulatory roles in R. persica response to low-temperature stress. Overall, this study provides valuable insights into the study of RbebHLHs associated with low-temperature stress.


Asunto(s)
Arabidopsis , Rosa , Filogenia , Rosa/genética , Temperatura , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...