Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
Neuromolecular Med ; 26(1): 32, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090268

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.


Asunto(s)
Bacillus subtilis , Escherichia coli , Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Probióticos , Rotenona , alfa-Sinucleína , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Probióticos/farmacología , alfa-Sinucleína/metabolismo , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Lacticaseibacillus casei/fisiología , Metionina-ARNt Ligasa , Triptófano-ARNt Ligasa/fisiología , Masculino , Tetrahidrofolato Deshidrogenasa/metabolismo , Simulación por Computador , Trastornos Parkinsonianos/microbiología , Humanos , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Enfermedad de Parkinson Secundaria/inducido químicamente , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson/microbiología
2.
Neurotoxicology ; 103: 320-334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38960072

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.


Asunto(s)
Neuronas Dopaminérgicas , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Receptores de Glucocorticoides , Rotenona , alfa-Sinucleína , Animales , Rotenona/toxicidad , Fármacos Neuroprotectores/farmacología , Ratones , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Receptores de Glucocorticoides/metabolismo , alfa-Sinucleína/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Modelos Animales de Enfermedad , Fenantrenos
3.
J Neurosci Methods ; 409: 110217, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964477

RESUMEN

BACKGROUND: Parkinson's patients have significant autonomic dysfunction, early detect the disorder is a major challenge. To assess the autonomic function in the rat model of rotenone induced Parkinson's disease (PD), Blood pressure and ECG signal acquisition are very important. NEW METHOD: We used telemetry to record the electrocardiogram and blood pressure signals from awake rats, with linear and nonlinear analysis techniques calculate the heart rate variability (HRV) and blood pressure variability (BPV). we applied nonlinear analysis methods like sample entropy and detrended fluctuation analysis to analyze blood pressure signals. Particularly, this is the first attempt to apply nonlinear analysis to the blood pressure evaluate in rotenone induced PD model rat. RESULTS: HRV in the time and frequency domains indicated sympathetic-parasympathetic imbalance in PD model rats. Linear BPV analysis didn't reflect changes in vascular function and blood pressure regulation in PD model rats. Nonlinear analysis revealed differences in BPV, with lower sample entropy results and increased detrended fluctuation analysis results in the PD group rats. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: our experiments demonstrate the ability to evaluate autonomic dysfunction in models of Parkinson's disease by combining the analysis of BPV with HRV, consistent with autonomic impairment in PD patients. Nonlinear analysis by blood pressure signal may help in early detection of the PD. It indicates that the fluctuation of blood pressure in the rats in the rotenone model group tends to be regular and predictable, contributes to understand the PD pathophysiological mechanisms and to find strategies for early diagnosis.


Asunto(s)
Sistema Nervioso Autónomo , Presión Sanguínea , Modelos Animales de Enfermedad , Electrocardiografía , Frecuencia Cardíaca , Rotenona , Animales , Rotenona/toxicidad , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Masculino , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/efectos de los fármacos , Telemetría/métodos , Dinámicas no Lineales , Ratas , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Ratas Sprague-Dawley , Enfermedad de Parkinson/fisiopatología
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000265

RESUMEN

Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.


Asunto(s)
Braquiuros , Sistema Nervioso Central , Neuronas Colinérgicas , Neuronas Dopaminérgicas , Rotenona , Animales , Rotenona/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Braquiuros/efectos de los fármacos , Braquiuros/metabolismo , Dopamina/metabolismo , Acetilcolina/metabolismo , Insecticidas/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , Locomoción/efectos de los fármacos
5.
Eur J Pharmacol ; 978: 176802, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38945288

RESUMEN

AIMS: Bitter taste receptors (TAS2Rs) and their downstream signaling pathways are expressed not only in the oral tissues but also in extraoral tissues. Emerging data has demonstrated the beneficial effect of ghrelin in neurodegenerative diseases. Gaining more insight into the interaction between TAS2Rs and gut hormones may expand their therapeutic applications. Herein, we aimed to assess the possible effect of TAS2R activation by denatonium benzoate (DB) in modulating functional and neurobiochemical alterations in a model of Parkinson's disease (PD). MAIN METHODS: PD model was induced by daily injection of rotenone (2 mg/kg). Rats received DB (5 mg/kg), atenolol (10 mg/kg), or both concomitantly with rotenone, daily for 28 days. Evaluation of the motor abnormalities and histological examination of brain tissues were conducted. In addition, striatal dopamine contents, immunohistochemical expression of tyrosine hydroxylase, plasma ghrelin level, and biochemical analysis of markers of inflammation and oxidative stress were assessed. KEY FINDINGS: Treatment with DB increased serum levels of ghrelin and striatal dopamine contents with consequent amelioration of oxidative stress and attenuation of inflammatory cytokines. Moreover, DB treatment significantly ameliorated motor disturbance and histological abnormalities compared to untreated rats. Atenolol inhibited ghrelin release and abolished the positive effect of DB suggesting the involvement of ghrelin on such effects. SIGNIFICANCE: The current study suggests that TAS2Rs agonists are promising candidates for ameliorating rotenone-induced PD pathology in rats, an action that could be linked to the enhancement of ghrelin release with consequent antioxidant and anti-inflammatory activities.


Asunto(s)
Ghrelina , Estrés Oxidativo , Receptores Acoplados a Proteínas G , Rotenona , Animales , Rotenona/toxicidad , Ghrelina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Dopamina/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
Biochem Pharmacol ; 226: 116343, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852645

RESUMEN

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Asunto(s)
Estrés del Retículo Endoplásmico , Ratas Sprague-Dawley , Rotenona , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Rotenona/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Masculino , Línea Celular Tumoral , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácidos Pentanoicos/farmacología , Ácidos Pentanoicos/uso terapéutico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Agregado de Proteínas/efectos de los fármacos
8.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928331

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Asunto(s)
Mitocondrias , Neuronas , Estrés Oxidativo , Rotenona , Ubiquinona , Humanos , Ataxia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales , Debilidad Muscular/metabolismo , Debilidad Muscular/inducido químicamente , Debilidad Muscular/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/etiología , Especies Reactivas de Oxígeno/metabolismo , Rotenona/toxicidad , Rotenona/efectos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/deficiencia
9.
Neurotox Res ; 42(3): 28, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842585

RESUMEN

Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A ß ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 µ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A ß (iA ß ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA ß , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.


Asunto(s)
Neuronas Colinérgicas , Rotenona , Rotenona/toxicidad , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Animales , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Demencia/patología , Demencia/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Células Cultivadas
10.
Biol Pharm Bull ; 47(6): 1154-1162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880623

RESUMEN

Probucol is a hyperlipidemic drug with antioxidant properties. It has been reported to prevent mitochondrial dysfunction, reduce oxidative stress, and suppress neurotoxicity in neurodegenerative disease models, including Parkinson's disease models. However, the molecular mechanisms underlying the neuroprotective effects of probucol have been not examined yet. Thus, in this study, we investigated whether probucol can alleviate the effects of a mitochondrial complex I inhibitor, rotenone, on a human neuroblastoma cell line (SH-SY5Y). We evaluated the cell viability and cytotoxicity and apoptosis rates of SH-SY5Y cells treated with rotenone and probucol or edaravone, a known free-radical scavenger. Subsequently, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels in the cells were evaluated to determine the effects of probucol on mitochondrial function. We found that rotenone caused cytotoxicity, cell apoptosis, and mitochondrial dysfunction, enhanced ROS generation, and impaired MMP. However, probucol could inhibit this rotenone-induced decrease in cell viability, MMP loss, intracellular ROS generation, and apoptosis. These results suggest that probucol exerts neuroprotective effects via MMP stabilization and the inhibition of ROS generation. Additionally, this effect of probucol was equal to or greater than and more persistent than that of edaravone. Thus, we believe probucol may be a promising drug for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases.


Asunto(s)
Apoptosis , Supervivencia Celular , Potencial de la Membrana Mitocondrial , Fármacos Neuroprotectores , Probucol , Especies Reactivas de Oxígeno , Rotenona , Probucol/farmacología , Rotenona/toxicidad , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología
12.
BMC Pharmacol Toxicol ; 25(1): 33, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783387

RESUMEN

BACKGROUND: The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS: In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS: Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS: Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aorta Torácica , Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Células Endoteliales , Proteínas Serina-Treonina Quinasas , Ratas Sprague-Dawley , Rotenona , Transducción de Señal , Animales , Rotenona/toxicidad , Rotenona/farmacología , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Aorta Torácica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Quinasas de la Proteína-Quinasa Activada por el AMP , Células Cultivadas , Péptidos y Proteínas de Señalización Intracelular/metabolismo
13.
Free Radic Biol Med ; 220: 56-66, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697489

RESUMEN

Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.


Asunto(s)
Ferroptosis , Trastornos de la Memoria , Microglía , NADPH Oxidasa 2 , Enfermedades Neuroinflamatorias , Rotenona , Animales , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Rotenona/toxicidad , Ferroptosis/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/genética , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Masculino , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Ratones Noqueados
14.
Brain Res ; 1839: 149017, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768935

RESUMEN

Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.


Asunto(s)
Manganeso , Ratas Wistar , Rotenona , Tirosina 3-Monooxigenasa , Animales , Rotenona/toxicidad , Masculino , Manganeso/toxicidad , Ratas , Tirosina 3-Monooxigenasa/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos
15.
J Ethnopharmacol ; 332: 118350, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763375

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY: An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS: A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 µL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS: The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 µg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 µl/mL, AS decreased apoptotic events, whereas the highest concentration (300 µl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS: The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.


Asunto(s)
Achyrocline , Apoptosis , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Rotenona , Humanos , Rotenona/toxicidad , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neuronas/efectos de los fármacos , Achyrocline/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Daño del ADN/efectos de los fármacos , Antioxidantes/farmacología
16.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705492

RESUMEN

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Especies Reactivas de Oxígeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Tricloroetileno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Rotenona/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Paraquat/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Estrés Oxidativo/efectos de los fármacos , Humanos , Contaminantes Ambientales/toxicidad , Ratas Sprague-Dawley
17.
J Ethnopharmacol ; 330: 118197, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636579

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera sessilis (L.) R. Br. ex DC., Eryngium foetidum L., and Stephania japonica (Thunb.) Miers plants are traditionally used to treat various central nervous system disorders like paralysis, epilepsy, seizure, convulsion, chronic pain, headache, sleep disturbances, sprain, and mental disorders. However, their possible neuroprotective effects have not been evaluated experimentally so far. AIM OF THE STUDY: The study aims to examine the neuroprotective potential of the three plants against cytotoxicity induced by rotenone in SH-SY5Y neuroblastoma cells and assess its plausible mechanisms of neuroprotection. MATERIALS AND METHODS: The antioxidant properties of the plant extracts were determined chemically by DPPH and ABTS assay methods. The cytotoxicity of rotenone and the cytoprotective activities of the extracts were evaluated using MTT assays. Microtubule-associated protein 2 (MAP2) expression studies in cells were performed to assess neuronal survival after rotenone and extract treatments. Mitochondrial membrane potential and intracellular levels of reactive oxygen species were evaluated using Rhodamine 123 and DCF-DA dye, respectively. Catalase, glutathione peroxidase, and superoxide dismutase activities were also measured. Apoptotic nuclei were examined using DAPI staining. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS) analysis of the plant extracts was also performed. RESULTS: The methanol extracts of A. sessilis, S. japonica, and E. foetidum showed excellent free radical scavenging activities. MAP2 expression studies show that A. sessilis and S. japonica have higher neuroprotective effects against rotenone-induced neurotoxicity in SH-SY5Y cells than E. foetidum. Pre-treating cells with the plant extracts reverses the rotenone-induced increase in intracellular ROS. The plant extracts could also restore the reduced mitochondrial membrane potential induced by rotenone treatment and reinstate rotenone-induced increases in catalase, glutathione peroxidase, and superoxide dismutase activities. All the extracts inhibited rotenone-induced changes in nuclear morphology and DNA condensation, an early event of cellular apoptosis. LC-QTOF-MS analysis of the plant extracts shows the presence of neuroprotective compounds. CONCLUSIONS: The plant extracts showed neuroprotective activities against rotenone-treated SH-SY5Y cells through antioxidant and anti-apoptotic mechanisms. These findings support the ethnopharmacological uses of these plants in treating neurological disorders. They probably are a good source of neuroprotective compounds that could be further explored to develop treatment strategies for neurodegenerative diseases like Parkinson's disease.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Extractos Vegetales , Plantas Medicinales , Rotenona , Rotenona/toxicidad , Humanos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Plantas Medicinales/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Medicina Tradicional/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Estrés Oxidativo/efectos de los fármacos
18.
Brain Res ; 1836: 148952, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643930

RESUMEN

Given that global prevalence of Parkinson's disease (PD) is expected to rise over the next few decades, understanding the mechanisms and causes of PD is critical. With emphasis on gut-brain axis, we sought to assess the impact of gentisic acid (GA), a diphenolic compound generated from benzoic acid, in rotenone (Rot) induced PD model in zebrafish. For thirty days, adult zebrafish were exposed to GA and rotenone. Tox-Track program was used to analyze locomotor behaviors in the control, GA, Rot, and Rot + GA groups. LC-MS/MS was performed in brain and intestinal tissues. Proteome Discoverer 2.4 was used to analyze raw files, peptide lists were searched against Danio rerio proteins. Protein interactions or annotations were obtained from STRING database. Tyrosine hydroxylase (Th) staining was performed immunohistochemically in the brain. PD-related gene expressions were determined by RT-PCR. Lipid peroxidation, nitric oxide, superoxide dismutase, glutathione S-transferase, and acetylcholinesterase were measured spectrophotometrically. Improved locomotor behaviors were observed by GA treatment in Rot group as evidenced by increased average speed, exploration rate, and total distance. 5214 proteins were identified in intestinal tissues, 4114 proteins were identified in brain by LC-MS/MS. Rotenone exposure altered protein expressions related to oxidative phosphorylation in brain and intestines. Protein expressions involved in ferroptis and actin cytoskeleton changed in brain and intestines. Altered protein expressions were improved by GA. GA ameliorated Th-immunoreactivity in brain, improved park2, park7, pink1, and lrrk2 expressions. Our results show that GA may be a candidate agent to be evaluated for its potential protective effect for PD.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Rotenona , Pez Cebra , Animales , Fármacos Neuroprotectores/farmacología , Rotenona/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Neurotoxinas/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Locomoción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
19.
Biosci Trends ; 18(2): 153-164, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599881

RESUMEN

NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.


Asunto(s)
Ferroptosis , Mitocondrias , NAD(P)H Deshidrogenasa (Quinona) , Rotenona , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Ferroptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Rotenona/toxicidad , Rotenona/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Piperazinas/farmacología , Carbolinas
20.
Acta Neuropathol Commun ; 12(1): 37, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429841

RESUMEN

Leber's hereditary optic neuropathy (LHON) is driven by mtDNA mutations affecting Complex I presenting as progressive retinal ganglion cell dysfunction usually in the absence of extra-ophthalmic symptoms. There are no long-term neuroprotective agents for LHON. Oral nicotinamide provides a robust neuroprotective effect against mitochondrial and metabolic dysfunction in other retinal injuries. We explored the potential for nicotinamide to protect mitochondria in LHON by modelling the disease in mice through intravitreal injection of the Complex I inhibitor rotenone. Using MitoV mice expressing a mitochondrial-tagged YFP in retinal ganglion cells we assessed mitochondrial morphology through super-resolution imaging and digital reconstruction. Rotenone induced Complex I inhibition resulted in retinal ganglion cell wide mitochondrial loss and fragmentation. This was prevented by oral nicotinamide treatment. Mitochondrial ultrastructure was quantified by transition electron microscopy, demonstrating a loss of cristae density following rotenone injection, which was also prevented by nicotinamide treatment. These results demonstrate that nicotinamide protects mitochondria during Complex I dysfunction. Nicotinamide has the potential to be a useful treatment strategy for LHON to limit retinal ganglion cell degeneration.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Rotenona , Ratones , Animales , Rotenona/toxicidad , Rotenona/metabolismo , Niacinamida/efectos adversos , Niacinamida/metabolismo , Mitocondrias/metabolismo , Células Ganglionares de la Retina , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/metabolismo , Atrofia Óptica Hereditaria de Leber/terapia , Complejo I de Transporte de Electrón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...