Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 167(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297654

RESUMEN

Cellulosomes are highly complex cell-bound multi-enzymatic nanomachines used by anaerobes to break down plant carbohydrates. The genome sequence of Ruminococcus flavefaciens revealed a remarkably diverse cellulosome composed of more than 200 cellulosomal enzymes. Here we provide a detailed biochemical characterization of a highly elaborate R. flavefaciens cellulosomal enzyme containing an N-terminal dockerin module, which anchors the enzyme into the multi-enzyme complex through binding of cohesins located in non-catalytic cell-bound scaffoldins, and three tandemly repeated family 16 glycoside hydrolase (GH16) catalytic domains. The DNA sequence encoding the three homologous catalytic domains was cloned and hyper-expressed in Escherichia coli BL21 (DE3) cells. SDS-PAGE analysis of purified His6 tag containing RfGH16_21 showed a single soluble protein of molecular size ~89 kDa, which was in agreement with the theoretical size, 89.3 kDa. The enzyme RfGH16_21 exhibited activity over a wide pH range (pH 5.0-8.0) and a broad temperature range (50-70 °C), displaying maximum activity at an optimum pH of 7.0 and optimum temperature of 55 °C. Substrate specificity analysis of RfGH16_21 revealed maximum activity against barley ß-d-glucan (257 U mg-1) followed by lichenan (247 U mg-1), but did not show significant activity towards other tested polysaccharides, suggesting that it is specifically a ß-1,3-1,4-endoglucanase. TLC analysis revealed that RfGH16_21 hydrolyses barley ß-d-glucan to cellotriose, cellotetraose and a higher degree of polymerization of gluco-oligosaccharides indicating an endo-acting catalytic mechanism. This study revealed a fairly high, active and thermostable bacterial endo-glucanase which may find considerable biotechnological potentials.


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Ruminococcus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Glucanos/metabolismo , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Familia de Multigenes , Dominios Proteicos , Ruminococcus/química , Ruminococcus/genética , Especificidad por Sustrato , Temperatura
2.
Biotechnol Bioeng ; 118(8): 3037-3045, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964175

RESUMEN

RNA-guided CRISPR (RNA-targeting clustered regularly interspaced short palindromic repeats) effector Cas13d is the smallest Class II subtype VI proteins identified so far. Here, two recently identified Cas13d effectors from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) were characterized and applied for sensitive nucleic acid detection. We demonstrated that the special target triggered collateral cleavage of these two Cas13d orthologs could provide rapid target RNA detection in picomolar range and then the tolerance for mismatch between crRNA and target RNA was characterized as well. Finally, an additional single mismatch was introduced into crRNA to enhance the two Cas13d orthologs mediated detection of low variant allele fraction, 0.1% T790M. Overall, this study demonstrated that both EsCas13d and RspCas13d could robustly detect target RNA carrying special single-nucleotide variation with high specificity and sensitivity, thereby providing newly qualified machinery in toolbox for efficient molecular diagnostics.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Eubacterium/química , Polimorfismo de Nucleótido Simple , ARN/química , ARN/genética , Ruminococcus/química
3.
J Am Chem Soc ; 141(37): 14752-14763, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31464132

RESUMEN

Can molecular dynamics simulations predict the mechanical behavior of protein complexes? Can simulations decipher the role of protein domains of unknown function in large macromolecular complexes? Here, we employ a wide-sampling computational approach to demonstrate that molecular dynamics simulations, when carefully performed and combined with single-molecule atomic force spectroscopy experiments, can predict and explain the behavior of highly mechanostable protein complexes. As a test case, we studied a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh). By performing dozens of short simulation replicas near the rupture event, and analyzing dynamic network fluctuations, we were able to generate large simulation statistics and directly compare them with experiments to uncover the mechanisms involved in mechanical stabilization. Our single-molecule force spectroscopy experiments show that the XDoc-Coh homologue complex withstands forces up to 1 nN at loading rates of 105 pN/s. Our simulation results reveal that this remarkable mechanical stability is achieved by a protein architecture that directs molecular deformation along paths that run perpendicular to the pulling axis. The X-module was found to play a crucial role in shielding the adjacent protein complex from mechanical rupture. These mechanisms of protein mechanical stabilization have potential applications in biotechnology for the development of systems exhibiting shear enhanced adhesion or tunable mechanics.


Asunto(s)
Imagen Individual de Molécula/métodos , Proteínas Bacterianas/química , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos , Simulación de Dinámica Molecular , Ruminococcus/química
4.
Anaerobe ; 54: 264-266, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30075206

RESUMEN

We report a case of bloodstream infection with the anaerobic bacterium Ruminococcus gnavus (R. gnavus), associated with intestinal perforation in a patient undergoing chemotherapy for multiple myeloma and cancer of the sigmoid colon. Gram staining of positive anaerobic blood cultures revealed both diplococci and short chains of gram-positive cocci. MALDI-TOF MS done directly on the blood culture bottle identified the bacterium as R. gnavus, and 16S rRNA gene sequencing confirmed the identification.


Asunto(s)
Cultivo de Sangre/instrumentación , Infecciones por Bacterias Grampositivas/microbiología , Ruminococcus/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Anciano , Antibacterianos/uso terapéutico , Técnicas de Tipificación Bacteriana/métodos , Infecciones por Bacterias Grampositivas/diagnóstico , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Masculino , Ruminococcus/química , Ruminococcus/clasificación , Ruminococcus/genética
5.
J Nutr Biochem ; 49: 89-100, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28915390

RESUMEN

Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases.


Asunto(s)
Colon/metabolismo , Disbiosis/prevención & control , Alimentos Funcionales , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Fitohemaglutininas , Semillas , Animales , Biomarcadores/metabolismo , Proliferación Celular , Microambiente Celular , Colon/citología , Colon/microbiología , Colon/patología , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/patología , Heces/microbiología , Fermentación , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , Tipificación Molecular , Prevotella/clasificación , Prevotella/crecimiento & desarrollo , Prevotella/aislamiento & purificación , Distribución Aleatoria , Ruminococcus/química , Ruminococcus/crecimiento & desarrollo , Ruminococcus/aislamiento & purificación
6.
Proc Natl Acad Sci U S A ; 113(35): 9792-7, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27531961

RESUMEN

Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI(+) bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CT(EC536) deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CT(EC536) binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiI(EC536) CdiA-CT(EC536) inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the "cysteine synthase" complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CT(EC536) exploits a highly conserved protein-protein interaction to promote its toxicity. CysK significantly increases CdiA-CT(EC536) thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CT(EC536), and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability.


Asunto(s)
Toxinas Bacterianas/química , Inhibición de Contacto/genética , Cisteína Sintasa/química , Proteínas de Escherichia coli/química , Escherichia coli Uropatógena/química , Secuencia de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/química , Ruminococcus/metabolismo , Especificidad por Sustrato , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298375

RESUMEN

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Polisacáridos/metabolismo , Ruminococcus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Celulosomas/química , Celulosomas/genética , Cristalografía por Rayos X , Modelos Moleculares , Polisacáridos/química , Unión Proteica , Ruminococcus/química , Ruminococcus/genética
8.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 958-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249681

RESUMEN

Ruminant herbivores meet their carbon and energy requirements from a symbiotic relationship with cellulosome-producing anaerobic bacteria that efficiently degrade plant cell-wall polysaccharides. The assembly of carbohydrate-active enzymes (CAZymes) into cellulosomes enhances protein stability and enzyme synergistic interactions. Cellulosomes comprise diverse CAZymes displaying a modular architecture in which a catalytic domain is connected, via linker sequences, to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs direct the appended catalytic modules to their target substrates, thus facilitating catalysis. The genome of the ruminal cellulolytic bacterium Ruminococcus flavefaciens strain FD-1 contains over 200 modular proteins containing the cellulosomal signature dockerin module. One of these is an endoglucanase Cel5A comprising two family 5 glycoside hydrolase catalytic modules (GH5) flanking an unclassified CBM (termed CBM-Rf2) and a C-terminal dockerin. This novel CBM-Rf2 has been purified and crystallized, and data from cacodylate-derivative crystals were processed to 1.02 and 1.29 Šresolution. The crystals belonged to the orthorhombic space group P212121. The CBM-Rf2 structure was solved by a single-wavelength anomalous dispersion experiment at the As edge.


Asunto(s)
Proteínas Bacterianas/química , Celulasa/química , Ruminococcus/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Celulasa/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ruminococcus/enzimología , Alineación de Secuencia
9.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 784-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057813

RESUMEN

A number of anaerobic microorganisms produce multi-modular, multi-enzyme complexes termed cellulosomes. These extracellular macromolecular nanomachines are designed for the efficient degradation of plant cell-wall carbohydrates to smaller sugars that are subsequently used as a source of carbon and energy. Cellulolytic strains from the rumens of mammals, such as Ruminococcus flavefaciens, have been shown to have one of the most complex cellulosomal systems known. Cellulosome assembly requires the binding of dockerin modules located in cellulosomal enzymes to cohesin modules located in a macromolecular scaffolding protein. Over 220 genes encoding dockerin-containing proteins have been identified in the R. flavefaciens genome. The dockerin-containing enzymes can be incorporated into the primary scaffoldin (ScaA), which in turn can bind to adaptor scaffoldins (ScaB or ScaC) and subsequently to anchoring scaffoldin (ScaE), thereby attaching the whole complex to the cell surface. However, unlike other cellulosomes such as that from Clostridium thermocellum, the Ruminococcus species lack a specific carbohydrate-binding module (CBM) on ScaA which recruits the entire complex onto the surface of the substrate. Instead, a cellulose-binding protein, CttA, comprising two putative tandem novel carbohydrate-binding modules and a C-terminal X-dockerin module, which can bind to the cohesin of ScaE, may mediate the attachment of bacterial cells to cellulose. Here, the expression, purification and crystallization of the carbohydrate-binding modular part of the CttA from R. flavefaciens are described. X-ray data have been collected to resolutions of 3.23 and to 1.61 Å in space groups P3(1)21 or P3(2)21 and P2(1), respectively. The structure was phased using bound iodide from the crystallization buffer by SAD experiments.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Celulosa/química , Proteínas Cromosómicas no Histona/química , Ruminococcus/química , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Celulosomas/química , Proteínas Cromosómicas no Histona/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ruminococcus/metabolismo , Cohesinas
10.
Nat Commun ; 5: 5635, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25482395

RESUMEN

Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.


Asunto(s)
Celulosomas/química , Ruminococcus/química , Biomasa , Biofisica , Calcio/química , Catálisis , Adhesión Celular , Simulación por Computador , Enlace de Hidrógeno , Iones , Ligandos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Distribución Normal , Unión Proteica , Conformación Proteica , Pliegue de Proteína
11.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1653-6, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25484220

RESUMEN

Anaerobic bacteria organize carbohydrate-active enzymes into a multi-component complex, the cellulosome, which degrades cellulose and hemicellulose highly efficiently. Genome sequencing of Ruminococcus flavefaciens FD-1 offers extensive information on the range and diversity of the enzymatic and structural components of the cellulosome. The R. flavefaciens FD-1 genome encodes over 200 dockerin-containing proteins, most of which are of unknown function. One of these modular proteins comprises a glycoside hydrolase family 5 catalytic module (GH5) linked to an unclassified carbohydrate-binding module (CBM-Rf1) and a dockerin. The novel CBM-Rf1 has been purified and crystallized. The crystals belonged to the trigonal space group R32:H. The CBM-Rf1 structure was determined by a multiple-wavelength anomalous dispersion experiment using AutoSol from the PHENIX suite using both selenomethionyl-derivative and native data to resolutions of 2.28 and 2.0 Å, respectively.


Asunto(s)
Carbohidratos/química , Ruminococcus/química , Secuencia de Aminoácidos , Cristalización , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular
12.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 8): 1061-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25084382

RESUMEN

Cellulosomes are massive cell-bound multienzyme complexes tethered by macromolecular scaffolds that coordinate the efforts of many anaerobic bacteria to hydrolyze plant cell-wall polysaccharides, which are a major untapped source of carbon and energy. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesin modules, located in the scaffold, and dockerin modules, found in the enzymes and other cellulosomal proteins. The proposed cellulosomal architecture for Ruminococcus flavefaciens strain FD-1 consists of a major scaffoldin (ScaB) that acts as the backbone to which other components attach. It has nine cohesins and a dockerin with a fused X-module that binds to the cohesin on ScaE, which in turn is covalently attached to the cell wall. The ScaA dockerin binds to ScaB cohesins allowing more carbohydrate-active modules to be assembled. ScaC acts as an adaptor that binds to both ScaA and selected ScaB cohesins, thereby increasing the repertoire of dockerin-bearing proteins that integrate into the complex. In previous studies, a screen for novel cohesin-dockerin complexes was performed which led to the identification of a total of 58 probable cohesin-dockerin pairs. Four were selected for subsequent structural and biochemical characterization based on the quality of their expression and the diversity in their specificities. One of these is C12D22, which comprises the cohesin from the adaptor ScaC protein bound to the dockerin of a CBM-containing protein. This complex has been purified and crystallized, and data were collected to resolutions of 2.5 Š(hexagonal, P65), 2.16 Š(orthorhombic, P212121) and 2.4 Š(orthorhombic, P21212) from three different crystalline forms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X/métodos , Ruminococcus/química , Cristalización , Electroforesis en Gel de Poliacrilamida , Unión Proteica , Cohesinas
13.
BMC Bioinformatics ; 14: 327, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24246060

RESUMEN

BACKGROUND: The NTF2-like superfamily is a versatile group of protein domains sharing a common fold. The sequences of these domains are very diverse and they share no common sequence motif. These domains serve a range of different functions within the proteins in which they are found, including both catalytic and non-catalytic versions. Clues to the function of protein domains belonging to such a diverse superfamily can be gleaned from analysis of the proteins and organisms in which they are found. RESULTS: Here we describe three protein domains of unknown function found mainly in bacteria: DUF3828, DUF3887 and DUF4878. Structures of representatives of each of these domains: BT_3511 from Bacteroides thetaiotaomicron (strain VPI-5482) [PDB:3KZT], Cj0202c from Campylobacter jejuni subsp. jejuni serotype O:2 (strain NCTC 11168) [PDB:3K7C], rumgna_01855) and RUMGNA_01855 from Ruminococcus gnavus (strain ATCC 29149) [PDB:4HYZ] have been solved by X-ray crystallography. All three domains are similar in structure and all belong to the NTF2-like superfamily. Although the function of these domains remains unknown at present, our analysis enables us to present a hypothesis concerning their role. CONCLUSIONS: Our analysis of these three protein domains suggests a potential non-catalytic ligand-binding role. This may regulate the activities of domains with which they are combined in the same polypeptide or via operonic linkages, such as signaling domains (e.g. serine/threonine protein kinase), peptidoglycan-processing hydrolases (e.g. NlpC/P60 peptidases) or nucleic acid binding domains (e.g. Zn-ribbons).


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte Nucleocitoplasmático/química , Mapeo Peptídico/métodos , Bacteroides/química , Campylobacter jejuni/química , Dominio Catalítico , Cristalografía por Rayos X , Ligandos , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , Ruminococcus/química
14.
FEBS J ; 280(18): 4463-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23802549

RESUMEN

Ruminococcus albus has the ability to intracellularly degrade cello-oligosaccharides primarily via phosphorolysis. In this study, the enzymatic characteristics of R. albus cellodextrin phosphorylase (RaCDP), which is a member of glycoside hydrolase family 94, was investigated. RaCDP catalyzes the phosphorolysis of cellotriose through an ordered 'bi bi' mechanism in which cellotriose binds to RaCDP before inorganic phosphate, and then cellobiose and glucose 1-phosphate (Glc1P) are released in that order. Among the cello-oligosaccharides tested, RaCDP had the highest phosphorolytic and synthetic activities towards cellohexaose and cellopentaose, respectively. RaCDP successively transferred glucosyl residues from Glc1P to the growing cello-oligosaccharide chain, and insoluble cello-oligosaccharides comprising a mean of eight residues were produced. Sophorose, laminaribiose, ß-1,4-xylobiose, ß-1,4-mannobiose and cellobiitol served as acceptors for RaCDP. RaCDP had very low affinity for phosphate groups in both the phosphorolysis and synthesis directions. A sequence comparison revealed that RaCDP has Gln at position 646 where His is normally conserved in the phosphate binding sites of related enzymes. A Q646H mutant showed approximately twofold lower apparent K(m) values for inorganic phosphate and Glc1P than the wild-type. RaCDP has Phe at position 633 corresponding to Tyr and Val in the +1 subsites of cellobiose phosphorylase and N,N'-diacetylchitobiose phosphorylase, respectively. A F633Y mutant showed higher preference for cellobiose over ß-1,4-mannobiose as an acceptor substrate in the synthetic reaction than the wild-type. Furthermore, the F633Y mutant showed 75- and 1100-fold lower apparent Km values for inorganic phosphate and Glc1P, respectively, in phosphorolysis and synthesis of cellotriose.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/análogos & derivados , Dextrinas/metabolismo , Glucosiltransferasas/metabolismo , Fenilalanina/metabolismo , Ruminococcus/química , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Celobiosa/química , Celobiosa/metabolismo , Celulosa/química , Celulosa/metabolismo , Dextrinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/clasificación , Glucosiltransferasas/genética , Hidrólisis , Cinética , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Fenilalanina/química , Fenilalanina/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/enzimología , Especificidad por Sustrato , Termodinámica
15.
PLoS One ; 8(2): e56138, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457513

RESUMEN

BACKGROUND: Ruminococcus flavefaciens is one of the predominant fiber-degrading bacteria found in the rumen of herbivores. Bioinformatic analysis of the recently sequenced genome indicated that this bacterium produces one of the most intricate cellulosome systems known to date. A distinct ORF, encoding for a multi-modular protein, RflaF_05439, was discovered during mining of the genome sequence. It is composed of two tandem modules of currently undefined function that share 45% identity and a C-terminal X-dockerin modular dyad. Gaining insight into the diversity, architecture and organization of different types of proteins in the cellulosome system is essential for broadening our understanding of a multi-enzyme complex, considered to be one of the most efficient systems for plant cell wall polysaccharide degradation in nature. METHODOLOGY/PRINCIPAL FINDINGS: Following bioinformatic analysis, the second tandem module of RflaF_05439 was cloned and its selenium-labeled derivative was expressed and crystallized. The crystals belong to space group P21 with unit-cell parameters of a = 65.81, b = 60.61, c = 66.13 Å, ß = 107.66° and contain two protein molecules in the asymmetric unit. The crystal structure was determined at 1.38-Å resolution by X-ray diffraction using the single-wavelength anomalous dispersion (SAD) method and was refined to Rfactor and Rfree of 0.127 and 0.152 respectively. The protein molecule mainly comprises a ß-sheet flanked by short α-helixes, and a globular α-helical domain. The structure was found to be structurally similar to members of the NlpC/P60 superfamily of cysteine peptidases. CONCLUSIONS/SIGNIFICANCE: The 3D structure of the second repeat of the RflaF_05439 enabled us to propose a role for the currently undefined function of this protein. Its putative function as a cysteine peptidase is inferred from in silico structural homology studies. It is therefore apparent that cellulosomes integrate proteins with other functions in addition to the classic well-defined carbohydrate active enzymes.


Asunto(s)
Proteínas Bacterianas/química , Celulosomas/química , Papaína/química , Ruminococcus/química , Ruminococcus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
16.
J Clin Microbiol ; 51(4): 1334-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23363832

RESUMEN

We report two cases of bacteremia with the anaerobic bacterium Ruminococcus gnavus. In both cases, the bacteremia was associated with diverticular disease. Preliminary conventional identification suggested peptostreptococci, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis did not produce scores high enough for species identification. Finally, the bacteria were identified by 16S rRNA gene sequencing.


Asunto(s)
Bacteriemia/diagnóstico , Bacteriemia/patología , Diverticulitis/diagnóstico , Diverticulitis/patología , Infecciones por Bacterias Grampositivas/diagnóstico , Infecciones por Bacterias Grampositivas/patología , Ruminococcus/aislamiento & purificación , Anciano , Anciano de 80 o más Años , Bacteriemia/complicaciones , Bacteriemia/microbiología , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Diverticulitis/complicaciones , Diverticulitis/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Masculino , Filogenia , ARN Ribosómico 16S/genética , Ruminococcus/química , Ruminococcus/genética , Ruminococcus/fisiología , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Artículo en Inglés | MEDLINE | ID: mdl-22949209

RESUMEN

In Ruminococcus flavefaciens, a predominant fibre-degrading bacterium found in ruminants, cellulosomal proteins are anchored to the bacterial cell wall through a relatively small ScaE scaffoldin which includes a single type III cohesin. The cotton-binding protein CttA consists of two cellulose-binding modules and a C-terminal modular pair (XDoc) comprising an X-module and a contiguous dockerin, which exhibits high affinity towards the ScaE cohesin. Seleno-L-methionine-labelled derivatives of the ScaE cohesin module and the XDoc from CttA have been expressed, copurified and cocrystallized. The crystals belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 78.7, c = 203.4 Å, and the unit cell contains a single cohesin-XDoc complex in the asymmetric unit. The diffraction data were phased to 2.0 Å resolution using the anomalous signal of the Se atoms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Ruminococcus/química , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cristalización , Cristalografía por Rayos X , Unión Proteica , Ruminococcus/metabolismo , Cohesinas
18.
Methods Enzymol ; 510: 429-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22608740

RESUMEN

During the past several years, major progress has been accomplished in the production of "designer cellulosomes," artificial enzymatic complexes that were demonstrated to efficiently degrade crystalline cellulose. This progress is part of a global attempt to promote biomass waste solutions and biofuel production. In designer cellulosomes, each enzyme is equipped with a dockerin module that interacts specifically with one of the cohesin modules of the chimeric scaffoldin. Artificial scaffoldins serve as docking backbones and contain a cellulose-specific carbohydrate-binding module that directs the enzymatic complex to the cellulosic substrate, and one or more cohesin modules from different natural cellulosomal species, each exhibiting a different specificity, that allows the specific incorporation of the desired matching dockerin-bearing enzymes. With natural cellulosomal components, the insertion of the enzymes in the scaffold would presumably be random, and we would not be able to control the contents of the resulting artificial cellulosome. There are an increasing number of papers describing the production of designer cellulosomes either in vitro, ex vivo, or in vivo. These types of studies are particularly intricate, and a number of such publications are less meaningful in the final analysis, as important controls are frequently excluded. In this chapter, we hope to give a complete overview of the methodologies essential for designing and examining cellulosome complexes.


Asunto(s)
Celulosa/metabolismo , Celulosomas/enzimología , Clostridium thermocellum/enzimología , Ingeniería de Proteínas/métodos , Ruminococcus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Celulosomas/genética , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Clonación Molecular/métodos , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Electroforesis en Gel Bidimensional/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimología , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Ruminococcus/química , Ruminococcus/genética , Ruminococcus/metabolismo , Cohesinas
19.
Biosci Biotechnol Biochem ; 76(4): 812-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22484959

RESUMEN

Cellobiose phosphorylase (CBP) catalyzes the reversible phosphorolysis of cellobiose to produce α-D-glucopyranosyl phosphate (Glc1P) and D-glucose. It is an essential enzyme for the metabolism of cello-oligosaccharides in a ruminal bacterium, Ruminococcus albus. In this study, recombinant R. albus CBP (RaCBP) produced in Escherichia coli was characterized. It showed highest activity at pH 6.2 at 50 °C, and was stable in a pH range of 5.5-8.8 and at below 40 °C. It phosphorolyzed only cellobiose efficiently, and the reaction proceeded through a random-ordered bi bi mechanism, by which inorganic phosphate and cellobiose bind in random order and D-glucose is released before Glc1P. In the synthetic reaction, RaCBP showed highest activity to D-glucose, followed by 6-deoxy-D-glucose. D-Mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, 1,5-anhydro-D-glucitol, and gentiobiose also served as acceptors, although the activities for them were much lower than for D-glucose. D-Glucose acted as a competitive-uncompetitive inhibitor of the reverse synthetic reaction, which bound not only the Glc1P site (competitive) but also the ternary enzyme-Glc1P-D-glucose complex (uncompetitive).


Asunto(s)
Proteínas Bacterianas/metabolismo , Celobiosa/metabolismo , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Ruminococcus/enzimología , Fosfatos de Azúcar/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Clonación Molecular , Escherichia coli , Glucosiltransferasas/genética , Concentración de Iones de Hidrógeno , Cinética , Monosacáridos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/química , Especificidad por Sustrato , Temperatura
20.
Folia Microbiol (Praha) ; 57(4): 367-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22528314

RESUMEN

The expression of Ruminococcus flavefaciens 007S cellulases in different incubation time points (growth stages) and their substrate inducibility were analyzed by comparing the zymogram expression profiles of cultures grown on insoluble cellulose (Avicel) with cellobiose-grown cultures. The molecular weights of the enzymes were compared to (putative) cellulases encoded in the R. flavefaciens FD-1 genome.


Asunto(s)
Proteínas Bacterianas/genética , Celulasas/genética , Ruminococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celobiosa/metabolismo , Celulasas/química , Celulasas/metabolismo , Celulosa/metabolismo , Pruebas de Enzimas , Expresión Génica , Datos de Secuencia Molecular , Peso Molecular , Estructura Terciaria de Proteína , Ruminococcus/química , Ruminococcus/genética , Ruminococcus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA