Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593805

RESUMEN

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Asunto(s)
Daño del ADN , Replicación del ADN , RecQ Helicasas , Homeostasis del Telómero , Telómero , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Humanos , Telómero/metabolismo , Telómero/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Línea Celular Tumoral
2.
Sci Rep ; 11(1): 2157, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495511

RESUMEN

Bloom Syndrome (BS; OMIM #210900; ORPHA #125) is a rare genetic disorder that is associated with growth deficits, compromised immune system, insulin resistance, genome instability and extraordinary predisposition to cancer. Most efforts thus far have focused on understanding the role of the Bloom syndrome DNA helicase BLM as a recombination factor in maintaining genome stability and suppressing cancer. Here, we observed increased levels of reactive oxygen species (ROS) and DNA base damage in BLM-deficient cells, as well as oxidative-stress-dependent reduction in DNA replication speed. BLM-deficient cells exhibited increased mitochondrial mass, upregulation of mitochondrial transcription factor A (TFAM), higher ATP levels and increased respiratory reserve capacity. Cyclin B1, which acts in complex with cyclin-dependent kinase CDK1 to regulate mitotic entry and associated mitochondrial fission by phosphorylating mitochondrial fission protein Drp1, fails to be fully degraded in BLM-deficient cells and shows unscheduled expression in G1 phase cells. This failure to degrade cyclin B1 is accompanied by increased levels and persistent activation of Drp1 throughout mitosis and into G1 phase as well as mitochondrial fragmentation. This study identifies mitochondria-associated abnormalities in Bloom syndrome patient-derived and BLM-knockout cells and we discuss how these abnormalities may contribute to Bloom syndrome.


Asunto(s)
Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Mitocondrias/metabolismo , Estrés Oxidativo , RecQ Helicasas/deficiencia , Autofagia , Ciclina B1/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Metabolismo Energético , Fibroblastos/enzimología , Fibroblastos/patología , Fase G1 , Humanos , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Mitosis , Especies Reactivas de Oxígeno/metabolismo , RecQ Helicasas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
3.
J Am Acad Dermatol ; 75(5): 855-870, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27745641

RESUMEN

Hereditary photodermatoses are a spectrum of rare photosensitive disorders that are often caused by genetic deficiency or malfunction of various components of the DNA repair pathway. This results clinically in extreme photosensitivity, with many syndromes exhibiting an increased risk of cutaneous malignancies. This review will focus specifically on the syndromes with malignant potential, including xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome. The typical phenotypic findings of each disorder will be examined and contrasted, including noncutaneous identifiers to aid in diagnosis. The management of these patients will also be discussed. At this time, the mainstay of therapy remains strict photoprotection; however, genetic therapies are under investigation.


Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN/genética , Síndromes Neoplásicos Hereditarios/genética , Trastornos por Fotosensibilidad/genética , Neoplasias Cutáneas/genética , Síndrome de Bloom/enzimología , Síndrome de Bloom/epidemiología , Síndrome de Bloom/genética , Síndrome de Bloom/terapia , Reparación del ADN , Enzimas Reparadoras del ADN/deficiencia , Enzimas Reparadoras del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/epidemiología , Genes Recesivos , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/genética , Síndromes Neoplásicos Hereditarios/epidemiología , Fenotipo , Antígeno Nuclear de Célula en Proliferación/genética , Síndrome Rothmund-Thomson/enzimología , Síndrome Rothmund-Thomson/epidemiología , Síndrome Rothmund-Thomson/genética , Síndrome Rothmund-Thomson/terapia , Neoplasias Cutáneas/etiología , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/epidemiología , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/terapia
4.
Oncotarget ; 7(22): 32351-61, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27083049

RESUMEN

Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.


Asunto(s)
Síndrome de Bloom/enzimología , Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/enzimología , Neoplasias/enzimología , RecQ Helicasas/metabolismo , Transducción de Señal , Síndrome de Bloom/genética , Síndrome de Bloom/patología , Neoplasias Óseas/enzimología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Supervivencia Celular , Reactivos de Enlaces Cruzados/farmacología , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Proteína del Grupo de Complementación L de la Anemia de Fanconi/química , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Femenino , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Osteosarcoma/enzimología , Osteosarcoma/genética , Osteosarcoma/patología , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , RecQ Helicasas/química , RecQ Helicasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Transfección , Rayos Ultravioleta
5.
BMC Med Genet ; 16: 91, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26449372

RESUMEN

BACKGROUND: Putative G-quadruplex-forming sequences (PQS) have long been implicated in regulation of transcription, though the actual mechanisms are not well understood. One proposed mechanism involves the activity of PQS-specific helicases belonging to the RecQ helicase family. However, patterns of PQS that correlate with transcriptional sensitivity to RecQ helicases are not well studied, and no adequate transcriptional model exists to account for PQS effects. METHODS: To better understand PQS transcriptional effects, we analyze PQS motifs in genes differentially-transcribed in Bloom Syndrome (BS) and Werner Syndrome (WS), two disorders resulting in loss of PQS-interacting RecQ helicases.  We also correlate PQS genome-wide with transcription in multiple human cells lines while controlling for epigenetic status.  Finally, we perform neural network clustering of PQS motifs to assess whether certain motifs are over-represented in genes sensitive to RecQ helicase loss. RESULTS: By analyzing PQS motifs in promoters of genes differentially-transcribed in BS and WS, we demonstrate that abundance of promoter PQS is generally higher in down-regulated genes and lower in up-regulated genes, and show that these effects are position-dependent. To interpret these correlations we determined genome-wide PQS correlations with transcription while controlling for epigenetic status. Our results identify multiple discrete transcription start site-proximal positions where PQS are correlated with either increased or decreased transcription. Finally, we report neural network clustering analysis of PQS motifs demonstrating that genes differentially-expressed in BS and WS are significantly biased in PQS motif composition. CONCLUSIONS: Our findings unveil unappreciated detail in the relationship between PQS, RecQ helicases, and transcription. We show that promoter PQS are generally correlated with reduced gene expression, and that this effect is relieved by RecQ helicases. We also show that PQS at certain positions on the downstream sense strand are correlated with increased transcription. We therefore propose a new transcriptional model in which promoter PQS have at least two distinct types of transcriptional regulatory effects.


Asunto(s)
Síndrome de Bloom/genética , ADN/química , G-Cuádruplex , RecQ Helicasas/metabolismo , Transcripción Genética , Síndrome de Werner/genética , Síndrome de Bloom/enzimología , Línea Celular , Biología Computacional/métodos , Epigénesis Genética , Regulación de la Expresión Génica , Genoma Humano , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas , Síndrome de Werner/enzimología
6.
Mutat Res ; 752(2): 138-152, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23276657

RESUMEN

Helicases have important roles in nucleic acid metabolism, and their prominence is marked by the discovery of genetic disorders arising from disease-causing mutations. Missense mutations can yield unique insight to molecular functions and basis for disease pathology. XPB or XPD missense mutations lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome, suggesting that DNA repair and transcription defects are responsible for clinical heterogeneity. Complex phenotypes are also observed for RECQL4 helicase mutations responsible for Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Bloom's syndrome causing missense mutations are found in the conserved helicase and RecQ C-terminal domain of BLM that interfere with helicase function. Although rare, patient-derived missense mutations in the exonuclease or helicase domain of Werner syndrome protein exist. Characterization of WRN separation-of-function mutants may provide insight to catalytic requirements for suppression of phenotypes associated with the premature aging disorder. Characterized FANCJ missense mutations associated with breast cancer or Fanconi anemia interfere with FANCJ helicase activity required for DNA repair and the replication stress response. For example, a FA patient-derived mutation in the FANCJ Iron-Sulfur domain was shown to uncouple its ATPase and translocase activity from DNA unwinding. Mutations in DDX11 (ChlR1) are responsible for Warsaw Breakage syndrome, a recently discovered autosomal recessive cohesinopathy. Ongoing and future studies will address clinically relevant helicase mutations and polymorphisms, including those that interfere with key protein interactions or exert dominant negative phenotypes (e.g., certain mutant alleles of Twinkle mitochondrial DNA helicase). Chemical rescue may be an approach to restore helicase activity in loss-of-function helicase disorders. Genetic and biochemical analyses of disease-causing missense mutations in human helicase disorders have led to new insights to the molecular defects underlying aberrant cellular and clinical phenotypes.


Asunto(s)
Síndrome de Bloom/genética , Síndrome de Cockayne/genética , ADN Helicasas/genética , Anemia de Fanconi/genética , Mutación Missense/genética , Xerodermia Pigmentosa/genética , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/patología , Anemia de Fanconi/enzimología , Anemia de Fanconi/patología , Humanos , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/patología
7.
Mol Biol Rep ; 40(4): 3049-64, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23268311

RESUMEN

Bloom syndrome (BS) is an extremely rare, autosomal recessive genetic syndrome of humans. Patients with BS are predisposed to almost all forms of cancer and also display premature aging phenotypes. These patients are diagnosed in the clinics by hyper-recombination phenotype that is manifested by high rates of sister chromatid exchange. The gene mutated in BS, designated BLM, lies on chromosome 15q26.1 and encodes a RecQ-like ATP-dependent 3'-5' helicase, which functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. Recently it has been suggested that the BLM helicase may play important roles in Telomerase-independent forms of telomere elongation or alternative lengthening of telomeres (ALT). A mechanism that although provides cells with a window of opportunity to save ends of their chromosomes, puts these Telomerase (-/-) cells under continuous stress. BLM localization within ALT-associated PML nuclear bodies in telomerase-negative immortalized cell lines and its interaction with the telomere-specific proteins strengthens that suggestion. Here, I begin by outlining features common to all RecQ helicases. I, then, survey evidences that implicate possible roles of BLM helicase in this recombination-mediated mechanism of telomere elongation.


Asunto(s)
Síndrome de Bloom/genética , Neoplasias/genética , RecQ Helicasas/genética , Homeostasis del Telómero/genética , Envejecimiento , Síndrome de Bloom/complicaciones , Síndrome de Bloom/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Neoplasias/complicaciones , Neoplasias/patología , RecQ Helicasas/química , Recombinación Genética , Telomerasa/genética
8.
Mutat Res ; 743-744: 89-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23261817

RESUMEN

Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.


Asunto(s)
ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Ribosómico/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Transcripción Genética , Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Línea Celular , Línea Celular Tumoral , Nucléolo Celular/enzimología , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ADN Ribosómico/metabolismo , Células HEK293 , Humanos , Células MCF-7
9.
Proc Natl Acad Sci U S A ; 109(47): 19357-62, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129629

RESUMEN

Bloom syndrome (BS) is an autosomal recessive disorder caused by mutations in the RecQ-like DNA helicase BLM, which functions in the maintenance of genome stability. Using a humanized model of Saccharomyces cerevisiae that expresses a chimera of the N terminus of yeast Sgs1 and the C terminus of human BLM from the chromosomal SGS1 locus, we have functionally evaluated 27 BLM alleles that are not currently known to be associated with BS. We identified nine alleles with impaired function when assessed for hypersensitivity to the DNA-damaging agent hydroxyurea (HU). Six of these alleles (P690L, R717T, W803R, Y811C, F857L, G972V) caused sensitivity to HU that was comparable to known BS-associated or helicase-dead alleles, suggesting that they may cause BS and, in the heterozygous state, act as risk factors for cancerogenesis. We also identified three alleles (R791C, P868L, G1120R) that caused intermediate sensitivity to HU; although unlikely to cause BS, these partial loss-of-function alleles may increase risk for cancers or other BS-associated complications if a person is homozygous or compound heterozygous for these alleles or if they carry a known BS-associated allele.


Asunto(s)
Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , Mutación/genética , RecQ Helicasas/genética , Alelos , Secuencia de Aminoácidos , Aminoácidos/genética , Diploidia , Heterocigoto , Homocigoto , Humanos , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación Missense/genética , RecQ Helicasas/química , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Trends Genet ; 28(1): 7-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22024395

RESUMEN

Fanconi anemia (FA) and Bloom's syndrome (BS) are rare hereditary chromosomal instability disorders. FA displays bone marrow failure, acute myeloid leukemia, and head and neck cancers, whereas BS is characterized by growth retardation, immunodeficiency, and a wide spectrum of cancers. The BLM gene mutated in BS encodes a DNA helicase that functions in a protein complex to suppress sister-chromatid exchange. Of the 15 FA genetic complementation groups implicated in interstrand crosslink repair, FANCJ encodes a DNA helicase involved in recombinational repair and replication stress response. Based on evidence that BLM and FANCJ interact we suggest that crosstalk between BLM and FA pathways is more complex than previously thought. We propose testable models for how FANCJ and BLM coordinate to help cells deal with stalled replication forks or double-strand breaks (DSB). Understanding how BLM and FANCJ cooperate will help to elucidate an important pathway for maintaining genomic stability.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Síndrome de Bloom/enzimología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/enzimología , RecQ Helicasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Síndrome de Bloom/genética , Inestabilidad Cromosómica , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Unión Proteica , RecQ Helicasas/genética
11.
Nature ; 471(7340): 642-6, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21399624

RESUMEN

In somatic cells, Holliday junctions can be formed between sister chromatids during the recombinational repair of DNA breaks or after replication fork demise. A variety of processes act upon Holliday junctions to remove them from DNA, in events that are critical for proper chromosome segregation. In human cells, the BLM protein, inactivated in individuals with Bloom's syndrome, acts in combination with topoisomerase IIIα, RMI1 and RMI2 (BTR complex) to promote the dissolution of double Holliday junctions. Cells defective for BLM exhibit elevated levels of sister chromatid exchanges (SCEs) and patients with Bloom's syndrome develop a broad spectrum of early-onset cancers caused by chromosome instability. MUS81-EME1 (refs 4-7), SLX1-SLX4 (refs 8-11) and GEN1 (refs 12, 13) also process Holliday junctions but, in contrast to the BTR complex, do so by endonucleolytic cleavage. Here we deplete these nucleases from Bloom's syndrome cells to analyse human cells compromised for the known Holliday junction dissolution/resolution pathways. We show that depletion of MUS81 and GEN1, or SLX4 and GEN1, from Bloom's syndrome cells results in severe chromosome abnormalities, such that sister chromatids remain interlinked in a side-by-side arrangement and the chromosomes are elongated and segmented. Our results indicate that normally replicating human cells require Holliday junction processing activities to prevent sister chromatid entanglements and thereby ensure accurate chromosome condensation. This phenotype was not apparent when both MUS81 and SLX4 were depleted from Bloom's syndrome cells, suggesting that GEN1 can compensate for their absence. Additionally, we show that depletion of MUS81 or SLX4 reduces the high frequency of SCEs in Bloom's syndrome cells, indicating that MUS81 and SLX4 promote SCE formation, in events that may ultimately drive the chromosome instabilities that underpin early-onset cancers associated with Bloom's syndrome.


Asunto(s)
Síndrome de Bloom/genética , Aberraciones Cromosómicas , Cromosomas Humanos , ADN Cruciforme , Intercambio de Cromátides Hermanas , Edad de Inicio , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Cromátides/genética , Cromátides/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Endonucleasas/metabolismo , Inestabilidad Genómica/genética , Resolvasas de Unión Holliday/deficiencia , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Humanos , Metafase , Neoplasias/genética , Neoplasias/patología , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , Recombinasas/deficiencia , Recombinasas/genética , Recombinasas/metabolismo , Intercambio de Cromátides Hermanas/genética
12.
DNA Repair (Amst) ; 10(4): 416-26, 2011 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-21300576

RESUMEN

Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.


Asunto(s)
Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , Cromosomas Humanos , Roturas del ADN de Doble Cadena , ADN Helicasas/deficiencia , ADN Helicasas/genética , Reparación del ADN , Secuencia de Bases , Línea Celular , ADN Helicasas/metabolismo , Técnicas de Silenciamiento del Gen , Orden Génico , Vectores Genéticos/genética , Humanos , Datos de Secuencia Molecular , Mutación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Recombinación Genética , Alineación de Secuencia
13.
J Mol Biol ; 405(4): 877-91, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21111748

RESUMEN

RecQ-like DNA helicases are conserved from bacteria to humans. They perform functions in the maintenance of genome stability, and their mutation is associated with cancer predisposition and premature aging syndromes in humans. Here, a series of C-terminal deletions and point mutations of Sgs1, the only RecQ-like helicase in yeast, show that the Helicase/RNase D C-terminal domain and the Rad51 interaction domain are dispensable for Sgs1's role in suppressing genome instability, whereas the zinc-binding domain and the helicase domain are required. BLM expression from the native SGS1 promoter had no adverse effects on cell growth and was unable to complement any sgs1Δ defects. BLM overexpression, however, significantly increased the rate of accumulating gross-chromosomal rearrangements in a dosage-dependent manner and greatly exacerbated sensitivity to DNA-damaging agents. Co-expressing sgs1 truncations of up to 900 residues, lacking all known functional domains of Sgs1, suppressed the hydroxyurea sensitivity of BLM-overexpressing cells, suggesting a functional relationship between Sgs1 and BLM. Protein disorder prediction analysis of Sgs1 and BLM was used to produce a functional Sgs1-BLM chimera by replacing the N-terminus of BLM with the disordered N-terminus of Sgs1. The functionality of this chimera suggests that it is the disordered N-terminus, a site of protein binding and posttranslational modification, that confers species specificity to these two RecQ-like proteins.


Asunto(s)
RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , Expresión Génica , Reordenamiento Génico , Genes Fúngicos , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Mutación Puntual , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , RecQ Helicasas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
14.
Mol Cancer Res ; 8(9): 1234-47, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20719863

RESUMEN

BLM helicase, the protein mutated in Bloom syndrome, is involved in signal transduction cascades after DNA damage. BLM is phosphorylated on multiple residues by different kinases either after stress induction or during mitosis. Here, we have provided evidence that both Chk1 and Chk2 phosphorylated the NH(2)-terminal 660 amino acids of BLM. An internal region within the DExH motif of BLM negatively regulated the Chk1/Chk2-dependent NH(2)-terminal phosphorylation event. Using in silico analysis involving the Chk1 structure and its known substrate specificity, we predicted that Chk1 should preferentially phosphorylate BLM on serine 646 (Ser(646)). The prediction was validated in vitro by phosphopeptide analysis on BLM mutants and in vivo by usage of a newly generated phosphospecific polyclonal antibody. We showed that the phosphorylation at Ser(646) on BLM was constitutive and decreased rapidly after exposure to DNA damage. This resulted in the diminished interaction of BLM with nucleolin and PML isoforms, and consequently decreased BLM accumulation in the nucleolus and PML nuclear bodies. Instead, BLM relocalized to the sites of DNA damage and bound with the damage sensor protein, Nbs1. Mutant analysis confirmed that the binding to nucleolin and PML isoforms required Ser(646) phosphorylation. These results indicated that Chk1-mediated phosphorylation on BLM at Ser(646) might be a determinant for regulating subnuclear localization and could act as a marker for the activation status of BLM in response to DNA damage.


Asunto(s)
Daño del ADN , Fosfoserina/metabolismo , Proteínas Quinasas/metabolismo , RecQ Helicasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Humanos , Datos de Secuencia Molecular , Péptidos/química , Fosforilación , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , RecQ Helicasas/química
15.
Methods Mol Biol ; 587: 173-84, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20225149

RESUMEN

DNA helicases are biomolecular motors that convert the chemical energy derived from the hydrolysis of nucleotide triphosphate (usually ATP) into mechanical energy to unwind double-stranded DNA. The unwinding of double-stranded DNA is an essential process for DNA replication, repair, recombination, and transcription. Mutations in human RecQ helicases result in inherent human disease including Bloom's syndrome, Werner's syndrome, and Rothmund-Thomson syndrome. Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. In order to understand the molecular basis of BS pathology and the mechanism underlying the function of Bloom helicase, we have analyzed BS-causing missense mutations by a combination of structural modeling, site-directed mutagenesis, and biochemical and biophysical approaches. Here, we describe the methods and protocols for measuring ATPase, ATP and DNA binding, DNA strand annealing, and DNA unwinding activities of Bloom protein and its mutant variants. These approaches should be applicable and useful for studying other helicases.


Asunto(s)
Síndrome de Bloom , Análisis Mutacional de ADN/métodos , Adenosina Trifosfatasas/metabolismo , Anisotropía , Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico
16.
Biochemistry ; 49(4): 656-68, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20028084

RESUMEN

Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. Understanding the functioning mechanism of the BLM protein may provide the opportunity to develop new effective therapy strategies. In this work, we studied the DNA unwinding kinetic mechanism of the helicase core of the BLM protein using various stopped-flow assays. We show that the helicase core of BLM unwinds duplex DNA as monomers even under conditions strongly favoring oligomerization. An unwinding rate of approximately 20 steps per second and a step size of 1 bp have been determined. We have observed that the helicase has a very low processivity. From dissociation and inhibition experiments, we have found that during its ATP hydrolysis cycle in DNA unwinding the helicase tends to dissociate from the DNA substrate in the ADP state. The experimental results imply that the BLM helicase core may unwind duplex DNA in an inchworm manner.


Asunto(s)
ADN/química , RecQ Helicasas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Síndrome de Bloom/enzimología , Síndrome de Bloom/metabolismo , ADN/metabolismo , Dimerización , Humanos , Hidrólisis , Cinética , RecQ Helicasas/química
17.
Biochem Cell Biol ; 87(6): 875-82, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19935873

RESUMEN

RecQ helicases maintain chromosome stability by resolving several highly specific DNA structures. BLM, the protein mutated in Bloom's syndrome, is a member of the RecQ helicase family, and possesses both DNA-unwinding and strand-annealing activity. In this study, we have investigated the unwinding activity of BLM on nucleosomal DNA, the natural nuclear substrate for the enzyme. We generated a DNA template including a strong nucleosome-positioning sequence flanked by forked DNA, which is reportedly one of the preferred DNA substrates for BLM. BLM did not possess detectable unwinding activity toward the forked DNA substrate. However, the truncated BLM, lacking annealing activity, unwound it partially. In the presence of the single-stranded DNA-binding protein RPA, the unwinding activity of both the full-length and the truncated BLMs was promoted. Next, the histone octamer was reconstituted onto the forked DNA to generate a forked mononucleosome. Full-length BLM did not unwind the nucleosomal DNA, but truncated BLM unwound it partially. The unwinding activity for the mononucleosome was not promoted dramatically with RPA. These results indicate that full-length BLM may require additional factors to unwind nucleosomal DNA in vivo, and that RPA is, on its own, unable to perform this auxiliary function.


Asunto(s)
ADN/metabolismo , Nucleosomas/genética , RecQ Helicasas/metabolismo , Secuencia de Bases , Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , ADN/química , ADN/genética , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , RecQ Helicasas/genética , Proteína de Replicación A/metabolismo
18.
J Biol Chem ; 284(18): 11971-81, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19265196

RESUMEN

In this study, we attempted to understand the mechanism of regulation of the activity and allosteric behavior of the pyruvate kinase M(2) enzyme and two of its missense mutations, H391Y and K422R, found in cells from Bloom syndrome patients, prone to develop cancer. Results show that despite the presence of mutations in the intersubunit contact domain, the K422R and H391Y mutant proteins maintained their homotetrameric structure, similar to the wild-type protein, but showed a loss of activity of 75 and 20%, respectively. Interestingly, H391Y showed a 6-fold increase in affinity for its substrate phosphoenolpyruvate and behaved like a non-allosteric protein with compromised cooperative binding. However, the affinity for phosphoenolpyruvate was lost significantly in K422R. Unlike K422R, H391Y showed enhanced thermal stability, stability over a range of pH values, a lesser effect of the allosteric inhibitor Phe, and resistance toward structural alteration upon binding of the activator (fructose 1,6-bisphosphate) and inhibitor (Phe). Both mutants showed a slight shift in the pH optimum from 7.4 to 7.0. Although this study signifies the importance of conserved amino acid residues in long-range communications between the subunits of multimeric proteins, the altered behavior of mutants is suggestive of their probable role in tumor-promoting growth and metabolism in Bloom syndrome patients with defective pyruvate kinase M(2).


Asunto(s)
Mutación Missense , Piruvato Quinasa/química , Sustitución de Aminoácidos , Síndrome de Bloom/enzimología , Síndrome de Bloom/genética , Estabilidad de Enzimas/genética , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/enzimología , Neoplasias/genética , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
19.
J Immunol ; 182(1): 347-60, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19109166

RESUMEN

The RecQ family helicase BLM is critically involved in the maintenance of genomic stability, and BLM mutation causes the heritable disorder Bloom's syndrome. Affected individuals suffer from a predisposition to a multitude of cancer types and an ill-defined immunodeficiency involving low serum Ab titers. To investigate its role in B cell biology, we inactivated murine Blm specifically in B lymphocytes in vivo. Numbers of developing B lymphoid cells in the bone marrow and mature B cells in the periphery were drastically reduced upon Blm inactivation. Of the major peripheral B cell subsets, B1a cells were most prominently affected. In the sera of Blm-deficient naive mice, concentrations of all Ig isotypes were low, particularly IgG3. Specific IgG Ab responses upon immunization were poor and mutant B cells exhibited a generally reduced Ab class switch capacity in vitro. We did not find evidence for a crucial role of Blm in the mechanism of class switch recombination. However, a modest shift toward microhomology-mediated switch junction formation was observed in Blm-deficient B cells. Finally, a cohort of p53-deficient, conditional Blm knockout mice revealed an increased propensity for B cell lymphoma development. Impaired cell cycle progression and survival as well as high rates of chromosomal structural abnormalities in mutant B cell blasts were identified as the basis for the observed effects. Collectively, our data highlight the importance of BLM-dependent genome surveillance for B cell immunity by ensuring proper development and function of the various B cell subsets while counteracting lymphomagenesis.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Inestabilidad Genómica/inmunología , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , Animales , Apoptosis/genética , Apoptosis/inmunología , Subgrupos de Linfocitos B/enzimología , Síndrome de Bloom/enzimología , Síndrome de Bloom/inmunología , Síndrome de Bloom/patología , Ciclo Celular/genética , Ciclo Celular/inmunología , Diferenciación Celular/genética , Linaje de la Célula/genética , Replicación del ADN/genética , Replicación del ADN/inmunología , Isotipos de Inmunoglobulinas/biosíntesis , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/metabolismo , Región de Cambio de la Inmunoglobulina/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Neoplasias/enzimología , Neoplasias/inmunología , Neoplasias/patología , RecQ Helicasas/fisiología , Recombinación Genética/inmunología
20.
Mech Ageing Dev ; 129(11): 681-91, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19238688

RESUMEN

Human cells express five DNA helicases that are paralogs of Escherichia coli RecQ and which constitute the family of human RecQ helicases. Disease-causing mutations in three of these five human DNA helicases, BLM, WRN, and RECQL4, cause rare severe human genetic diseases with distinct clinical phenotypes characterized by developmental defects, skin abnormalities, genomic instability, and cancer susceptibility. Although biochemical and genetic evidence support roles for all five human RecQ helicases in DNA replication, DNA recombination, and the biological responses to DNA damage, many questions concerning the various functions of the human RecQ helicases remain unanswered. Researchers investigating human and non-human RecQ helicases held a workshop on May 27-28, 2008, at the University of Chicago Gleacher Center, during which they shared insights, discussed recent progress in understanding the biochemistry, biology, and genetics of the RecQ helicases, and developed research strategies that might lead to therapeutic approaches to the human diseases that result from mutations in RecQ helicase genes. Some workshop sessions were held jointly with members of a recently formed advocacy and support group for persons with Bloom's syndrome and their families. This report describes the outcomes and main discussion points of the workshop.


Asunto(s)
Síndrome de Bloom/enzimología , RecQ Helicasas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Investigación Biomédica , Síndrome de Bloom/genética , Daño del ADN , Replicación del ADN , Humanos , Mutación , Neoplasias/enzimología , Neoplasias/genética , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , Recombinación Genética , Grupos de Autoayuda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...