Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(1): 100862, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34116057

RESUMEN

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Elonguina/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Polimerasa II/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , ADN Helicasas/química , ADN Helicasas/ultraestructura , Reparación del ADN/genética , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/ultraestructura , Elonguina/química , Elonguina/ultraestructura , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación/genética
2.
Mech Ageing Dev ; 173: 80-83, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752965

RESUMEN

Progeroid syndrome is a group of disorders characterized by the early onset of diseases that are associated with aging. Best known examples are Werner syndrome, which is adult onset and results from disease-causing DNA sequence variants in the RecQ helicase gene WRN, and Hutchison-Gilford progeria syndrome, which is childhood-onset and results from unique, recurrent disease-causing DNA sequence variants of the gene LMNA that encodes nuclear intermediate filaments. Related single gene RecQ disorders are Bloom syndrome and Rothmund-Thomson syndrome. The RecQ disorders Cockayne syndrome and xeroderma pigmentosum result from disease-causing DNA sequence variants in genes involved in the nucleotide excision repair pathway. RECQ2018: The International Meeting on RECQ Helicases and Related Diseases was held on February 16-18, 2018 in Chiba, Japan. The purpose of the meeting was to facilitate clinical and research collaborations for the goal of developing effective treatments for RECQ disorders and other progeroid syndromes.


Asunto(s)
Síndrome de Cockayne , Trastornos por Deficiencias en la Reparación del ADN , Reparación del ADN , Helicasa del Síndrome de Werner , Animales , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Congresos como Asunto , Trastornos por Deficiencias en la Reparación del ADN/enzimología , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/patología , Humanos , Japón , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo
3.
RNA Biol ; 15(7): 845-848, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29683386

RESUMEN

Gene expression and DNA repair are fundamental processes for life. During the last decade, accumulating experimental evidence point towards different modes of coupling between these processes. Here we discuss the molecular mechanisms by which RNAPII-dependent transcription affects repair by the Nucleotide Excision Repair system (NER) and how NER activity, through the generation of single stranded DNA intermediates and activation of the DNA damage response kinase ATR, drives gene expression in a genotoxic scenario. Since NER-dependent repair is compromised in Xeroderma Pigmentosum (XP) patients, and having in mind that these patients present a high degree of clinical heterogeneity, we speculate that some of the clinical features of XP patients can be explained by misregulation of gene expression.


Asunto(s)
Reparación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Expresión Génica/efectos de la radiación , Xerodermia Pigmentosa/enzimología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Síndrome de Cockayne/enzimología , Daño del ADN , ADN Helicasas/genética , Humanos , Mutación , ARN Polimerasa II/metabolismo , Piel/efectos de la radiación , Transcripción Genética/fisiología , Rayos Ultravioleta/efectos adversos
4.
Chromosoma ; 122(4): 275-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760561

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.


Asunto(s)
Proteínas Portadoras/metabolismo , Síndrome de Cockayne/metabolismo , Reparación del ADN , Trastornos por Fotosensibilidad/metabolismo , Transcripción Genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Proteínas Portadoras/genética , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Humanos , Trastornos por Fotosensibilidad/enzimología , Trastornos por Fotosensibilidad/genética , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7
5.
Am J Hum Genet ; 92(5): 807-19, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23623389

RESUMEN

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Xerodermia Pigmentosa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/patología , Cartilla de ADN/genética , Anemia de Fanconi/enzimología , Anemia de Fanconi/patología , Resultado Fatal , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/patología
6.
Mutat Res ; 752(2): 138-152, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23276657

RESUMEN

Helicases have important roles in nucleic acid metabolism, and their prominence is marked by the discovery of genetic disorders arising from disease-causing mutations. Missense mutations can yield unique insight to molecular functions and basis for disease pathology. XPB or XPD missense mutations lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome, suggesting that DNA repair and transcription defects are responsible for clinical heterogeneity. Complex phenotypes are also observed for RECQL4 helicase mutations responsible for Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Bloom's syndrome causing missense mutations are found in the conserved helicase and RecQ C-terminal domain of BLM that interfere with helicase function. Although rare, patient-derived missense mutations in the exonuclease or helicase domain of Werner syndrome protein exist. Characterization of WRN separation-of-function mutants may provide insight to catalytic requirements for suppression of phenotypes associated with the premature aging disorder. Characterized FANCJ missense mutations associated with breast cancer or Fanconi anemia interfere with FANCJ helicase activity required for DNA repair and the replication stress response. For example, a FA patient-derived mutation in the FANCJ Iron-Sulfur domain was shown to uncouple its ATPase and translocase activity from DNA unwinding. Mutations in DDX11 (ChlR1) are responsible for Warsaw Breakage syndrome, a recently discovered autosomal recessive cohesinopathy. Ongoing and future studies will address clinically relevant helicase mutations and polymorphisms, including those that interfere with key protein interactions or exert dominant negative phenotypes (e.g., certain mutant alleles of Twinkle mitochondrial DNA helicase). Chemical rescue may be an approach to restore helicase activity in loss-of-function helicase disorders. Genetic and biochemical analyses of disease-causing missense mutations in human helicase disorders have led to new insights to the molecular defects underlying aberrant cellular and clinical phenotypes.


Asunto(s)
Síndrome de Bloom/genética , Síndrome de Cockayne/genética , ADN Helicasas/genética , Anemia de Fanconi/genética , Mutación Missense/genética , Xerodermia Pigmentosa/genética , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/patología , Anemia de Fanconi/enzimología , Anemia de Fanconi/patología , Humanos , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/patología
7.
Mutagenesis ; 26(2): 315-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21059811

RESUMEN

Reduced host cell reactivation (HCR) of a reporter gene containing 8-oxoguanine (8-oxoG) lesions in Cockayne syndrome (CS) fibroblasts has previously been attributed to increased 8-oxoG-mediated inhibition of transcription resulting from a deficiency in repair. This interpretation has been challenged by a report suggesting reduced expression from an 8-oxoG containing reporter gene occurs in all cells by a mechanism involving gene inactivation by 8-oxoG DNA glycosylase and this inactivation is strongly enhanced in the absence of the CS group B (CSB) protein. The observation of reduced gene expression in the absence of CSB protein led to speculation that decreased HCR in CS cells results from enhanced gene inactivation rather than reduced gene reactivation. Using an adenovirus-based ß-galactosidase (ß-gal) reporter gene assay, we have examined the effect of methylene blue plus visible light (MB + VL)-induced 8-oxoG lesions on the time course of gene expression in normal and CSA and CSB mutant human SV40-transformed fibroblasts, repair proficient and CSB mutant Chinese hamster ovary (CHO) cells and normal mouse embryo fibroblasts. We demonstrate that MB + VL treatment of the reporter leads to reduced expression of the damaged ß-gal reporter relative to control at early time points following infection in all cells, consistent with in vivo inhibition of RNA polII-mediated transcription. In addition, we have demonstrated HCR of reporter gene expression occurs in all cell types examined. A significant reduction in the rate of gene reactivation in human SV40-transformed cells lacking functional CSA or CSB compared to normal cells was found. Similarly, a significant reduction in the rate of reactivation in CHO cells lacking functional CSB (CHO-UV61) was observed compared to the wild-type parental counterpart (CHO-AA8). The data presented demonstrate that expression of an oxidatively damaged reporter gene is reactivated over time and that CSA and CSB are required for normal reactivation.


Asunto(s)
Adenoviridae/genética , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , ADN Helicasas , Enzimas Reparadoras del ADN , Genes Reporteros , Factores de Transcripción , beta-Galactosidasa/metabolismo , Adenoviridae/metabolismo , Adenoviridae/efectos de la radiación , Animales , Células CHO , Línea Celular Transformada , Cricetinae , Cricetulus , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Regulación Viral de la Expresión Génica , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta , beta-Galactosidasa/genética
8.
Clin Cancer Res ; 14(20): 6449-55, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18927284

RESUMEN

PURPOSE: Ecteinascidin 743 (Et743; trabectedin, Yondelis) has recently been approved in Europe for the treatment of soft tissue sarcomas and is undergoing clinical trials for other solid tumors. Et743 selectively targets cells proficient for TC-NER, which sets it apart from other DNA alkylating agents. In the present study, we examined the effects of Et743 on RNA Pol II. EXPERIMENTAL DESIGN AND RESULTS: We report that Et743 induces the rapid and massive degradation of transcribing Pol II in various cancer cell lines and normal fibroblasts. Pol II degradation was abrogated by the proteasome inhibitor MG132 and was dependent on TC-NER. Cockayne syndrome (CS) cells and xeroderma pigmentosum (XP) cells (XPD, XPA, XPG, and XPF) were defective in Pol II degradation, whereas XPC cells whose defect is limited to global genome NER in nontranscribing regions were proficient for Pol II degradation. Complementation of the CSB and XPD cells restored Pol II degradation. We also show that cells defective for the VHL complex were defective in Pol II degradation and that complementation of those cells restores Pol II degradation. Moreover, VHL deficiency rendered cells resistant to Et743-induced cell death, a similar effect to that of TC-NER deficiency. CONCLUSION: These results suggest that both TC-NER-induced and VHL-mediated Pol II degradation play a role in cell killing by Et743.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Reparación del ADN/efectos de los fármacos , Dioxoles/farmacología , Neoplasias/enzimología , ARN Polimerasa II/metabolismo , Tetrahidroisoquinolinas/farmacología , Transcripción Genética/efectos de los fármacos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Inhibidores de Cisteína Proteinasa/farmacología , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Prueba de Complementación Genética , Humanos , Leupeptinas/farmacología , Neoplasias/genética , Neoplasias/patología , Fosforilación/efectos de los fármacos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/genética , Sarcoma/enzimología , Sarcoma/genética , Sarcoma/patología , Trabectedina , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Enfermedad de von Hippel-Lindau/enzimología , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/patología
9.
Curr Med Chem ; 15(10): 940-53, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18393852

RESUMEN

Cockayne syndrome (complementation groups A and B) is a rare autosomal recessive DNA repair disorder characterized by photosensitive skin and severely impaired physical and intellectual development. The Cockayne syndrome A and B proteins intervene in the repair of DNA modifications that block the RNA polymerase in transcribed DNA sequences (transcription-coupled repair). Recent results suggest that they also have a more general role in the repair of oxidative DNA base modifications. Although the phenotypical consequences of defective repair of oxidatively damaged DNA in Cockayne syndrome are not determined, accumulation of oxidized lesions might contribute to delay the physical and intellectual development of these patients. To conceive new therapeutic strategies for this syndrome, we are investigating whether the oxidatively damaged DNA repair defect in Cockayne syndrome might be complemented by heterologous repair proteins, such as the Escherichia coli formamidopyrimidine-DNA glycosylase and endonuclease III. The complementation studies may shed light on the important lesions for the Cockayne syndrome phenotype and offer new tools for future therapies aimed at counteracting the consequences of oxidatively damaged DNA accumulation.


Asunto(s)
Síndrome de Cockayne/genética , Daño del ADN , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/fisiología , Endonucleasas/fisiología , Prueba de Complementación Genética , Síndrome de Cockayne/enzimología , Humanos , Estrés Oxidativo
10.
Oncogene ; 22(8): 1135-49, 2003 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-12606941

RESUMEN

Cockayne syndrome (CS) is a human hereditary disease belonging to the group of segmental progerias, and the clinical phenotype is characterized by postnatal growth failure, neurological dysfunction, cachetic dwarfism, photosensitivity, sensorineural hearing loss, and retinal degradation. CS-B cells are defective in transcription-coupled DNA repair, base excision repair, transcription, and chromatin structural organization. Using array analysis, we have examined the expression profile in CS complementation group B (CS-B) fibroblasts after exposure to oxidative stress (H2O2) before and after complete complementation with the CSB gene. The following isogenic cell lines were compared: CS-B cells (CS-B null), CS-B cells complemented with wild-type CSB (CS-B wt), and a stably transformed cell line with a point mutation in the ATPase domain of CSB (CS-B ATPase mutant). In the wt rescued cells, we detected significant induction (two-fold) of 112 genes out of the 6912 analysed. The patterns suggested an induction or upregulation of genes involved in several DNA metabolic processes including DNA repair, transcription, and signal transduction. In both CS-B mutant cell lines, we found a general deficiency in transcription after oxidative stress, suggesting that the CSB protein influenced the regulation of transcription of certain genes. Of the 6912 genes, 122 were differentially regulated by more than two-fold. Evidently, the ATPase function of CSB is biologically important as the deficiencies seen in the ATPase mutant cells are very similar to those observed in the CS-B-null cells. Some major defects are in the transcription of genes involved in DNA repair, signal transduction, and ribosomal functions.


Asunto(s)
Síndrome de Cockayne/patología , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Perfilación de la Expresión Génica , Estrés Oxidativo/genética , Transcripción Genética/fisiología , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Northern Blotting , Línea Celular/efectos de los fármacos , Línea Celular/enzimología , Línea Celular Transformada , Síndrome de Cockayne/enzimología , ADN Helicasas/deficiencia , ADN Helicasas/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN , Replicación del ADN/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Prueba de Complementación Genética , Humanos , Peróxido de Hidrógeno/toxicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes de Fusión/fisiología , Reproducibilidad de los Resultados , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Transfección
11.
Nucleic Acids Res ; 30(3): 782-93, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11809892

RESUMEN

Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.


Asunto(s)
Adenosina Trifosfatasas/química , Síndrome de Cockayne/genética , Daño del ADN/genética , Daño del ADN/efectos de la radiación , ADN Helicasas/química , ADN Helicasas/metabolismo , Reparación del ADN/genética , Guanina/análogos & derivados , Guanina/metabolismo , Timina/análogos & derivados , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Extractos Celulares , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Síndrome de Cockayne/enzimología , Citosina/análogos & derivados , Citosina/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN , Fibroblastos , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Peróxido de Hidrógeno/farmacología , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , ARN/biosíntesis , Tolerancia a Radiación/genética , Timina/metabolismo , Rayos Ultravioleta
12.
Crit Rev Biochem Mol Biol ; 36(3): 261-90, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11450971

RESUMEN

Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.


Asunto(s)
ADN Helicasas , Reparación del ADN , Endonucleasas , Factores de Transcripción TFII , Alquilación , Animales , Ataxia Telangiectasia/enzimología , Ataxia Telangiectasia/genética , Disparidad de Par Base , Liasas de Carbono-Oxígeno/fisiología , Rotura Cromosómica , Fragilidad Cromosómica/genética , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Reactivos de Enlaces Cruzados/toxicidad , ADN/efectos de los fármacos , ADN/efectos de la radiación , Aductos de ADN , Daño del ADN , ADN Glicosilasas , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Desoxirribonucleasa IV (Fago T4-Inducido) , Predicción , Genes Recesivos , Prueba de Complementación Genética , Predisposición Genética a la Enfermedad , Enfermedades del Cabello/enzimología , Enfermedades del Cabello/genética , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Mamíferos/genética , Mamíferos/metabolismo , N-Glicosil Hidrolasas/fisiología , Enfermedades de la Uña/enzimología , Enfermedades de la Uña/genética , Neoplasias/etiología , Neoplasias/genética , Proteínas Nucleares , O(6)-Metilguanina-ADN Metiltransferasa/fisiología , Fotoquímica , Trastornos por Fotosensibilidad/enzimología , Trastornos por Fotosensibilidad/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas/genética , Proteínas/fisiología , Dímeros de Pirimidina/metabolismo , Factor de Transcripción TFIIH
13.
Cell ; 101(2): 159-71, 2000 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-10786832

RESUMEN

Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transcribed sequence, despite its proficient repair when not transcribed. The XP-G/CS defect uniquely slows lesion removal in nontranscribed sequences. Defective TCR leads to a mutation frequency at 8-oxoG of 30%-40% compared to the normal 1%-4%. Surprisingly, unrepaired 8-oxoG blocks transcription by RNA polymerase II. These data imply that TCR is required for polymerase release to allow repair and that CS results from defects in TCR of oxidative lesions.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Guanina/análogos & derivados , Factores de Transcripción TFII , Factores de Transcripción/genética , Xerodermia Pigmentosa/genética , Línea Celular , Síndrome de Cockayne/enzimología , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN , Endonucleasas , Fibroblastos/citología , Guanina/metabolismo , Humanos , Mutagénesis , Proteínas Nucleares , Oxidación-Reducción , Estrés Oxidativo/genética , Plásmidos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH , Transcripción Genética/fisiología , Transfección , Xerodermia Pigmentosa/enzimología
14.
Oncogene ; 19(4): 477-89, 2000 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-10698517

RESUMEN

Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Apoptosis/efectos de la radiación , Síndrome de Cockayne/patología , ADN Helicasas/fisiología , Reparación del ADN/genética , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-bcl-2 , Rayos Ultravioleta , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Línea Celular , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Cricetinae , Cricetulus , ADN/biosíntesis , ADN Helicasas/química , Enzimas Reparadoras del ADN , Genes p53 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Proto-Oncogénicas p21(ras)/análisis , ARN/biosíntesis , ARN Polimerasa II/antagonistas & inhibidores , Tolerancia a Radiación/genética , Proteínas Recombinantes de Fusión/fisiología , Eliminación de Secuencia , Activación Transcripcional , Transfección , Proteína p53 Supresora de Tumor/fisiología , Rayos Ultravioleta/efectos adversos , Proteína X Asociada a bcl-2
15.
Nucleic Acids Res ; 27(5): 1365-8, 1999 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-9973627

RESUMEN

The incision of the 8-oxoguanine in DNA by normal and Cockayne Syndrome (CS) cell extracts has been investigated. The incision in extracts derived from CS cells was approximately 50% of the incision level compared with extracts prepared from normal cells. In contrast, the incision rate of uracil and thymine glycol was not defective in CS cells. The deficiency in 8-oxoguanine incision was also demonstrated in a CS family. Whereas the proband had markedly less incision compared with the normal siblings, the parents had intermediate levels. The low level of 8-oxoguanine-DNA glycosylase in CS extracts correlates with the reduced expression of the 8-oxoguanine-DNA glycosylase gene (hOGG1) in CS cells. Both the levels of expression of the hOGG1 gene and the incision of 8-oxoguanine in DNAincreased markedly after transfection of CS-B cells with the CSB gene. We suggest that the CSB mutation leads to deficient transcription of the hOGG1 gene and thus to deficient repair of 8-oxoguanine in DNA.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Reparación del ADN , ADN/genética , Guanina/análogos & derivados , Secuencia de Bases , Línea Celular , Síndrome de Cockayne/enzimología , Cartilla de ADN , Enzimas Reparadoras del ADN , ADN-Formamidopirimidina Glicosilasa , Regulación hacia Abajo , Guanina/metabolismo , Humanos , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Transfección
16.
Proc Natl Acad Sci U S A ; 94(9): 4306-11, 1997 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-9113985

RESUMEN

Cockayne syndrome (CS) is characterized by increased photosensitivity, growth retardation, and neurological and skeletal abnormalities. The recovery of RNA synthesis is abnormally delayed in CS cells after exposure to UV radiation. Gene-specific repair studies have shown a defect in the transcription-coupled repair (TCR) of active genes in CS cells from genetic complementation groups A and B (CS-A and CS-B). We have analyzed transcription in vivo in intact and permeabilized CS-B cells. Uridine pulse labeling in intact CS-B fibroblasts and lymphoblasts shows a reduction of approximately 50% compared with various normal cells and with cells from a patient with xeroderma pigmentosum (XP) group A. In permeabilized CS-B cells transcription in chromatin isolated under physiological conditions is reduced to about 50% of that in normal chromatin and there is a marked reduction in fluorescence intensity in transcription sites in interphase nuclei. Transcription in CS-B cells is sensitive to alpha-amanitin, suggesting that it is RNA polymerase II-dependent. The reduced transcription in CS-B cells is complemented in chromatin by the addition of normal cell extract, and in intact cells by transfection with the CSB gene. CS-B may be a primary transcription deficiency.


Asunto(s)
Síndrome de Cockayne/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Amanitinas/farmacología , Línea Celular , Permeabilidad de la Membrana Celular , Cromatina/genética , Síndrome de Cockayne/clasificación , Síndrome de Cockayne/enzimología , Reparación del ADN , Fibroblastos/citología , Prueba de Complementación Genética , Células Madre Hematopoyéticas/citología , Humanos , Linfocitos/citología , Inhibidores de la Síntesis del Ácido Nucleico
18.
Proc Natl Acad Sci U S A ; 93(21): 11586-90, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8876179

RESUMEN

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.


Asunto(s)
Síndrome de Cockayne/enzimología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ubiquitinas/metabolismo , Rayos Ultravioleta , Línea Celular , Cisplatino/farmacología , Síndrome de Cockayne/genética , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Fosforilación , ARN Polimerasa II/efectos de la radiación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Transcripción Genética , Transfección
19.
Cell Growth Differ ; 7(6): 841-6, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8780897

RESUMEN

c-jun-NH2 kinases (JNK) are among the UV-activated protein kinases that play an important role in cellular stress response via the phosphorylation of c-jun, ATF2, and p53. Activation of JNK by UV irradiation requires cooperation between membrane and nuclear components, including DNA lesions per se. The role of DNA lesions in JNK activation led us to explore the inducibility of these kinases in cells of repair-deficient patients. Analyses of primary fibroblast cell lines from patients with Cockayne Syndrome of complementation group B (CS-B) revealed poor JNK activation after UV irradiation in four of five cases when compared with three repair-proficient, normal human fibroblast cell lines. Impaired ability to activate JNK persisted at various time points and with different doses of UV irradiation and coincided with failure of in vitro damaged DNA to activate these kinases. In contrast to UV irradiation, other forms of stress, such as H2O2 or heat shock were capable of inducing JNK activation in CS-B cells. Interestingly, when UV irradiation was administered after osmotic shock, it led to JNK activation in CS-B cells, indicating that alternate signal transduction pathways that are activated in response to other forms of stress can potentiate JNK activation by UV irradiation. Unlike CS-B cells, those of other repair-deficient cells, including xeroderma pigmentosum of different complementation groups, revealed proper activation of JNK by UV irradiation. Together, our findings point to deficiency of JNK activation by UV irradiation in CS-B cells, a phenomenon which may be associated with impaired CS-B, the mutant repair gene in these patients.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de la radiación , Síndrome de Cockayne/genética , Prueba de Complementación Genética , Proteínas Quinasas Activadas por Mitógenos , Rayos Ultravioleta , Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Línea Celular , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/patología , Daño del ADN , Reparación del ADN , Activación Enzimática , Inducción Enzimática , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Calor , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Presión Osmótica , Estrés Fisiológico/enzimología , Estrés Fisiológico/etiología , Estrés Fisiológico/genética
20.
Cancer Genet Cytogenet ; 87(2): 112-6, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8625255

RESUMEN

DNA topoisomerase II is involved in DNA topologic changes through the formation of a cleavable complex. This is stabilized by the antitumor drug VP16, which results in DNA breakage, aberrant recombination, and cell death. In this work, we compare the chromosomal damage induced by VP16 with that induced by bleomycin (BLM) in lymphoblasts from patients affected by the chromosome breakage syndromes ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Bloom syndrome (BS), and by the progeroid syndromes Werner (WS) and Cockayne (CS). Patients affected by AT, XP, BS, and WS have a greatly enhanced risk of developing cancer. The results show that AF and WS cells are hypersensitive to VP16, as revealed in the higher proportion of metaphases showing exchange figures and more than two breaks. All lines except AT and one CS line showed normal sensitivity to BLM. Our data on the sensitivity to VP16 of all these mutant cells underline the fact that VP16 damage is amplified only in cells that have abnormal illegitimate recombination (i.e., AT and WS).


Asunto(s)
Enfermedades Genéticas Congénitas/enzimología , Linfocitos/enzimología , Inhibidores de Topoisomerasa II , Ataxia Telangiectasia/sangre , Ataxia Telangiectasia/enzimología , Bleomicina/farmacología , Síndrome de Bloom/sangre , Síndrome de Bloom/enzimología , Línea Celular , Síndrome de Cockayne/sangre , Síndrome de Cockayne/enzimología , Daño del ADN , Etopósido/farmacología , Enfermedades Genéticas Congénitas/sangre , Humanos , Linfocitos/efectos de los fármacos , Síndrome de Werner/sangre , Síndrome de Werner/enzimología , Xerodermia Pigmentosa/sangre , Xerodermia Pigmentosa/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...