Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
BMC Bioinformatics ; 25(1): 197, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769505

RESUMEN

BACKGROUND: CAR-T cell therapy represents a novel approach for the treatment of hematologic malignancies and solid tumors. However, its implementation is accompanied by the emergence of potentially life-threatening adverse events known as cytokine release syndrome (CRS). Given the escalating number of patients undergoing CAR-T therapy, there is an urgent need to develop predictive models for severe CRS occurrence to prevent it in advance. Currently, all existing models are based on decision trees whose accuracy is far from meeting our expectations, and there is a lack of deep learning models to predict the occurrence of severe CRS more accurately. RESULTS: We propose PrCRS, a deep learning prediction model based on U-net and Transformer. Given the limited data available for CAR-T patients, we employ transfer learning using data from COVID-19 patients. The comprehensive evaluation demonstrates the superiority of the PrCRS model over other state-of-the-art methods for predicting CRS occurrence. We propose six models to forecast the probability of severe CRS for patients with one, two, and three days in advance. Additionally, we present a strategy to convert the model's output into actual probabilities of severe CRS and provide corresponding predictions. CONCLUSIONS: Based on our findings, PrCRS effectively predicts both the likelihood and timing of severe CRS in patients, thereby facilitating expedited and precise patient assessment, thus making a significant contribution to medical research. There is little research on applying deep learning algorithms to predict CRS, and our study fills this gap. This makes our research more novel and significant. Our code is publicly available at https://github.com/wzy38828201/PrCRS . The website of our prediction platform is: http://prediction.unicar-therapy.com/index-en.html .


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Aprendizaje Profundo , Inmunoterapia Adoptiva , Humanos , COVID-19/terapia , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/etiología , Inmunoterapia Adoptiva/métodos , SARS-CoV-2 , Neoplasias/terapia
2.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38588525

RESUMEN

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Linfohistiocitosis Hemofagocítica , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/terapia , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/inmunología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Animales
3.
Int Immunopharmacol ; 130: 111761, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38422769

RESUMEN

The chimeric antigen receptor T (CAR-T) cell therapy significantly enhances the prognosis of various hematologic malignancies; however, the systemic expansion of CAR-T cells also gives rise to severe cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS). Despite the successful application of corticosteroids and tocilizumab in alleviating severe CRS in most patients, there are still individuals who experience life-threatening CRS without responding to the aforementioned therapies. In our retrospective cohort, we conducted an analysis of clinical and laboratory parameters, including inflammatory cytokines, in 17 patients from three centers who underwent therapeutic plasma exchange (TPE) for refractory CRS with or without ICANS following CAR-T products treatment. Our findings demonstrate a significant improvement in both clinical symptoms and laboratory parameters subsequent to TPE treatment. The rapid decrease in temperature and levels of inflammatory indexes indicates the remarkable scavenging efficacy of TPE against cytokine storm following CAR-T therapy. In conclusion, TPE may serve as a valuable and safe adjunct to corticosteroids and tocilizumab in the management of severe CRS resulting from CAR-T cell infusion. We eagerly await further prospective studies to validate this finding.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T , Intercambio Plasmático , Estudios Prospectivos , Estudios Retrospectivos , Inmunoterapia Adoptiva/métodos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Corticoesteroides/uso terapéutico
4.
J Transl Med ; 22(1): 58, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221609

RESUMEN

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Melatonina , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Síndrome de Liberación de Citoquinas/terapia , Factores Inmunológicos/farmacología , Inmunoterapia Adoptiva/efectos adversos , Melatonina/farmacología , Recurrencia Local de Neoplasia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Ratones
5.
Cytokine ; 175: 156479, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199086

RESUMEN

Congestive heart failure (CHF) is a complex multistage syndrome that has a great financial burden on human societies. It was known that the damaged myocardium sends a signal to stimulate the immune system and proliferation of leukocytes. In continuous, cytokine storm can be initiated and causes the probability of CHF. Persistent inflammation by increasing the levels of pro-inflammatory cytokines, plays an important role in the pathogenesis of CHF and causes remodeling, which is a progressive processs. Although treatment by drugs can reduce mortality and partially control the symptoms of heart failure patients, but complications and mortality are still high. Therefore, other treatment options such as Cardiac Resynchronization Therapy (CRT) are necessary. Today, it is known that CRT can be an effective treatment for many patients with heart failure. CRT is novel, non-pharmacological, and device-based therapy that would be beneficial to know more about its performance in the management of heart failure. In this study, we have reviewed the immunological processes involved in heart failure and the effect of CRT in controlling of the cytokine storm.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Humanos , Citocinas , Síndrome de Liberación de Citoquinas/terapia , Insuficiencia Cardíaca/terapia , Resultado del Tratamiento
6.
Eur J Haematol ; 112(1): 41-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37767547

RESUMEN

While cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome are well-recognized acute toxicities of chimeric antigen receptor (CAR) T cell therapy, these complications have become increasingly manageable by protocolized treatment algorithms incorporating the early administration of tocilizumab and corticosteroids. As CAR-T cell therapy expands to new disease indications and the number of long-term survivors steadily increases, there is growing recognition of the need to appropriately evaluate and manage the late effects of CAR-T cell therapy, including late-onset or persistent neurotoxicity, prolonged cytopenias, delayed immune reconstitution and infections, subsequent malignancies, organ dysfunction, psychological distress, and fertility implications. In this review, we provide a practical approach to the long-term survivorship care of the CAR-T cell recipient, with a focus on the optimal strategies to address the common and challenging late complications affecting this unique population.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Supervivencia , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Receptores de Antígenos de Linfocitos T
7.
Blood Purif ; 53(1): 10-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37918373

RESUMEN

INTRODUCTION: Severe COVID-19 pneumonia can activate a cytokine storm. Hemoperfusion can reduce pro-inflammatory cytokines in sepsis but is still debated in the COVID-19 setting. Thus, we sought to investigate the benefits of HA-330 cytokine adsorption through clinical and laboratory outcomes. METHODS: We conducted a single-center prospective observational study in adults with severe COVID-19 pneumonia admitted to the intensive care unit at Chiang Mai University Hospital (Chiang Mai, Thailand). Those with cytokine storms indicated by organ injury, including acute respiratory distress syndrome (ARDS), and high inflammatory markers were included. Patients treated with the HA-330 device were classified as a hemoperfusion group, while those without cytokine adsorption were classified as a control group. We compared the outcomes on day 7 after treatment and evaluated the factors associated with 60-day mortality. RESULTS: A total of 112 patients were enrolled. Thirty-eight patients received hemoperfusion, while 74 patients did not. Baseline cytokine storm parameters were comparable. In univariate analysis, there was an improvement in clinical and laboratory effects from hemoperfusion therapy. In multivariate analysis, APACHE II score, SOFA score, PaO2/FiO2, the number of hemoperfusion sessions, the amount of blood purified, high-sensitivity C-reactive protein, and IL-6 were associated with mortality. Using at least 3 sessions of hemoperfusion could mitigate, the 60-day mortality (adjusted odds ratio 0.25, 95% confidence interval: 0.03-0.33, p = 0.001). By categorizing the amount of blood treated into 3 groups of <1 L/kg, 1-2 L/kg, and ≥2 L/kg, there was a linear dose-response association with survival, which was better in the higher volume purified (mortality 60% vs. 33.3% vs. 0%, respectively, p = 0.015). CONCLUSIONS: The early initiation of HA-330 hemoperfusion could improve the severity score and laboratory outcomes of COVID-19 ARDS. The optimal dose of at least three sessions or the amount of blood purified greater than 1 L/kg was associated with a reduction in 60-day mortality.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Adsorción , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , COVID-19/complicaciones , COVID-19/terapia , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Citocinas
8.
Hematology Am Soc Hematol Educ Program ; 2023(1): 198-208, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066881

RESUMEN

Autologous CAR-T cell therapy (CAR-T) has improved outcomes for patients with B-cell malignancies. It is associated with the well-described canonical toxicities cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), which may be abrogated by corticosteroids and the anti-IL6 receptor antagonist tocilizumab. Practitioners and researchers should be aware of additional toxicities. Here we review current understanding and management of hematologic toxicities after CAR-T, including cytopenias, coagulopathies, bleeding and clotting events, hemophagocytic-lymphohistiocytosis, and tumor lysis syndrome. We pay particular attention to cytopenias, recently termed immune effector cell-associated hematological toxicity (ICAHT). While the "H" is silent, hematotoxicity is not: ICAHT has the highest cumulative incidence of all immune adverse events following CAR-T. Early cytopenia (day 0-30) is closely linked to lymphodepleting chemotherapy and CRS-related inflammatory stressors. Late ICAHT (after day 30) can present either with or without antecedent count recovery (e.g., "intermittent" vs "aplastic" phenotype), and requires careful evaluation and management strategies. Growth factor support is the mainstay of treatment, with recent evidence demonstrating safety and feasibility of early granulocyte colony-stimulating factor (G-CSF) (e.g., within week 1). In G-CSF refractory cases, autologous stem cell boosts represent a promising treatment avenue, if available. The CAR-HEMATOTOX scoring system, validated for use across lymphoid malignancies (B-NHL, multiple myeloma), enables pretherapeutic risk assessment and presents the potential for risk-adapted management. Recent expert panels have led to diagnostic scoring criteria, severity grading systems, and management strategies for both ICAHT and the recently termed immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), now clarified and defined as a distinct entity from CRS.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/diagnóstico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Factor Estimulante de Colonias de Granulocitos , Mieloma Múltiple/tratamiento farmacológico
9.
Hum Vaccin Immunother ; 19(3): 2291900, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38112002

RESUMEN

CAR-T cell therapy has demonstrated efficacy in treating certain hematological malignancies. However, the administration of CAR-T cells is accompanied by the occurrence of adverse events. Among these, cytokine release syndrome (CRS) has garnered significant attention. In this descriptive study, we set the search criteria to retrieve and obtain articles regarding CAR-T cell-related CRS from the Web of Science Core Collection (WoSCC). The bibliometric and knowledge-map analysis of these documents was conducted using Microsoft Excel 2019, GraphPad Prism 8, CtieSpace, and VOSviewer. 6,623 authors from 295 institutions in 49 countries coauthored a total of 1,001 publications. The leading country in this field was the United States. The most productive institution was the University of Pennsylvania. Carl H. June had the most citations, while Daniel W. Lee had the most co-citations. Research hotspots primarily concentrated on the pathogenesis, serum biomarkers, management, and therapeutic drugs of CRS, alongside neurotoxicity. Emerging topics within this discipline encompassed the following: a. Drugs for effective treatment and intervention of CRS; b. Conducting pertinent clinical trials to acquire real-world data; c. Management of toxicity (CRS and neurotoxicity) associated with CAR-T cell therapy; d. The study of BCMA-CAR-T cells in multiple myeloma (MM); e. Optimizing the CAR framework structure to enhance the effectiveness and safety of CAR-T cells. A bibliometric and scientific knowledge-map analysis provided a unique and objective perspective for exploring the field of CAR-T cell-related CRS, and may provide some new clues and valuable references for researchers.


Asunto(s)
Síndrome de Liberación de Citoquinas , Receptores Quiméricos de Antígenos , Humanos , Síndrome de Liberación de Citoquinas/terapia , Bibliometría , Instituciones de Salud , Linfocitos T
10.
BMC Infect Dis ; 23(1): 829, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007416

RESUMEN

INTRODUCTION: COVID-19 induced cytokine storm is a well-documented phenomena that contributes significantly in the disease's evolution and prognosis. Therefore, therapies such as therapeutic plasma exchange, constitute a mainstay of therapeutic management especially for critically-ill patients. METHODS: We conducted a monocentric retrospective cohort study in the Resuscitation Department of the Mohammed VI University Hospital of Oujda-Morocco, to evaluate the efficiency of therapeutic plasma exchange on critically-ill COVID-19 patients over a 6 months period. We divided our patients into two groups: patients who received TPE (Therapeutic Plasma Exchange) sessions (TPE group) and patients who only benefited from the standard protocol treatment (non TPE group). RESULTS: Our study included a total of 165 patients, 34.5% of which benefited from TPE sessions. We observed an improvement of oxygenation parameters (SpO2 and PaO2/FiO2 ratio) and a progressive respiratory weaning, as well as a significant decrease of biomarkers indicative of inflammation (lymphocyte count, CRP (C Reactive Protein), IL-6, Ferritin) and coagulopathy (d-dimers, fibrinogen) in the TPE group after 5 consecutive TPE sessions. In comparison with the non-TPE group, The TPE-group patients had a shorter ICU (Intensive Care Unit) length of stay, required less frequently mechanical ventilation, and we more likely to be extubated. Furthermore, the TPE group had a lower mortality rate. DISCUSSION: Multiple studies have reported the safety and efficiency of therapeutic plasma exchange in the COVID-19 induced cytokine storm. Given the urgent character of the pandemic at the time, each center followed its own protocol in implementing plasma exchange. CONCLUSION: Similar to the results reported in the literature, our study reports positive results after using TPE specifically in terms of respiratory weaning and an improvement of the cytokine storm biomarkers, and more importantly a lower mortality rate.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , Intercambio Plasmático/métodos , SARS-CoV-2 , Síndrome de Liberación de Citoquinas/terapia , Enfermedad Crítica/terapia , Estudios Retrospectivos , Biomarcadores
11.
Hum Vaccin Immunother ; 19(3): 2275457, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968136

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy is an innovative immunotherapeutic approach that utilizes genetically modified T-cells to eliminate cancer cells using the specificity of a monoclonal antibody (mAb) coupled to the potent cytotoxicity of the T-lymphocyte. CAR-T therapy has yielded significant improvements in relapsed/refractory B-cell malignancies. Given these successes, CAR-T has quickly spread to other hematologic malignancies and is being increasingly explored in solid tumors. From early clinical applications to present day, CAR-T cell therapy has been accompanied by significant toxicities, namely cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and on-target off-tumor (OTOT) effects. While medical management has improved for CRS and ICANS, the ongoing threat of refractory symptoms and unanticipated idiosyncratic toxicities highlights the need for more powerful safety measures. This is particularly poignant as CAR T-cell therapy continues to expand into the solid tumor space, where the risk of unpredictable toxicities remains high. We will review CAR-T as an immunotherapeutic approach including emergence of unique toxicities throughout development. We will discuss known and novel strategies to mitigate these toxicities; additional safety challenges in the treatment of solid tumors, and how the inducible Caspase 9 "safety switch" provides an ideal platform for continued exploration.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/uso terapéutico , Anticuerpos Monoclonales , Síndrome de Liberación de Citoquinas/terapia , Neoplasias/terapia
12.
J Biomed Sci ; 30(1): 89, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864230

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapies have been approved by FDA to treat relapsed or refractory hematological malignancies. However, the adverse effects of CAR-T cell therapies are complex and can be challenging to diagnose and treat. In this review, we summarize the major adverse events, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and CAR T-cell associated HLH (carHLH), and discuss their pathophysiology, symptoms, grading, and diagnosis systems, as well as management. In a future outlook, we also provide an overview of measures and modifications to CAR-T cells that are currently being explored to limit toxicity.


Asunto(s)
Neoplasias Hematológicas , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/terapia , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia
13.
Cytokine ; 169: 156287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37402337

RESUMEN

COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1ß, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , Citocinas , SARS-CoV-2 , Síndrome de Liberación de Citoquinas/terapia , China
14.
Cytotherapy ; 25(11): 1167-1175, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37480884

RESUMEN

BACKGROUND AIMS: With the increasing application of chimeric antigen receptor (CAR)-T cell therapy in various malignancies, an extra toxicity profile has been revealed, including a severe complication resembling hemophagocytic lymphohistiocytosis (HLH), which is usually disguised by severe cytokine release syndrome (CRS). METHODS: In a clinical trial in whom 99 patients received B-cell maturation antigen CAR-T cells, we identified 20 (20.20%) cases of CAR-T cell-associated HLH (carHLH), most of whom possessed a background of severe CRS (grade ≥3). The overlapping features of carHLH and severe CRS attracted us to further explore the differences between them. RESULTS: We showed that carHLH can be distinguished by extreme elevation of interferon-γ, granzyme B, interleukin-1RA and interleukin-10, which can be informative in developing prevention and management strategies of this toxicity. Moreover, we developed a predictive model of carHLH with a mean area under the curve of 0.81 ± 0.07, incorporating serum lactate dehydrogenase at day 6 post-CRS and serum fibrinogen at day 3 post-CRS. CONCLUSIONS: The incidence of carHLH in CAR-T recipients might be relatively higher than we previously thought. relatively higher than we previously. A cytokine network distinguished from CRS is responsible for carHLH. And corresponding cytokine-directed therapies, especially targeting IL-10, are worth trying.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Citocinas , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Linfocitos T , Linfohistiocitosis Hemofagocítica/etiología , Linfohistiocitosis Hemofagocítica/terapia , Inmunoterapia Adoptiva/efectos adversos
15.
Front Immunol ; 14: 1190379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304291

RESUMEN

Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Descubrimiento de Drogas , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias/terapia
16.
Nat Med ; 29(4): 803-810, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024595

RESUMEN

Cancer immunotherapies have unique toxicities. Establishment of grading scales and standardized grade-based treatment algorithms for toxicity syndromes can improve the safety of these treatments, as observed for cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS) in patients with B cell malignancies treated with chimeric antigen receptor (CAR) T cell therapy. We have observed a toxicity syndrome, distinct from CRS and ICANS, in patients treated with cell therapies for tumors in the central nervous system (CNS), which we term tumor inflammation-associated neurotoxicity (TIAN). Encompassing the concept of 'pseudoprogression,' but broader than inflammation-induced edema alone, TIAN is relevant not only to cellular therapies, but also to other immunotherapies for CNS tumors. To facilitate the safe administration of cell therapies for patients with CNS tumors, we define TIAN, propose a toxicity grading scale for TIAN syndrome and discuss the potential management of this entity, with the goal of standardizing both reporting and management.


Asunto(s)
Neoplasias , Síndromes de Neurotoxicidad , Humanos , Neoplasias/terapia , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia , Inflamación , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Síndromes de Neurotoxicidad/etiología
17.
Praxis (Bern 1994) ; 112(3): 189-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855881

RESUMEN

Oncology has been rapidly evolving over the past decade with tremendous therapeutic development. Engineered cell therapies such as chimeric antigen receptor (CAR)-T cells are increasingly used in daily practice, and provided a paradigm change especially for hematological malignancies. Their development is a scientific and technological achievement, but their toxicities can be life-threatening. As their utilization expands, better understanding of pathophysiology leads to better management. In this article we present a general overview of cell-therapy toxicities and their management.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Neoplasias Hematológicas/terapia
18.
Transplant Cell Ther ; 29(7): 429.e1-429.e6, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966874

RESUMEN

Despite the impressive results of chimeric antigen receptor (CAR) T cell treatment for lymphomas, adverse events such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infections are major issues that can lead to intensive care unit (ICU) admission and death. Current guidelines recommend tocilizumab for treating patients with CRS grade (G) ≥2; however, the optimal timing of intervention has yet to be determined. Our institution adopted the preemptive use of tocilizumab in cases of persistent G1 CRS, defined as fever (≥38 °C) for >24 hours. This preemptive tocilizumab treatment aimed to reduce evolution to severe (G≥3) CRS, ICU admission, or death. We report on 48 prospectively collected consecutive patients with non-Hodgkin lymphoma treated with autologous CD19-targeted CAR T cells. In total, 39 patients (81%) developed CRS. CRS started as G1 in 28 patients, as G2 in patients, and as G3 in 1 patient. Tocilizumab was administered in 34 patients, including 23 patients who received "preemptive" tocilizumab and 11 patients who received tocilizumab for G2 or G3 CRS from the onset of symptoms. CRS resolved without worsening severity in 19 patients out of 23 (83%) who received preemptive tocilizumab; 4 patients (17%) progressed from G1 to G2 for the development of hypotension and quickly responded to the introduction of steroids. No patients treated with a preemptive approach developed G3 or G4 CRS. Ten out of 48 patients (21%) were diagnosed with ICANS, including 5 patients with G3 or G4. Six infectious events occurred. The overall ICU admission rate was 19%. ICANS management was the most relevant reason for ICU admission (7 patients), and no patient required ICU to manage CRS. No deaths from CAR-T toxicity were observed. Our data indicate that preemptive tocilizumab use is feasible and useful in reducing severe CRS and CRS-related ICU admission, with no impact on neurotoxicity or infection rate. Therefore, early use of tocilizumab can be considered, especially for patients at high risk of CRS.


Asunto(s)
Linfoma no Hodgkin , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/etiología
19.
Blood ; 141(20): 2430-2442, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36989488

RESUMEN

The clinical use of chimeric antigen receptor (CAR) T-cell therapy is growing rapidly because of the expanding indications for standard-of-care treatment and the development of new investigational products. The establishment of consensus diagnostic criteria for cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), alongside the steady use of both tocilizumab and corticosteroids for treatment, have been essential in facilitating the widespread use. Preemptive interventions to prevent more severe toxicities have improved safety, facilitating CAR T-cell therapy in medically frail populations and in those at high risk of severe CRS/ICANS. Nonetheless, the development of persistent or progressive CRS and ICANS remains problematic because it impairs patient outcomes and is challenging to treat. In this case-based discussion, we highlight a series of cases of CRS and/or ICANS refractory to front-line interventions. We discuss our approach to managing refractory toxicities that persist or progress beyond initial tocilizumab or corticosteroid administration, delineate risk factors for severe toxicities, highlight the emerging use of anakinra, and review mitigation strategies and supportive care measures to improve outcomes in patients who develop these refractory toxicities.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Consenso , Proteína Antagonista del Receptor de Interleucina 1 , Receptores de Antígenos de Linfocitos T
20.
Transplant Cell Ther ; 29(7): 438.e1-438.e16, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36906275

RESUMEN

T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndromes de Neurotoxicidad , Adulto , Humanos , Estados Unidos , Niño , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/etiología , Síndromes de Neurotoxicidad/etiología , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA