Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Hum Mol Genet ; 27(20): 3542-3554, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30016436

RESUMEN

The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Genetic mutations in the Myomaker (mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles in zebrafish using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology and analyzed the effects of mymk knockout on muscle development and growth. Our studies demonstrated that knockout of mymk resulted in defective myoblast fusion in zebrafish embryos and increased mortality at larval stage around 35-45 days post-fertilization. The viable homozygous mutants were smaller in size and weighed approximately one-third the weight of the wild type (WT) sibling at 3 months old. The homozygous mutants showed craniofacial deformities, resembling the facial defect observed in human populations with CFZS. Histological analysis revealed that skeletal muscles of mymk mutants contained mainly small-size fibers and substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutant were predominantly single-nucleated fibers. However, myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with that in WT fibers. Overexpression of sonic Hedgehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion. Collectively, these studies demonstrated that mymk is essential for myoblast fusion during muscle development and growth.


Asunto(s)
Proteínas de la Membrana/fisiología , Síndrome de Mobius/fisiopatología , Desarrollo de Músculos , Proteínas Musculares/fisiología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Mioblastos/metabolismo , Síndrome de Pierre Robin/fisiopatología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Adipocitos/fisiología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Proteínas de la Membrana/genética , Síndrome de Mobius/metabolismo , Morfogénesis , Proteínas Musculares/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Mioblastos/fisiología , Síndrome de Pierre Robin/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
3.
Nat Commun ; 8: 16077, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28681861

RESUMEN

Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.


Asunto(s)
Proteínas de la Membrana/genética , Síndrome de Mobius/genética , Morfogénesis/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Mutación , Mioblastos/metabolismo , Síndrome de Pierre Robin/genética , Proteínas de Pez Cebra/genética , Adulto , Secuencia de Aminoácidos , Animales , Fusión Celular , Niño , Modelos Animales de Enfermedad , Embrión no Mamífero , Femenino , Expresión Génica , Genes Recesivos , Prueba de Complementación Genética , Humanos , Lactante , Masculino , Proteínas de la Membrana/deficiencia , Síndrome de Mobius/metabolismo , Síndrome de Mobius/patología , Proteínas Musculares/deficiencia , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mioblastos/patología , Linaje , Síndrome de Pierre Robin/metabolismo , Síndrome de Pierre Robin/patología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Pez Cebra , Proteínas de Pez Cebra/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...