Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062725

RESUMEN

PURPOSE: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). METHODS: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. RESULTS: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. CONCLUSION: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.


Asunto(s)
Calpaína , Cromosomas Humanos Par 15 , Síndrome de Prader-Willi , Disomía Uniparental , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/patología , Calpaína/genética , Femenino , Cromosomas Humanos Par 15/genética , Disomía Uniparental/genética , Secuenciación Completa del Genoma , Masculino , Proteínas Musculares
2.
Orphanet J Rare Dis ; 19(1): 240, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902749

RESUMEN

BACKGROUND: Prader-Willi syndrome (PWS) is a genetic disorder characterized by abnormalities in the 15q11-q13 region. Understanding the correlation between genotype and phenotype in PWS is crucial for improved genetic counseling and prognosis. In this study, we aimed to investigate the correlation between genotype and phenotype in 45 PWS patients who previously underwent methylation-sensitive high-resolution melting (MS-HRM) for diagnosis. RESULTS: We employed methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and Sanger sequencing, along with collecting phenotypic data from the patients for comparison. Among the 45 patients, 29 (64%) exhibited a deletion of 15q11-q13, while the remaining 16 (36%) had uniparental disomy. No statistically significant differences were found in the main signs and symptoms of PWS. However, three clinical features showed significant differences between the groups. Deletion patients had a higher prevalence of myopia than those with uniparental disomy, as well as obstructive sleep apnea and an unusual skill with puzzles. CONCLUSIONS: The diagnostic tests (MS-HRM, MS-MLPA, and Sanger sequencing) yielded positive results, supporting their applicability in PWS diagnosis. The study's findings indicate a general similarity in the genotype-phenotype correlation across genetic subtypes of PWS.


Asunto(s)
Genotipo , Fenotipo , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Femenino , Masculino , Brasil , Preescolar , Niño , Adolescente , Adulto , Disomía Uniparental/genética , Cromosomas Humanos Par 15/genética , Lactante , Adulto Joven
3.
Am J Hum Genet ; 111(7): 1383-1404, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908375

RESUMEN

The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas , Síndrome de Prader-Willi , Humanos , Cromosomas Humanos Par 15/genética , Citoplasma/metabolismo , Células HEK293 , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/genética , Proteínas/metabolismo , ARN Nucleolar Pequeño/genética
4.
Mo Med ; 121(3): 235-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854617

RESUMEN

Prader-Willi syndrome (PWS) is a complex genetic neurodevelopmental disorder with multisystem impact and a unique behavior profile that evolves over the life span. Beyond the primary care needs of all children and adults, the unique medical concerns and management needs of those with PWS are best served in a multidisciplinary academic center. Our PWS center has provided care for individuals with PWS and their families since 1981. Our growth hormone studies contributed to growth hormone supplementation becoming standard of care in this country. Here, in collaboration with the primary care provider, early childhood intervention programs, schools and local parent organizations, solid, patient-centered care for affected individuals and their families can be provided across the life-span. The purpose of this article is to provide a brief overview of PWS and the attendant medical and behavior management challenges attendant to the disorder.


Asunto(s)
Síndrome de Prader-Willi , Síndrome de Prader-Willi/terapia , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Humanos , Niño , Hormona de Crecimiento Humana/uso terapéutico
5.
Mol Ther ; 32(8): 2662-2675, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38796700

RESUMEN

Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.


Asunto(s)
Modelos Animales de Enfermedad , Epigénesis Genética , Síndrome de Prader-Willi , Humanos , Animales , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/genética , Ratones , Epigénesis Genética/efectos de los fármacos , Administración Oral , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina
6.
Ned Tijdschr Geneeskd ; 1682024 05 08.
Artículo en Holandés | MEDLINE | ID: mdl-38747584

RESUMEN

Due to its rare nature and subtle dysmorphisms, Prader-Willi syndrome can be challenging to recognize and diagnose in the neonatal period. Feeding difficulties and hypotonia ('floppy infant') are the most striking characteristics. Prader-Willi syndrome requires specific follow-up and treatment, emphasizing the importance of early recognition.We encountered an infant of three months old with severe hypotonia. The hypotonia ameliorated spontaneously over time, although feeding per nasogastric tube was necessary. There were no apparent dysmorphisms. Extensive genetic investigations showed a maternal uniparental disomy of chromosome 15, fitting with Prader-Willi syndrome explaining all symptoms. After excluding contraindications, treatment with growth hormone therapy was started. Parents were educated regarding medical emergencies specific for Prader-Willi syndrome ('medical alerts'). Although Prader-Willi syndrome is rare, it should always be considered in cases of neonatal hypotonia. Early recognition is paramount as specific recommendations and treatment are warranted.


Asunto(s)
Hipotonía Muscular , Síndrome de Prader-Willi , Humanos , Lactante , Diagnóstico Precoz , Hipotonía Muscular/etiología , Hipotonía Muscular/diagnóstico , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Disomía Uniparental
7.
Ann Hum Genet ; 88(5): 392-398, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38690755

RESUMEN

INTRODUCTION: Long-read whole genome sequencing like Oxford Nanopore Technology, is increasingly being introduced in clinical settings. With its ability to simultaneously call sequence variation and DNA modifications including 5-methylcytosine, nanopore is a promising technology to improve diagnostics of imprinting disorders. METHODS: Currently, no tools to analyze DNA methylation patterns at known clinically relevant imprinted regions are available. Here we present NanoImprint, which generates an easily interpretable report, based on long-read nanopore sequencing, to use for identifying clinical relevant abnormalities in methylation levels at 14 imprinted regions and diagnosis of common imprinting disorders. RESULTS AND CONCLUSION: NanoImprint outputs a summarizing table and visualization plots displays methylation frequency (%) and chromosomal positions for all regions, with phased data color-coded for the two alleles. We demonstrate the utility of NanoImprint using three imprinting disorder samples from patients with Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS) and Prader-Willi syndrome (PWS). NanoImprint script is available from https://github.com/carolinehey/NanoImprint.


Asunto(s)
Síndrome de Angelman , Síndrome de Beckwith-Wiedemann , Metilación de ADN , Impresión Genómica , Secuenciación de Nanoporos , Síndrome de Prader-Willi , Humanos , Secuenciación de Nanoporos/métodos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Análisis de Secuencia de ADN/métodos , Nanoporos , Trastornos de Impronta
8.
Genes (Basel) ; 15(5)2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38790270

RESUMEN

BACKGROUND: Diagnosing imprinting defects in neonates and young children presents challenges, often necessitating molecular analysis for a conclusive diagnosis. The isolation of genetic material from oral swabs becomes crucial, especially in settings where blood sample collection is impractical or for vulnerable populations like newborns, who possess limited blood volumes and are often too fragile for invasive procedures. Oral swab samples emerge as an excellent source of DNA, effectively overcoming obstacles associated with rare diseases. METHODS: In our study, we specifically addressed the determination of the quality and quantity of DNA extracted from oral swab samples using NaCl procedures. RESULTS: We compared these results with extractions performed using a commercial kit. Subsequently, the obtained material underwent MS-HRM analysis for loci associated with imprinting diseases such as Prader-Willi and Angelman syndromes. CONCLUSIONS: Our study emphasizes the significance of oral swab samples as a reliable source for obtaining DNA for MS-HRM analysis. NaCl extraction stands out as a practical and cost-effective method for genetic studies, contributing to a molecular diagnosis that proves particularly beneficial for patients facing delays in characterization, ultimately influencing their treatment.


Asunto(s)
Síndrome de Angelman , ADN , Impresión Genómica , Mucosa Bucal , Síndrome de Prader-Willi , Humanos , Mucosa Bucal/citología , Mucosa Bucal/patología , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , ADN/genética , ADN/aislamiento & purificación , Cloruro de Sodio , Recién Nacido , Masculino , Trastornos de Impronta
9.
Biochem Biophys Res Commun ; 721: 150124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776833

RESUMEN

Prader-Willi syndrome (PWS) is a complex epigenetic disorder caused by the deficiency of paternally expressed genes in chromosome 15q11-q13. This syndrome also includes endocrine dysfunction, leading to short stature, hypogonadism, and obscure hyperphagia. Although recent progress has been made toward understanding the genetic basis for PWS, the molecular mechanisms underlying its pathology in obesity remain unclear. In this study, we examined the adipocytic characteristics of two PWS-induced pluripotent stem cell (iPSC) lines: those with the 15q11-q13 gene deletion (iPWS cells) and those with 15q11-q13 abnormal methylation (M-iPWS cells). The transcript levels of the lipid-binding protein aP2 were decreased in iPWS and M-iPWS adipocytes. Flow-cytometry analysis showed that PWS adipocytes accumulated more lipid droplets than did normal individual adipocytes. Furthermore, glucose uptake upon insulin stimulation was attenuated compared to that in normal adipocytes. Overall, our results suggest a significantly increased lipid content and defective in glucose metabolism in PWS adipocytes.


Asunto(s)
Adipocitos , Células Madre Pluripotentes Inducidas , Síndrome de Prader-Willi , Síndrome de Prader-Willi/patología , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/genética , Adipocitos/metabolismo , Adipocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Glucosa/metabolismo , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 15/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Línea Celular , Metilación de ADN , Eliminación de Gen , Metabolismo de los Lípidos , Insulina/metabolismo
10.
Front Endocrinol (Lausanne) ; 15: 1382583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737552

RESUMEN

Prader-Willi syndrome (PWS) is a complex genetic disorder caused by three different types of molecular genetic abnormalities. The most common defect is a deletion on the paternal 15q11-q13 chromosome, which is seen in about 60% of individuals. The next most common abnormality is maternal disomy 15, found in around 35% of cases, and a defect in the imprinting center that controls the activity of certain genes on chromosome 15, seen in 1-3% of cases. Individuals with PWS typically experience issues with the hypothalamic-pituitary axis, leading to excessive hunger (hyperphagia), severe obesity, various endocrine disorders, and intellectual disability. Differences in physical and behavioral characteristics between patients with PWS due to deletion versus those with maternal disomy are discussed in literature. Patients with maternal disomy tend to have more frequent neurodevelopmental problems, such as autistic traits and behavioral issues, and generally have higher IQ levels compared to those with deletion of the critical PWS region. This has led us to review the pertinent literature to investigate the possibility of establishing connections between the genetic abnormalities and the endocrine disorders experienced by PWS patients, in order to develop more targeted diagnostic and treatment protocols. In this review, we will review the current state of clinical studies focusing on endocrine disorders in individuals with PWS patients, with a specific focus on the various genetic causes. We will look at topics such as neonatal anthropometry, thyroid issues, adrenal problems, hypogonadism, bone metabolism abnormalities, metabolic syndrome resulting from severe obesity caused by hyperphagia, deficiencies in the GH/IGF-1 axis, and the corresponding responses to treatment.


Asunto(s)
Estudios de Asociación Genética , Síndrome de Prader-Willi , Síndrome de Prader-Willi/genética , Humanos , Enfermedades del Sistema Endocrino/genética , Fenotipo
11.
Am J Med Genet A ; 194(8): e63634, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619072

RESUMEN

Feeding difficulties, aspiration, and failure to thrive in infancy are commonly seen in patients with Prader-Willi Syndrome (PWS) and attributed to hypotonia. Patients with PWS and laryngeal clefts were identified by review of medical records at three tertiary care children's hospitals between 2017 and 2022. We present three patients with PWS with feeding difficulties who were also found to have laryngeal clefts which likely contributed to their feeding difficulties. Additional factors such as airway anomalies should be considered in patients with PWS, especially when swallowing dysfunction, dysphagia, or abnormal swallow evaluations are present.


Asunto(s)
Laringe , Hipotonía Muscular , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Femenino , Masculino , Lactante , Laringe/anomalías , Laringe/patología , Laringe/fisiopatología , Preescolar , Trastornos de Deglución/etiología , Trastornos de Deglución/diagnóstico , Anomalías Congénitas
12.
Epilepsy Behav ; 155: 109803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663143

RESUMEN

OBJECTIVE: To estimate the prevalence of epilepsy and febrile seizures and their association with genotype, i.e., 15q11-q13 deletions, uniparental chromosome 15 disomy (UPD) and other mutations, in the population with Prader-Willi syndrome (PWS). METHODS: A systematic search of Medline, Scopus, Web of Science and the Cochrane Library was conducted. Studies estimating the prevalence of seizures, epilepsy and febrile seizures in the PWS population were included. Meta-analyses of the prevalence of epilepsy and febrile seizures and their association with genotype using the prevalence ratio (PR) were performed. RESULTS: Fifteen studies were included. The prevalence of epilepsy was 0.11 (0.07, 0.15), similar to the prevalence of febrile seizures, with a prevalence of 0.09 (0.05, 0.13). The comparison "deletion vs. UPD" had a PR of 2.03 (0.90, 4.57) and 3.76 (1.54, 9.18) for epilepsy and febrile seizures. CONCLUSIONS: The prevalence of seizure disorders in PWS is higher than in the general population. In addition, deletions in 15q11-q13 may be associated with a higher risk of seizure disorders. Therefore, active screening for seizure disorders in PWS should improve the lives of these people. In addition, genotype could be used to stratify risk, even for epilepsy, although more studies or larger sample sizes are needed.


Asunto(s)
Epilepsia , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/epidemiología , Epilepsia/genética , Epilepsia/epidemiología , Prevalencia , Genotipo , Cromosomas Humanos Par 15/genética
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626828

RESUMEN

Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.


Asunto(s)
Ratones Noqueados , Síndromes Miasténicos Congénitos , Síndrome de Prader-Willi , Prolil Oligopeptidasas , Animales , Humanos , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Ratones , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Células HEK293 , Prolil Oligopeptidasas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Redes y Vías Metabólicas/genética , Modelos Animales de Enfermedad , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Masculino , Femenino
14.
Brain Behav ; 14(4): e3437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616334

RESUMEN

BACKGROUND: The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region. METHODS: Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms. RESULTS: This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome. CONCLUSION: Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.


Asunto(s)
Síndrome de Angelman , Síndrome de Prader-Willi , Humanos , Femenino , Masculino , Animales , Ratones , Variaciones en el Número de Copia de ADN/genética , Alelos , Síndrome de Angelman/genética , Síndrome de Prader-Willi/genética , Bangladesh , Mamíferos
15.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556574

RESUMEN

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Ratones , Animales , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicología , Microglía , Proteínas Portadoras/genética , Fenotipo , Fagosomas , Proteínas Adaptadoras Transductoras de Señales/genética
16.
Pharmacogenomics ; 25(4): 207-216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506331

RESUMEN

Aim: The study aim was to determine caregiver interest and planned utilization of pharmacogenomic (PGx) results for their child with Prader-Willi syndrome. Methods: Caregivers consented to PGx testing for their child and completed a survey before receiving results. Results: Of all caregivers (n = 48), 93.8% were highly interested in their child's upcoming PGx results. Most (97.9%) planned to share results with their child's medical providers. However, only 47.9% of caregivers were confident providers would utilize the PGx results. Conclusion: Caregivers are interested in utilizing PGx but are uncertain providers will use these results in their child's care. More information about provider comfort with PGx utilization is needed to understand how PGx education would benefit providers and ultimately patients with PGx results.


Asunto(s)
Farmacogenética , Síndrome de Prader-Willi , Niño , Humanos , Farmacogenética/métodos , Cuidadores , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/genética , Encuestas y Cuestionarios , Pruebas de Farmacogenómica
17.
Invest Ophthalmol Vis Sci ; 65(2): 10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315495

RESUMEN

Purpose: To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods: IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results: We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions: We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.


Asunto(s)
Adenina/análogos & derivados , Degeneración Macular , Síndrome de Prader-Willi , Humanos , Epitelio Pigmentado de la Retina/patología , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Degeneración Macular/metabolismo , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo
18.
Orphanet J Rare Dis ; 19(1): 69, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360662

RESUMEN

BACKGROUND: Prader-Willi syndrome (PWS) is a rare and complex neurodevelopmental disorder resulting from absent paternal expression of maternally imprinted genes at chromosomal locus 15q11-13. This absence of expression occurs as a consequence of a deletion on the chromosome 15 of paternal origin (ca. 70%), a chromosome 15 maternal uniparental disomy (mUPD; ca. 25%), or an imprinting centre defect (IC; ca. 1-3%). At birth, individuals with PWS are severely hypotonic and fail to thrive. Hyperphagia and characteristic physical and neuropsychiatric phenotypes become apparent during childhood. The risk for the development of a co-morbid psychotic illness increases during the teenage years, specifically in those with PWS due to the presence of an mUPD. The primary aim of this literature review is to inform clinical practice. To achieve this, we have undertaken a systematic analysis of the clinical research literature on prevalence, presentation, course, characteristics, diagnosis and treatment of psychotic illness in people with PWS. The secondary aim is to identify clinical aspects of psychotic illness in PWS in need of further investigation. METHODS AND FINDINGS: A systematic literature review on psychosis in PWS was conducted on the databases Web of Knowledge, PubMed and Scopus, using the terms "((Prader-Willi syndrome) OR (Prader Willi Syndrome)) AND ((psychosis) OR (psychotic illness))". All articles written in English and reporting original human research were reviewed. In all but three of the 16 cohort studies in which the genetic types were known, the authors reported higher rates of psychosis in people with PWS resulting from an mUPD, compared to those with the deletion subtype of PWS. When psychosis was present the presentation was psychosis similar regardless of genetic type and was usually characterised by an acute onset of hallucinations and delusions accompanied by confusion, anxiety and motor symptoms. CONCLUSIONS: The onset of confusion, an affective cyclical pattern with the presence of abnormal mental beliefs and experiences, usually of rapid onset is suggestive of the development of psychotic illness. Phenomenologically, this psychosis in people with PWS is atypical in comparison to schizophrenia and bipolar disorder in the general population. The relationship to psychosis in the general population and the optimum treatments remain uncertain.


Asunto(s)
Síndrome de Prader-Willi , Trastornos Psicóticos , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Humanos , Trastornos Psicóticos/genética , Trastornos Psicóticos/etiología
19.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396741

RESUMEN

Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt's mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt's regulation of thermogenesis to advance the knowledge on these diseases.


Asunto(s)
Trastorno del Espectro Autista , Regulación de la Temperatura Corporal , Trastornos de los Cromosomas , Discapacidades del Desarrollo , Facies , Hipopituitarismo , Trastornos de Impronta , Oxitocina , Síndrome de Prader-Willi , Humanos , Lactante , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Hipotonía Muscular , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo
20.
Orphanet J Rare Dis ; 19(1): 83, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395848

RESUMEN

BACKGROUND: Prader-Willi syndrome (PWS) is a rare, neurodevelopmental disorder caused by the lack of expression of paternally imprinted genes on chromosome 15q11-13. PWS features a complex behavioral phenotype, including hyperphagia, anxiety, compulsivity, rigidity, repetitive speech, temper outbursts, aggressivity, and skin-picking. Questionnaires exist for measuring hyperphagia, but not for the aggregation of other problems that are distinctive to PWS. A PWS-specific tool is needed for phenotypic research, and to help evaluate treatment efficacy in future clinical trials aimed at attenuating PWS's hyperphagia and related problems. In this 4-phase study, we leveraged our expertise in PWS with feedback from families and specialists to validate the PWS Profile, a novel, informant-based measure of behavioral and emotional problems in this syndrome. RESULTS: The authors developed a bank of 73 items that tapped both common and less frequent but clinically significant problems in PWS (Phase 1). An iterative feedback process with families and stakeholders was used to ensure content and construct validity (Phase 2). After adding, omitting, or revising items, in Phase 3, we pilot tested the measure in 112 participants. Results were reviewed by an international team of PWS specialists and revised again (Phase 3). The final, 57-item Profile was then administered to 761 participants (Phase 4). Principal component factor analyses (n = 873) revealed eight conceptually meaningful factors, accounting for 60.52% of test variance, and were readily interpretated as: Rigidity, Insistence; Aggressive Behaviors; Repetitive Questioning, Speech; Compulsive Behaviors; Depression, Anxiety; Hoarding; Negative Distorted Thinking; and Magical Distorted Thinking. Factors were internally consistent and showed good test-retest reliability and convergent validity with existent measures of behavioral problems. Profile factors were not related to IQ, BMI, or parental SES. Three Profile factors differed across PWS genetic subtypes. Age and gender differences were found in only one Profile factor, Hoarding. CONCLUSIONS: The PWS Profile is a valid, psychometrically-sound questionnaire that already has shown responsivity to treatment in a previous clinical trial. The Profile can extend the reach of future clinical trials by evaluating the impact of novel agents not only on hyperphagia, but also on the emotional and behavioral problems that characterize PWS.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Reproducibilidad de los Resultados , Hiperfagia/genética , Ansiedad , Emociones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...