Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
1.
Front Immunol ; 15: 1345381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736890

RESUMEN

Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4ß7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-ß, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-ß receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.


Asunto(s)
Quimiocinas , Síndrome de Sjögren , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Humanos , Quimiocinas/metabolismo , Quimiocinas/inmunología , Transducción de Señal , Animales , Receptores Mensajeros de Linfocitos/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/inmunología
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732189

RESUMEN

Sjögren's Disease (SjD) is an autoimmune disease of the exocrine tissues. Etiological events result in the loss of epithelial homeostasis alongside extracellular matrix (ECM) destruction within the salivary and lacrimal glands, followed by immune cell infiltration. In this review, we have assessed the current understanding of epithelial-mesenchymal transition (EMT)-associated changes within the salivary epithelium potentially involved in salivary dysfunction and SjD pathogenesis. We performed a PubMed literature review pertaining to the determination of pathogenic events that lead to EMT-related epithelial dysfunction and signaling in SjD. Molecular patterns of epithelial dysfunction in SjD salivary glands share commonalities with EMT mediating wound healing. Pathological changes altering salivary gland integrity and function may precede direct immune involvement while perpetuating MMP9-mediated ECM destruction, inflammatory mediator expression, and eventual immune cell infiltration. Dysregulation of EMT-associated factors is present in the salivary epithelium of SjD and may be significant in initiating and perpetuating the disease. In this review, we further highlight the gap regarding mechanisms that drive epithelial dysfunction in salivary glands in the early or subclinical pre-lymphocytic infiltration stages of SjD.


Asunto(s)
Transición Epitelial-Mesenquimal , Glándulas Salivales , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/patología , Síndrome de Sjögren/metabolismo , Glándulas Salivales/patología , Glándulas Salivales/metabolismo , Animales , Epitelio/patología , Epitelio/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transducción de Señal , Matriz Extracelular/metabolismo
3.
Immun Inflamm Dis ; 12(4): e1244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577997

RESUMEN

OBJECTIVES: The purpose of this study was to examine the proportion of CD161 on CD56+ natural killer (NK) cells in peripheral blood of primary Sjögren's syndrome (pSS) and investigate its clinical relevance of pSS. METHODS: The proportion of CD56+ NK cells and CD161 on CD56+ NK cells was detected by flow cytometry in 31 pSS patients and 29 healthy controls (HCs). The correlations between the proportion of CD161+CD56+ NK cells and clinical features and disease activity of pSS were further analyzed. Meanwhile, we drew the receiver operating characteristic curve to evaluate the diagnostic value of CD161+CD56+ NK cells in pSS. In addition, we evaluated the differences in the effects of CD161+ cells and CD161- cells in peripheral blood on the function of CD56+ NK cells in 5 pSS patients. RESULTS: The proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased markedly in pSS patients compared to HCs. The correlation analysis showed that the proportion of CD161+CD56+ NK cells negatively correlated with white blood cells, Immunoglobulin A (IgA), IgM, IgG, European League Against Rheumatism Sjogren's Syndrome Patient Reported Index and European League Against Rheumatism Sjogren's Syndrome Disease Activity Index, and positively correlated with complement C4. The proportion of CD161+CD56+ NK cells in pSS patients with decayed tooth, fatigue, arthralgia, skin involvement, primary biliary cirrhosis, interstitial lung disease, anti-SSA/Ro60 positive, anti-SSB positive and high IgG was lower than that in negative patients. Furthermore, compared with inactive patients, the proportion of CD161+CD56+ NK cells decreased obviously in active patients. The area under the curve was 0.7375 (p = .0016), the results indicated that CD161+CD56+ NK cells had certain diagnostic values for pSS. In addition, the proportion of CD86, HLA-DR, Ki67, FasL, TNF-α, and IFN-γ on CD161+CD56+ NK cells was lower than that on CD161-CD56+ NK cells in the peripheral blood of pSS patients. CONCLUSION: This study suggested that the proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased significantly in pSS patients, and the proportion of CD161+CD56+ NK cells negatively associated with the clinical features and disease activity of pSS patients. CD161 expression inhibited the function of CD56+ NK cells in peripheral blood of pSS patients. The CD161+CD56+ NK cells may present as a potential target for therapy and a biomarker of disease activity in pSS.


Asunto(s)
Células Asesinas Naturales , Síndrome de Sjögren , Humanos , Biomarcadores , Antígenos HLA-DR , Inmunoglobulina G , Células Asesinas Naturales/metabolismo , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/metabolismo
4.
Chin Med Sci J ; 39(1): 19-28, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38623048

RESUMEN

Objective As primary Sj?gren's syndrome (pSS) primarily affects the salivary glands, saliva can serve as an indicator of the glands' pathophysiology and the disease's status. This study aims to illustrate the salivary proteomic profiles of pSS patients and identify potential candidate biomarkers for diagnosis.Methods The discovery set contained 49 samples (24 from pSS and 25 from age- and gender-matched healthy controls [HCs]) and the validation set included 25 samples (12 from pSS and 13 from HCs). Totally 36 pSS patients and 38 HCs were centrally randomized into the discovery set or to the validation set at a 2:1 ratio. Unstimulated whole saliva samples from pSS patients and HCs were analyzed using a data-independent acquisition (DIA) strategy on a 2D LC?HRMS/MS platform to reveal differential proteins. The crucial proteins were verified using DIA analysis and annotated using gene ontology (GO) and International Pharmaceutical Abstracts (IPA) analysis. A prediction model for SS was established using random forests.Results A total of 1,963 proteins were discovered, and 136 proteins exhibited differential representation in pSS patients. The bioinformatic research indicated that these proteins were primarily linked to immunological functions, metabolism, and inflammation. A panel of 19 protein biomarkers was identified by ranking order based on P-value and random forest algorichm, and was validated as the predictive biomarkers exhibiting good performance with area under the curve (AUC) of 0.817 for discovery set and 0.882 for validation set.Conclusions The candidate protein panel discovered may aid in pSS diagnosis. Salivary proteomic analysis is a promising non-invasive method for prognostic evaluation and early and precise treatments for pSS patients. DIA offers the best time efficiency and data dependability and may be a suitable option for future research on the salivary proteome.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/metabolismo , Proteómica/métodos , Biomarcadores/metabolismo , Saliva/metabolismo , Pronóstico
5.
In Vitro Cell Dev Biol Anim ; 60(4): 411-419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587579

RESUMEN

Sjogren's syndrome (SS) is an autoimmune disease. Its mechanism and treatment methods are unclear. The purpose of this study was to investigate the effects of rutin (Ru) on SS. Proteomics was used to detect differential proteins in the submandibular glands of normal mice and SS mice. Salivary secretion (SAS) and salivary gland index (SGI) were detected. Oxidative stress and inflammatory cytokine in submandibular glands were detected. The levels of NLRP3, ASC, Caspase-1, IL-1ß, and p-NF-κBp65 in submandibular gland tissues and submandibular gland cells of overexpressed calcium-sensing receptor (over-CaR) mice and overexpressed CaR primary submandibular gland cells (over-CaR-PSGs) were detected. In total, 327 differential proteins were identified in the submandibular gland tissues of SS mice compared to control mice. CaR was one of the most differential proteins and significantly increased compared to control mice. Ru could significantly increase SGI and SGI, and inhibit oxidative stress and inflammatory cytokine in submandibular glands. In addition, Ru was shown to further improve SS via regulation of the CaR/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/nuclear factor kappa-B (NF-κB) signal pathway. Overexpression of CaR counteracted partial activity of Ru. CaR may be an important target for the treatment of SS. In addition, Ru improved the SS via the CaR/NLRP3/NF-κB signal pathway. This study provides a basis for the treatments for SS.


Asunto(s)
FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Rutina , Transducción de Señal , Síndrome de Sjögren , Glándula Submandibular , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Rutina/farmacología , Rutina/uso terapéutico , Ratones , Glándula Submandibular/metabolismo , Glándula Submandibular/efectos de los fármacos , Glándula Submandibular/patología , Estrés Oxidativo/efectos de los fármacos , Femenino , Citocinas/metabolismo , Ratones Endogámicos C57BL
6.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574973

RESUMEN

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Asunto(s)
Acuaporina 5 , Células Epiteliales , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno , Factor de Transcripción STAT4 , Glándulas Salivales , Síndrome de Sjögren , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología , Animales , Humanos , Ratones , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Acuaporina 5/metabolismo , Acuaporina 5/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT4/genética , Modelos Animales de Enfermedad , Femenino , Regulación hacia Abajo , Masculino , Transducción de Señal , Regulación de la Expresión Génica , Ferroptosis/genética , Saliva/metabolismo , Persona de Mediana Edad
7.
Dig Dis Sci ; 69(5): 1714-1721, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528208

RESUMEN

BACKGROUND: The post-reflux swallow-induced peristaltic wave (PSPW) brings salivary bicarbonate to neutralize residual distal esophageal mucosal acidification. AIMS: To determine if reduced saliva production and esophageal body hypomotility would compromise PSPW-induced pH recovery in the distal esophagus. METHODS: In this multicenter retrospective cross-sectional study, patients with confirmed Sjogren's syndrome and scleroderma/mixed connective tissue disease (MCTD) who underwent high resolution manometry (HRM) and ambulatory pH-impedance monitoring off antisecretory therapy were retrospectively identified. Patients without these disorders undergoing HRM and pH-impedance monitoring for GERD symptoms were identified from the same time-period. Acid exposure time, numbers of reflux episodes and PSPW, pH recovery with PSPW, and HRM metrics were extracted. Univariate comparisons and multivariable analysis were performed to determine predictors of pH recovery with PSPW. RESULTS: Among Sjogren's syndrome (n = 34), scleroderma/MCTD (n = 14), and comparison patients with reflux symptoms (n = 96), the scleroderma/MCTD group had significantly higher AET, higher prevalence of hypomotility, lower detected reflux episodes, and very low numbers of PSPW (p ≤ 0.004 compared to other groups). There was no difference in pH-impedance metrics between Sjogren's syndrome, and comparison patients (p ≥ 0.481). Proportions with complete pH recovery with PSPW was lower in Sjogren's patients compared to comparison reflux patients (p = 0.009), predominantly in subsets with hypomotility (p < 0.001). On multivariable analysis, diagnosis of Sjogren's syndrome, scleroderma/MCTD or neither (p = 0.014) and esophageal hypomotility (p = 0.024) independently predicted lack of complete pH recovery with PSPW, while higher total reflux episodes trended (p = 0.051). CONCLUSIONS: Saliva production and motor function are both important in PSPW related pH recovery.


Asunto(s)
Monitorización del pH Esofágico , Esófago , Reflujo Gastroesofágico , Peristaltismo , Saliva , Síndrome de Sjögren , Humanos , Femenino , Persona de Mediana Edad , Masculino , Estudios Retrospectivos , Reflujo Gastroesofágico/fisiopatología , Reflujo Gastroesofágico/metabolismo , Reflujo Gastroesofágico/diagnóstico , Estudios Transversales , Peristaltismo/fisiología , Síndrome de Sjögren/fisiopatología , Síndrome de Sjögren/metabolismo , Saliva/metabolismo , Anciano , Esófago/fisiopatología , Esófago/metabolismo , Manometría , Deglución/fisiología , Concentración de Iones de Hidrógeno , Adulto , Esclerodermia Sistémica/fisiopatología , Esclerodermia Sistémica/metabolismo
8.
Front Immunol ; 15: 1349067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495880

RESUMEN

The oral cavity presents a diverse microbiota in a dynamic balance with the host. Disruption of the microbial community can promote dysregulation of local immune response which could generate oral diseases. Additionally, alterations in host immune system can result in inflammatory disorders. Different microorganisms have been associated with establishment and progression of the oral diseases. Oral cavity pathogens/diseases can modulate components of the inflammatory response. Myeloid-derived suppressor cells (MDSCs) own immunoregulatory functions and have been involved in different inflammatory conditions such as infectious processes, autoimmune diseases, and cancer. The aim of this review is to provide a comprehensive overview of generation, phenotypes, and biological functions of the MDSCs in oral inflammatory diseases. Also, it is addressed the biological aspects of MDSCs in presence of major oral pathogens. MDSCs have been mainly analyzed in periodontal disease and Sjögren's syndrome and could be involved in the outcome of these diseases. Studies including the participation of MDSCs in other important oral diseases are very scarce. Major oral bacterial and fungal pathogens can modulate expansion, subpopulations, recruitment, metabolism, immunosuppressive activity and osteoclastogenic potential of MDSCs. Moreover, MDSC plasticity is exhibited in presence of oral inflammatory diseases/oral pathogens and appears to be relevant in the disease progression and potentially useful in the searching of possible treatments. Further analyses of MDSCs in oral cavity context could allow to understand the contribution of these cells in the fine-tuned balance between host immune system and microorganism of the oral biofilm, as well as their involvement in the development of oral diseases when this balance is altered.


Asunto(s)
Enfermedades Autoinmunes , Células Supresoras de Origen Mieloide , Neoplasias , Síndrome de Sjögren , Humanos , Enfermedades Autoinmunes/metabolismo , Síndrome de Sjögren/metabolismo
9.
Ocul Surf ; 32: 166-172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490476

RESUMEN

AIM: To assess whether smaller increment and regionalised subjective grading improves the repeatability of corneal fluorescein staining assessment, and to determine the neurological approach adopted for subjective grading by practitioners. METHODS: Experienced eye-care practitioners (n = 28, aged 45 ± 12 years), graded 20 full corneal staining images of patients with mild to severe Sjögren's syndrome with the Oxford grading scheme (both in 0.5 and 1.0 increments, globally and in 5 regions), expanded National Eye Institute (NEI) and SICCA Ocular Staining Score (OSS) grading scales in randomised order. This was repeated after 7-10 days. The digital images were also analysed objectively to determine staining dots, area, intensity and location (using ImageJ) for comparison. RESULTS: The Oxford grading scheme was similar with whole and half unit grading (2.77vs2.81,p = 0.145), but the variability was reduced (0.14vs0.12,p < 0.001). Regional grade was lower (p < 0.001) and more variable (p < 0.001) than global image grading (1.86 ± 0.44 for whole increment grading and 1.90 ± 0.39 for half unit increments). The correlation with global grading was high for both whole (r = 0.928,p < 0.001) and half increment (r = 0.934,p < 0.001) grading. Average grading across participants was associated with particle number and vertical position, with 74.4-80.4% of the linear variance accounted for by the digital image analysis. CONCLUSIONS: Using half unit increments with the Oxford grading scheme improve its sensitivity and repeatability in recording corneal staining. Regional grading doesn't give a comparable score and increased variability. The key neurally extracted features in assigning a subjective staining grade by clinicians were identified as the number of discrete staining locations (particles) and how close to the vertical centre was their spread, across all three scales.


Asunto(s)
Córnea , Síndromes de Ojo Seco , Síndrome de Sjögren , Coloración y Etiquetado , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/patología , Síndrome de Sjögren/metabolismo , Persona de Mediana Edad , Córnea/patología , Femenino , Coloración y Etiquetado/métodos , Masculino , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/metabolismo , Colorantes Fluorescentes , Fluoresceína , Adulto , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
10.
Am J Physiol Cell Physiol ; 326(5): C1494-C1504, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406824

RESUMEN

Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.


Asunto(s)
Factor Activador de Células B , Linfocitos B , Interferón gamma , Polimorfismo de Nucleótido Simple , Síndrome de Sjögren , Activación Transcripcional , Síndrome de Sjögren/genética , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Interferón gamma/genética , Interferón gamma/metabolismo , Polimorfismo de Nucleótido Simple/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Factor Activador de Células B/genética , Factor Activador de Células B/metabolismo , Ratones , Humanos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Femenino , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Quinasas Janus/metabolismo , Quinasas Janus/genética , Transducción de Señal/genética
11.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171773

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Asunto(s)
Lycium , Síndrome de Sjögren , Xerostomía , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Lycium/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Xerostomía/inducido químicamente , Xerostomía/prevención & control , Xerostomía/complicaciones , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Acuaporina 5/genética
12.
Int Immunopharmacol ; 128: 111485, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183912

RESUMEN

BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease. There is no relevant research on whether the migratory ability of bone marrow mesenchymal stem cells (BM-MSC) is impaired in patients with pSS (pSS-BMMSC). METHODS: Trajectories and velocities of BM-MSC were analyzed. Transwell migration assay and wound healing assay were used to investigate the migratory capacity of BM-MSC. The proliferative capacity of BM-MSC was evaluated by EDU and CCK8 assay. RNA-seq analysis was then performed to identify the underlying mechanism of lentivirus-mediated cofilin-1 overexpression BM-MSC (BMMSCCFL1). The therapeutic efficacy of BMMSCCFL1 was evaluated in NOD mice. RESULTS: The migratory capacity of pSS-BMMSC was significantly reduced compared to normal volunteers (HC-BMMSC). The expression of the motility-related gene CFL1 was decreased in pSS-BMMSC. Lentivirus-mediated CFL1 overexpression of pSS-BMMSC promoted the migration capacity of pSS-BMMSC. Furthermore, RNA-seq revealed that CCR1 was the downstream target gene of CFL1. To further elucidate the mechanism of CFL1 in regulating BM-MSC migration and proliferation via the CCL5/CCR1 axis, we performed a rescue experiment using BX431 (a CCR1-specific inhibitor) to inhibit CCR1. The results showed that CCR1 inhibitors suppressed the migration and proliferation capacity of MSC induced by CFL1. CONCLUSION: The pSS-BMMSC leads to impaired migration and proliferation, and overexpression of CFL1 can rescue the functional deficiency and alleviate disease symptoms in NOD mice. Mechanically, CFL1 can regulate the expression level of the downstream CCL5/CCR1 axis to enhance the migration and proliferation of BM-MSC.


Asunto(s)
Células Madre Mesenquimatosas , Síndrome de Sjögren , Ratones , Animales , Humanos , Ratones Endogámicos NOD , Síndrome de Sjögren/metabolismo , Cicatrización de Heridas , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Cofilina 1/metabolismo , Receptores CCR1/genética , Receptores CCR1/metabolismo
13.
Cell Signal ; 113: 110980, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981065

RESUMEN

Previous studies have demonstrated that extracellular vesicles (EVs) from dental pulp stem cells (DPSCs), which release abundant hepatocyte growth factor (HGF) and transforming growth factor-ß1 (TGF-ß1), contribute to the pathogenesis of Sjögren's syndrome (SS). However, depending on the condition of DPSCs, this effect is often not achieved. In this study, we established induced pluripotent stem (iPS) cells highly capable of releasing HGF and TGF-ß1 and iPS cells barely capable of releasing them, and administered each EV to SS model mice to see if there was a difference in therapeutic effect. EVs were collected from each iPS cell and their characteristics and shapes were examined. When they were administered to SS model mice, the EVs from iPS cells with higher concentrations of HGF and TGF-ß1 showed significantly reduced inflammatory cell infiltration in salivary gland tissues, increased saliva volume, and decreased anti-SS-A and anti-SS-B antibodies. A comprehensive search of microRNA arrays for differences among those EVs revealed that EVs from iPS cells with higher concentrations of HGF and TGF-ß1 contained more of the let-7 family. Thereafter, we examined the expression of toll-like receptors (TLRs), which are said to be regulated by the let-7 family, by qPCR, and found decreased TLR4 expression. Focusing on MAPK, a downstream signaling pathway, we examined cytokine concentrations in mouse macrophage culture supernatants and Western blotting of murine splenic tissues and found higher concentrations of anti-inflammatory cytokines in the EVs-treated group and decreased TLR4, NF-κB and phosphorylation (p)-p-38 MAPK expression by Western blotting. Alternatively, p-Smad2/3 was upregulated in the EVs-treated group. Our findings suggest that the let-7 family in EVs may suppress the expression of TLR4 and NF-κB, which may be involved in the suppression of MAPK-mediated pro-inflammatory cytokine production.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Síndrome de Sjögren , Animales , Ratones , Vesículas Extracelulares/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Inmunidad Innata , Células Madre Pluripotentes Inducidas/metabolismo , FN-kappa B/metabolismo , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1
14.
Genomics ; 116(1): 110767, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128705

RESUMEN

OBJECTIVE: Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions. METHOD: Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS). The ESS model was established by immunization with salivary gland protein. The expression of mRNAs and proteins in salivary tissues and saliva were determined by high-throughput sequencing transcriptomic analysis and LC-MS/MS-based proteome, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to recognize dysregulated genes and proteins. The association between RNA and protein abundance was investigated to provides a comprehensive understanding of RNA-protein correlations in the pathogenesis of pSS. RESULTS: As a result, we successfully established the ESS model. We recognized 3221 differentially expressed genes (DEGs) and 253 differentially expressed proteins (DEPs). The sample analysis showed that 61 proteins overlapped through the integrative analysis of transcriptomics and proteomics data. The enrichment pathway analysis of DEGs and DEPs in samples showed alterations in renin-angiotensin-system (RAS), lysosome, and apoptosis. Notably, we found that some genes, such as AGT, FN1, Klk1b26, Klk1, Klk1b5, Klk1b3 had a consistent trend in the regulation at the RNA and protein levels and might be potential diagnostic biomarkers of pSS. CONCLUSION: Herein, we found critical processes and potential biomakers that may contribute to pSS pathogenesis by analyzing dysregulated genes and pathways. Additionally, the integrative multi-omics datasets provided additional insight into understanding complicated disease mechanisms.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/genética , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/metabolismo , Transcriptoma , Proteoma/genética , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , ARN
15.
Immun Inflamm Dis ; 11(12): e1102, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156384

RESUMEN

OBJECTIVE: There are new evidences that protein arginine methyltransferase 5 (PRMT5) is widely involved in the progression of various diseases, but its effect is unclear on Primary Sjogren's syndrome (pSS). The main purpose of this study is to explore the regulatory effect of PRMT5 on pSS and its potential mechanisms. METHODS: CD40L treated CD19 + B cells to construct a cell model of pSS. CCK-8 assay and Annexin V-FITC/PI kits were used to measure cell proliferation and apoptosis. ELISA assay was used to determine the contents of IL-6 and TNF-α in CD19 + B cells. And commercial kits were used to detect the levels of immunoglobins (IgG, IgM, and IgA) in CD40L-treated CD19 + B cells. And successfully constructed a pSS mouse model. RESULTS: The results revealed an increase in the expression of PRMT5 in CD19 + B cells from patients with pSS. After CD40L treatment, the knockdown of PRMT5 prominently decreased cell viability, the production level of immunoglobulins (IgG, IgM, and IgA), and the content of IL-10, increased the content of IL-6 and IL-8, and promoted the apoptosis of pSS CD19 + B cells. Mechanistically, PRMT5 negatively regulated the RSAD2 and nuclear factor kappa-B (NF-κB) signaling pathway. Furthermore, overexpression of RSAD2 and p65 significantly rescued the effect of PRMT5 knockdown on proliferation, immunoglobin production and secreting cytokines in CD40L-treated CD19 + B cells. More importantly, inhibition of PRMT5 significantly inhibited the symptoms of pSS mice. CONCLUSIONS: Low-expression of PRMT5 through inactivation of RSAD2/NF-κB signalling pathway alleviates the hyperactivity of B cells, which may provide theoretical basis and potential therapeutic targets for clinical treatment of pSS.


Asunto(s)
FN-kappa B , Síndrome de Sjögren , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Síndrome de Sjögren/metabolismo , Interleucina-6 , Ligando de CD40 , Transducción de Señal , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Proteína Viperina , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
16.
NPJ Syst Biol Appl ; 9(1): 62, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102122

RESUMEN

Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo , Linfocitos T/metabolismo , Regulación hacia Abajo/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo
17.
Clin Exp Rheumatol ; 41(12): 2538-2546, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149514

RESUMEN

The link between immune cell function and cell metabolic reprogramming is currently known under the term "immunometabolism". Similarly to the Warburg's effect described in cancer cells, in activated immune cells an up-regulation of specific metabolic pathways has been described and seems to be pathogenic in different inflammatory conditions.SjÓ§gren's syndrome (SS) is a systemic autoimmune disease that affects the exocrine glands and is characterised by a progressive loss of secretory function. Despite the increasing amount of evidence on the ability of metabolism in regulating cell behaviour in inflammatory or tumoral conditions, the field of metabolism in SS is still for the most part unexplored.The aim of this review is to summarise currently available studies evaluating cell metabolism in SS with a particular focus on the possible pathogenic role of metabolic changes in immune and non-immune cells in this condition.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología
18.
Proc Natl Acad Sci U S A ; 120(42): e2311983120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812717

RESUMEN

The lacrimal gland is of central interest in ophthalmology both as the source of the aqueous component of tear fluid and as the site of autoimmune pathology in the context of Sjogren's syndrome (SjS). To provide a foundational description of mouse lacrimal gland cell types and their patterns of gene expression, we have analyzed single-cell transcriptomes from wild-type (Balb/c) mice and from two genetically based SjS models, MRL/lpr and NOD (nonobese diabetic).H2b, and defined the localization of multiple cell-type-specific protein and mRNA markers. This analysis has uncovered a previously undescribed cell type, Car6+ cells, which are located at the junction of the acini and the connecting ducts. More than a dozen secreted polypeptides that are likely to be components of tear fluid are expressed by acinar cells and show pronounced sex differences in expression. Additional examples of gene expression heterogeneity within a single cell type were identified, including a gradient of Claudin4 along the length of the ductal system and cell-to-cell heterogeneity in transcription factor expression within acinar and myoepithelial cells. The patterns of expression of channels, transporters, and pumps in acinar, Car6+, and ductal cells make strong predictions regarding the mechanisms of water and electrolyte secretion. In MRL/lpr and NOD.H2b lacrimal glands, distinctive changes in parenchymal gene expression and in immune cell subsets reveal widespread interferon responses, a T cell-dominated infiltrate in the MRL/lpr model, and a mixed B cell and T cell infiltrate in the NOD.H2b model.


Asunto(s)
Aparato Lagrimal , Síndrome de Sjögren , Femenino , Ratones , Masculino , Animales , Síndrome de Sjögren/metabolismo , Aparato Lagrimal/metabolismo , Ratones Endogámicos MRL lpr , Ratones Endogámicos NOD , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
19.
Clin Chim Acta ; 548: 117503, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536520

RESUMEN

Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.


Asunto(s)
Carcinoma de Células Escamosas , Caries Dental , Neoplasias de la Boca , Síndrome de Sjögren , Humanos , Saliva/química , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/patología , Biomarcadores/metabolismo , Síndrome de Sjögren/metabolismo , Biomarcadores de Tumor/metabolismo
20.
Chem Senses ; 482023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586060

RESUMEN

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Asunto(s)
Trastornos del Olfato , Síndrome de Sjögren , Ratones , Humanos , Animales , Olfato , Mucosa Olfatoria/metabolismo , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Acuaporina 5/genética , Acuaporina 5/metabolismo , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA