Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626828

RESUMEN

Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.


Asunto(s)
Ratones Noqueados , Síndromes Miasténicos Congénitos , Síndrome de Prader-Willi , Prolil Oligopeptidasas , Animales , Humanos , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Ratones , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Células HEK293 , Prolil Oligopeptidasas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Redes y Vías Metabólicas/genética , Modelos Animales de Enfermedad , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Masculino , Femenino
2.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233267

RESUMEN

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Asunto(s)
Síndromes Miasténicos Congénitos , Animales , Ratones , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Calcitriol/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Neuronas Motoras/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003406

RESUMEN

Congenital Myasthenic Syndromes (CMSs) are rare inherited diseases of the neuromuscular junction characterized by muscle weakness. CMSs with acetylcholinesterase deficiency are due to pathogenic variants in COLQ, a collagen that anchors the enzyme at the synapse. The two COLQ N-terminal domains have been characterized as being biochemical and functional. They are responsible for the structure of the protein in the triple helix and the association of COLQ with acetylcholinesterase. To deepen the analysis of the distal C-terminal peptide properties and understand the CMSs associated to pathogenic variants in this domain, we have analyzed the case of a 32 year old male patient bearing a homozygote splice site variant c.1281 C > T that changes the sequence of the last 28 aa in COLQ. Using COS cell and mouse muscle cell expression, we show that the COLQ variant does not impair the formation of the collagen triple helix in these cells, nor its association with acetylcholinesterase, and that the hetero-oligomers are secreted. However, the interaction of COLQ variant with LRP4, a signaling hub at the neuromuscular junction, is decreased by 44% as demonstrated by in vitro biochemical methods. In addition, an increase in all acetylcholine receptor subunit mRNA levels is observed in muscle cells derived from the patient iPSC. All these approaches point to pathophysiological mechanisms essentially characterized by a decrease in signaling and the presence of immature acetylcholine receptors.


Asunto(s)
Síndromes Miasténicos Congénitos , Masculino , Humanos , Animales , Ratones , Adulto , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Colágeno/metabolismo , Mutación
4.
Hum Mol Genet ; 32(9): 1552-1564, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611016

RESUMEN

Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high-affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to reuptake choline. Biallelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays. Here, we report detailed biochemical characterization of two novel mutations in CHT1, p.I294T and p.D349N, which we identified in an 11-year-old patient with a history of neonatal respiratory distress, and subsequent hypotonia and global developmental delay. Heterologous expression of each CHT1 mutant in human embryonic kidney cells showed two different mechanisms of reduced protein function. The p.I294T CHT1 mutant transporter function was detectable, but its abundance and half-life were significantly reduced. In contrast, the p.D349N CHT1 mutant was abundantly expressed at the cell membrane, but transporter function was absent. The residual function of the p.I294T CHT1 mutant may explain the non-lethal form of CMS in this patient, and the divergent mechanisms of reduced CHT1 function that we identified may guide future functional studies of the CHT1 myasthenic syndrome. Based on these in vitro studies that provided a diagnosis, treatment with cholinesterase inhibitor together with physical and occupational therapy significantly improved the patient's strength and quality of life.


Asunto(s)
Proteínas Mutantes , Mutación , Síndromes Miasténicos Congénitos , Simportadores , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/rehabilitación , Humanos , Masculino , Niño , Células HEK293 , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Semivida , Membrana Celular/metabolismo , Transporte de Proteínas , Estaurosporina/farmacología , Bromuro de Piridostigmina/uso terapéutico , Calidad de Vida , Simportadores/química , Simportadores/genética , Simportadores/metabolismo
5.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36579833

RESUMEN

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes Miasténicos Congénitos , Humanos , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Musculares/genética , Mutación , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Fosforilación , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
6.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948834

RESUMEN

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Asunto(s)
Agrina , Síndromes Miasténicos Congénitos , Agrina/genética , Humanos , Neuronas Motoras/metabolismo , Mutación , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Unión Neuromuscular/metabolismo
7.
Sci Rep ; 12(1): 5866, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393492

RESUMEN

Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1-/-) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1-/- mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1-/- mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.


Asunto(s)
Colágeno Tipo XIII , Síndromes Miasténicos Congénitos , Animales , Colágeno Tipo XIII/genética , Colágeno Tipo XIII/metabolismo , Homeostasis , Humanos , Ratones , Ratones Noqueados , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/metabolismo
8.
Neuron ; 109(12): 1963-1978.e5, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34033754

RESUMEN

Our daily life depends on muscle contraction, a process that is controlled by the neuromuscular junction (NMJ). However, the mechanisms of NMJ assembly remain unclear. Here we show that Rapsn, a protein critical for NMJ formation, undergoes liquid-liquid phase separation (LLPS) and condensates into liquid-like assemblies. Such assemblies can recruit acetylcholine receptors (AChRs), cytoskeletal proteins, and signaling proteins for postsynaptic differentiation. Rapsn LLPS requires multivalent binding of tetratricopeptide repeats (TPRs) and is increased by Musk signaling. The capacity of Rapsn to condensate and co-condensate with interaction proteins is compromised by mutations of congenital myasthenic syndromes (CMSs). NMJ formation is impaired in mutant mice carrying a CMS-associated, LLPS-deficient mutation. These results reveal a critical role of Rapsn LLPS in forming a synaptic semi-membraneless compartment for NMJ formation.


Asunto(s)
Proteínas Musculares/genética , Síndromes Miasténicos Congénitos/genética , Mioblastos/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Placa Motora/embriología , Placa Motora/metabolismo , Proteínas Musculares/metabolismo , Síndromes Miasténicos Congénitos/embriología , Síndromes Miasténicos Congénitos/metabolismo , Unión Neuromuscular/embriología , Transporte de Proteínas , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Repeticiones de Tetratricopéptidos
9.
FEBS J ; 288(18): 5331-5349, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33730374

RESUMEN

Motoneurons (MNs) control muscle activity by releasing the neurotransmitter acetylcholine (ACh) at the level of neuromuscular junctions. ACh is packaged into synaptic vesicles by the vesicular ACh transporter (VAChT), and disruptions in its release can impair muscle contraction, as seen in congenital myasthenic syndromes (CMS). Recently, VAChT gene mutations were identified in humans displaying varying degrees of myasthenia. Moreover, mice with a global deficiency in VAChT expression display several characteristics of CMS. Despite these findings, little is known about how a long-term decrease in VAChT expression in vivo affects MNs structure and function. Using Cre-loxP technology, we generated a mouse model where VAChT is deleted in select groups of MNs (mnVAChT-KD). Molecular analysis revealed that the VAChT deletion was specific to MNs and affected approximately 50% of its population in the brainstem and spinal cord, with alpha-MNs primarily targeted (70% in spinal cord). Within each animal, the cell body area of VAChT-deleted MNs was significantly smaller compared to MNs with VAChT preserved. Likewise, muscles innervated by VAChT-deleted MNs showed atrophy while muscles innervated by VAChT-containing neurons appeared normal. In addition, mnVAChT KD mice had decreased muscle strength, were hypoactive, leaner and exhibited kyphosis. This neuromuscular dysfunction was evident at 2 months of age and became progressively worse by 6 months. Treatment of mutants with a cholinesterase inhibitor was able to improve some of the motor deficits. As these observations mimic what is seen in CMS, this new line could be valuable for assessing the efficacy of potential CMS drugs.


Asunto(s)
Acetilcolina/genética , Neuronas Motoras/metabolismo , Síndromes Miasténicos Congénitos/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/patología , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Neurotransmisores/genética , Médula Espinal/metabolismo , Médula Espinal/fisiología , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
10.
JCI Insight ; 5(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32271162

RESUMEN

Congenital myasthenic syndromes (CMS) are caused by mutations in molecules expressed at the neuromuscular junction. We report clinical, structural, ultrastructural, and electrophysiologic features of 4 CMS patients with 6 heteroallelic variants in AGRN, encoding agrin. One was a 7.9-kb deletion involving the N-terminal laminin-binding domain. Another, c.4744G>A - at the last nucleotide of exon 26 - caused skipping of exon 26. Four missense mutations (p.S1180L, p.R1509W, p.G1675S, and p.Y1877D) expressed in conditioned media decreased AChR clusters in C2C12 myotubes. The agrin-enhanced phosphorylation of MuSK was markedly attenuated by p.Y1877D in the LG3 domain and moderately attenuated by p.R1509W in the LG1 domain but not by the other 2 mutations. The p.S1180L mutation in the SEA domain facilitated degradation of secreted agrin. The p.G1675S mutation in the LG2 domain attenuated anchoring of agrin to the sarcolemma by compromising its binding to heparin. Anchoring of agrin with p.R1509W in the LG1 domain was similarly attenuated. Mutations of agrin affect AChR clustering by enhancing agrin degradation or by suppressing MuSK phosphorylation and/or by compromising anchoring of agrin to the sarcolemma of the neuromuscular junction.


Asunto(s)
Agrina , Mutación Missense , Síndromes Miasténicos Congénitos , Receptores Nicotínicos/metabolismo , Agrina/genética , Agrina/metabolismo , Sustitución de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Receptores Nicotínicos/genética , Sarcolema/genética , Sarcolema/metabolismo
11.
J Hum Genet ; 65(4): 355-362, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31959872

RESUMEN

Null variants in LAMB2 cause Pierson syndrome (PS), a severe congenital nephrotic syndrome with ocular and neurological defects. Patients' kidney specimens show complete negativity for laminin ß2 expression on glomerular basement membrane (GBM). In contrast, missense variants outside the laminin N-terminal (LN) domain in LAMB2 lead to milder phenotypes. However, we experienced cases not showing these typical genotype-phenotype correlations. In this paper, we report six PS patients: four with mild phenotypes and two with severe phenotypes. We conducted molecular studies including protein expression and transcript analyses. The results revealed that three of the four cases with milder phenotypes had missense variants located outside the LN domain and one of the two severe PS cases had a homozygous missense variant located in the LN domain; these variant positions could explain their phenotypes. However, one mild case possessed a splicing site variant (c.3797 + 5G>A) that should be associated with a severe phenotype. Upon transcript analysis, this variant generated some differently sized transcripts, including completely normal transcript, which could have conferred the milder phenotype. In one severe case, we detected the single-nucleotide substitution of c.4616G>A located outside the LN domain, which should be associated with a milder phenotype. However, we detected aberrant splicing caused by the creation of a novel splice site by this single-base substitution. These are novel mechanisms leading to an atypical genotype-phenotype correlation. In addition, all four cases with milder phenotypes showed laminin ß2 expression on GBM. We identified novel mechanisms leading to atypical genotype-phenotype correlation in PS.


Asunto(s)
Membrana Basal Glomerular , Laminina , Mutación Missense , Síndromes Miasténicos Congénitos , Síndrome Nefrótico , Trastornos de la Pupila , Empalme del ARN , Sustitución de Aminoácidos , Niño , Preescolar , Femenino , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/patología , Humanos , Lactante , Laminina/biosíntesis , Laminina/genética , Masculino , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Dominios Proteicos , Trastornos de la Pupila/genética , Trastornos de la Pupila/metabolismo , Trastornos de la Pupila/patología
12.
Hum Mutat ; 41(3): 619-631, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31765060

RESUMEN

MUSK encodes the muscle-specific receptor tyrosine kinase (MuSK), a key component of the agrin-LRP4-MuSK-DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early-onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled-like cysteine-rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with ß2-adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.


Asunto(s)
Mutación , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Colinérgicos/genética , Sinapsis/genética , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Alelos , Sustitución de Aminoácidos , Animales , Sistemas CRISPR-Cas , Línea Celular , Análisis Mutacional de ADN , Femenino , Marcación de Gen , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Proteínas Musculares/metabolismo , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/metabolismo , Linaje , Fosforilación , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Relación Estructura-Actividad , Sinapsis/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(42): 21228-21235, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570625

RESUMEN

Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context.


Asunto(s)
Acetilcolina/metabolismo , Cloruros/metabolismo , Músculos/metabolismo , Mutación/genética , Receptores Colinérgicos/metabolismo , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Síndromes Miasténicos Congénitos/metabolismo , Técnicas de Placa-Clamp/métodos , Receptores Nicotínicos/metabolismo , Sodio/metabolismo
14.
Muscle Nerve ; 60(6): 790-800, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31531871

RESUMEN

INTRODUCTION: Reduced expression of the vesicular acetylcholine transporter (VAChT) leads to changes in the distribution and shape of synaptic vesicles (SVs) at neuromuscular junctions (NMJs), suggesting vesicular acetylcholine (ACh) as a key component of synaptic structure and function. It is poorly understood how long-term changes in cholinergic transmission contribute to age- and disease-related degeneration in the motor system. METHODS: In this study we performed confocal imaging, electrophysiology, electron microscopy, and analyses of respiratory mechanics of the diaphragm NMJ components in 12-month-old wild-type (WT) and VAChTKDHOM mice. RESULTS: Diaphragms of NMJs of the VAChTKDHOM mice were similar to those in WT mice in number, colocalization, and fragmentation of pre-/postsynaptic components. However, they had increased spontaneous SV exocytosis, miniature endplate potential frequency, and diminished MEPP amplitude. No impairment in respiratory mechanics at rest was observed, probably due to the large neurotransmission safety factor of the diaphragm. DISCUSSION: The present findings help us to understand the consequences of reduced ACh release at the NMJs during aging.


Asunto(s)
Envejecimiento/patología , Diafragma/ultraestructura , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/ultraestructura , Vesículas Sinápticas/ultraestructura , Acetilcolina/metabolismo , Envejecimiento/metabolismo , Animales , Diafragma/metabolismo , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Endocitosis , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis , Técnicas de Silenciamiento del Gen , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Placa Motora , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiopatología , Mecánica Respiratoria/fisiología , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
15.
J Cell Biol ; 218(5): 1686-1705, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842214

RESUMEN

Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Actinas/metabolismo , Adulto , Animales , Preescolar , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Musculares/genética , Mutación Missense , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Linaje , Receptores Colinérgicos/metabolismo , Transmisión Sináptica , Secuenciación del Exoma
16.
Neurology ; 92(13): e1405-e1415, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30824560

RESUMEN

OBJECTIVE: To identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, SCN4A. METHODS: A combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and Xenopus oocytes. RESULTS: Missense mutations of the same residue in the skeletal muscle sodium channel, R1460 of NaV1.4, were identified in a family and a single patient of Finnish origin (p.R1460Q) and a proband in the United States (p.R1460W). Congenital hypotonia, breathing difficulties, bulbar weakness, and fatigability had recessive inheritance (homozygous p.R1460W or compound heterozygous p.R1460Q and p.R1059X), whereas carriers were either asymptomatic (p.R1460W) or had myotonia (p.R1460Q). Sodium currents conducted by mutant channels showed unusual mixed defects with both loss-of-function (reduced amplitude, hyperpolarized shift of inactivation) and gain-of-function (slower entry and faster recovery from inactivation) changes. CONCLUSIONS: Novel mutations in families with myasthenic congenital myopathy have been identified at p.R1460 of the sodium channel. Recessive inheritance, with experimentally established loss-of-function, is a consistent feature of sodium channel based myasthenia, whereas the mixed gain of function for p.R1460 may also cause susceptibility to myotonia.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Animales , Electromiografía , Femenino , Finlandia , Humanos , Laringismo/genética , Laringismo/fisiopatología , Mutación con Pérdida de Función , Masculino , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Músculo Esquelético/patología , Mutación Missense , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/fisiopatología , Miotonía/genética , Miotonía/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Oocitos , Técnicas de Placa-Clamp , Linaje , Secuenciación del Exoma , Xenopus
17.
Neurochem Int ; 120: 1-12, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30003945

RESUMEN

Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we examined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT, mouse line herein called VAChT-KDHOM). We examined this mouse line for several reasons. First, VAChT plays a central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans. Importantly, VAChT-KDHOM present with reduced ACh and muscle weakness, resembling CMS. We evaluated the morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL, they hypertrophy in the soleus muscle of VAChT-KDHOM mice. Along with these cellular changes, skeletal muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism (PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KDHOM mice. Importantly, we demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KDHOM mice. These findings reveal that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are reversible.


Asunto(s)
Acetilcolina/metabolismo , Músculo Esquelético/metabolismo , Síndromes Miasténicos Congénitos/metabolismo , Vesículas Sinápticas/metabolismo , Acetilcolina/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
18.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-29710836

RESUMEN

The neuromuscular junction is the point of contact between motor nerve and skeletal muscle, its vital role in muscle function is reliant on the precise location and function of many proteins. Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders of neuromuscular transmission with 30 or more implicated proteins. The use of animal models has been instrumental in determining the specific role of many CMS-related proteins. The mouse neuromuscular junction (NMJ) has been extensively studied in animal models of CMS due to its amenability for detailed electrophysiological and histological investigations and relative similarity to human NMJ. As well as their use to determine the precise molecular mechanisms of CMS variants, where an animal model accurately reflects the human phenotype they become useful tools for study of therapeutic interventions. Many of the animal models that have been important in deconvolving the complexities of neuromuscular transmission and revealing the molecular mechanisms of disease are highlighted.


Asunto(s)
Modelos Animales de Enfermedad , Miastenia Gravis/metabolismo , Síndromes Miasténicos Congénitos/metabolismo , Unión Neuromuscular/metabolismo , Animales , Humanos , Miastenia Gravis/genética , Miastenia Gravis/fisiopatología , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Transmisión Sináptica
19.
Matrix Biol ; 68-69: 628-636, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29475025

RESUMEN

Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.


Asunto(s)
Acetilcolinesterasa/genética , Biglicano/genética , Colágeno/genética , Terapia Genética/métodos , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/terapia , Síndromes Miasténicos Congénitos/terapia , Acetilcolinesterasa/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Biglicano/metabolismo , Colágeno/metabolismo , Dependovirus/química , Modelos Animales de Enfermedad , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas Ligadas a GPI/metabolismo , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo
20.
Hum Mol Genet ; 27(8): 1434-1446, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462312

RESUMEN

Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.


Asunto(s)
Agrina/metabolismo , Neuronas Motoras/metabolismo , Debilidad Muscular/genética , Síndromes Miasténicos Congénitos/genética , Miosinas/genética , Factor de Crecimiento Nervioso/genética , Unión Neuromuscular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/metabolismo , Agrina/genética , Amidas , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Embrión no Mamífero , Inhibidores Enzimáticos , Regulación de la Expresión Génica , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/ultraestructura , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Miosinas/deficiencia , Factor de Crecimiento Nervioso/metabolismo , Unión Neuromuscular/ultraestructura , Transporte de Proteínas , Piridinas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Pez Cebra , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA