RESUMEN
Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.
Asunto(s)
Camellia sinensis/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Té/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Carboxiliasas/metabolismo , Frío , Respuesta al Choque por Frío/fisiología , Óxidos N-Cíclicos/metabolismo , Glutamato Descarboxilasa/metabolismo , Imidazoles/metabolismo , Donantes de Óxido Nítrico/metabolismo , Ornitina Descarboxilasa/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Putrescina/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Espermidina/metabolismo , Espermina/metabolismoRESUMEN
After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids, and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Separate treatments with an insect cytokine, 2 biogenic amines, and an eicosanoid lead to a single result, hemocyte spreading, understood in terms of intracellular cross-talk among these signaling systems. This study focuses on the cross-talk between NO and eicosanoid signaling in our model insect, Spodoptera exigua. Bacterial injection increased NO concentrations in the larval hemocytes and fat body, and RNA interference (RNAi) of the S. exigua NO synthase (NOS) gene suppressed NO concentrations. RNAi treatment also led to a significant reduction in hemocyte nodulation following bacterial injection. Similar RNAi treatments led to significantly reduced PLA2 activities in the hemocytes and fat body compared to control larvae. Injection of L-NAME also prevented the induction of PLA2 activity following bacterial challenge. An injected NO donor, S-nitroso-N-acetyl-DL-penicillamine, increased PLA2 activity in a dose-dependent manner. However, eicosanoids did not influence NO concentrations in immune-challenged larvae. We infer that NO and eicosanoid signaling operate via cross-talk mechanisms in which the elevated NO concentrations activate PLA2 and eicosanoid biosynthesis, which finally mediates various immune responses.
Asunto(s)
Infecciones por Bacterias Gramnegativas/inmunología , Hemocitos/inmunología , Proteínas de Insectos/metabolismo , Óxido Nítrico/metabolismo , Fosfolipasas A2/metabolismo , Spodoptera/inmunología , Xenorhabdus/inmunología , Animales , Comunicación Celular , Células Cultivadas , Inmunidad Celular , Larva , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , ARN Interferente Pequeño/genética , Receptor Cross-Talk , S-Nitroso-N-Acetilpenicilamina/metabolismo , Transducción de SeñalRESUMEN
PURPOSE: In a previous work, we have synthetized a new dinitrosothiol, i.e. S,S'-dinitrosobucillamine BUC(NO)2 combining S-nitroso-N-acetylpenicillamine (SNAP) and S-nitroso-N-acetylcysteine (NACNO) in its structure. When exposed to isolated aorta, we observed a 1.5-fold increase of â¢NO content and a more potent vasorelaxation (1 log higher pD2) compared to NACNO and SNAP alone or combined (Dahboul et al., 2014). In the present study, we analyzed the thermodynamics and kinetics for the release of â¢NO through computational modeling techniques and correlated it to plasma assays. Then BUC(NO)2 was administered in vivo to rats, assuming it will induce higher and/or longer hypotensive effects than its two constitutive S-mononitrosothiols. METHODS: Free energies for the release of â¢NO entities have been computed at the density functional theory level assuming an implicit model for the aqueous environment. Degradation products of BUC(NO)2 were evaluated in vitro under heating and oxidizing conditions using HPLC coupled with tandem mass spectrometry (MS/MS). Plasma from rats were spiked with RSNO and kinetics of RSNO degradation was measured using the classical Griess-Saville method. Blood pressure was measured in awake male Wistar rats using telemetry (n = 5, each as its own control, 48 h wash-out periods between subcutaneous injections under transient isoflurane anesthesia, random order: 7 mL/kg vehicle, 3.5, 7, 14 µmol/kg SNAP, NACNO, BUC(NO)2 and an equimolar mixture of SNAP + NACNO in order to mimic the number of â¢NO contained in BUC(NO)2). Variations of mean (ΔMAP, reflecting arterial dilation) and pulse arterial pressures (ΔPAP, indirectly reflecting venodilation, used to determine effect duration) vs. baseline were recorded for 4 h. RESULTS: Computational modeling highlights the fact that the release of the first â¢NO radical in BUC(NO)2 requires a free energy which is intermediate between the values obtained for SNAP and NACNO. However, the release of the second â¢NO radical is significantly favored by the concerted formation of an intramolecular disulfide bond. The corresponding oxidized compound was also characterized as related substance obtained under degradation conditions. The in vitro degradation rate of BUC(NO)2 was significantly greater than for the other RSNO. For equivalent low and medium â¢NO-load, BUC(NO)2 produced a hypotension identical to NACNO, SNAP and the equimolar mixture of SNAP + NACNO, but its effect was greater at higher doses (-62 ± 8 and -47 ± 14 mmHg, maximum ΔMAP for BUC(NO)2 and SNAP + NACNO, respectively). Its duration of effect on PAP (-50%) lasted from 35 to 95 min, i.e. shorter than for the other RSNO (from 90 to 135 min for the mixture SNAP + NACNO). CONCLUSION: A faster metabolism explains the abilities of BUC(NO)2 to release higher amounts of â¢NO and to induce larger hypotension but shorter-lasting effects than those induced by the SNAP + NACNO mixture, despite an equivalent â¢NO-load.
Asunto(s)
Antihipertensivos/uso terapéutico , Cisteína/análogos & derivados , Hipertensión/tratamiento farmacológico , Donantes de Óxido Nítrico/uso terapéutico , Compuestos Nitrosos/uso terapéutico , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Acetilcisteína/uso terapéutico , Animales , Antihipertensivos/sangre , Antihipertensivos/química , Antihipertensivos/metabolismo , Presión Arterial/efectos de los fármacos , Simulación por Computador , Cisteína/sangre , Cisteína/química , Cisteína/metabolismo , Cisteína/uso terapéutico , Cinética , Masculino , Modelos Químicos , Donantes de Óxido Nítrico/sangre , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/metabolismo , Compuestos Nitrosos/sangre , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , S-Nitroso-N-Acetilpenicilamina/uso terapéuticoRESUMEN
BACKGROUND: Diabetic retinopathy is a leading cause of blindness. The objective was to design a novel fusion protein, Tat PTD-Endostatin-RGD, to treat retinal neovascularization via eye drops instead of traditional intravitreal injection trepapeutical methods. METHOD: The anti-angiogenesis ability was evaluated in vitro by chick embryo chorioallantoic membrane assay, wound healing assay and tube formation assay. Corneal barrier and blood-retina barrier were constructed in vitro to investigate the penetration ability of Tat PTD-Endostatin-RGD. Western blot was used to detect the integrin αvß3 expression level in rat retina microvascular endothelial cells which was stimulated by S-nitroso-N-acetylpenicillamine. The binding affinity of Tat PTD-Endostatin-RGD to integrin αvß3 was investigated by evaluating the penetration ability on blood-retina barriers treated with S-nitroso-N-acetylpenicillamine. The pharmacodynamics and efficacy analysis were further carried out in the oxygen-induced retinopathy model in vivo. In addition, the pharmacokinetic profile via eye drops was studied on a C57BL/6 mice model. RESULT: Tat PTD-Endostatin-RGD showed high anti-angiogenesis activity and high ability to penetrate these two barriers in vitro. The Western blot results indicated S-nitroso-N-acetylpenicillamine upregulated the expression level of integrin αvß3 in a dose-dependent manner. Tat PTD-Endostatin-RGD showed a high affinity to rat retina microvascular endothelial cells treated with S-nitroso-N-acetylpenicillamine. The results showed that Tat PTD-Endostatin-RGD could inhibit abnormal angiogenesis in retina via eye drops. CONCLUSION: Tat PTD-Endostatin-RGD showed high penetration ability through ocular barriers, bound specifically to integrin αvß3 and effectively inhibited the abnormal angiogenesis. GENERAL SIGNIFICANCE: Tat PTD-Endostatin-RGD represents a potent novel drug applied via eye drops for fundus oculi neovascularization diseases.
Asunto(s)
Retinopatía Diabética/tratamiento farmacológico , Endostatinas/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Oligopéptidos/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Neovascularización Retiniana/tratamiento farmacológico , Animales , Barrera Hematorretinal/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Endostatinas/metabolismo , Humanos , Integrina alfaVbeta3/biosíntesis , Integrina alfaVbeta3/genética , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Oligopéptidos/metabolismo , Soluciones Oftálmicas/administración & dosificación , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Retina/efectos de los fármacos , Retina/patología , Neovascularización Retiniana/patología , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , S-Nitroso-N-Acetilpenicilamina/metabolismoRESUMEN
Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of interest to exogenous NO. Because of the complex equilibria that exist between components in culture media, the donor compound and NO itself, it is very challenging to predict the dose and duration of NO cells actually experience. To determine the actual level of NO experienced by cells exposed to soluble NO donors, we developed the CellNO Trap, a device that allows continuous, real-time monitoring of the level of NO adherent cells produce and/or experience in culture without the need to alter cell culturing procedures. Herein, we directly measured the level of NO that cells grown in the CellNO Trap experienced when soluble NO donors were added to solutions in culture wells and we characterized environmental conditions that effected the level of NO in in vitro culture conditions. Specifically, the dose and duration of NO generated by the soluble donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and the diazeniumdiolate diethyltriamine (DETA/NO) were investigated in both phosphate buffered saline (PBS) and cell culture media. Other factors that were studied that potentially affect the ultimate NO level achieved with these donors included pH, presence of transition metals (ion species), redox level, presence of free thiol and relative volume of media. Then murine smooth muscle cell (MOVAS) with different NO donors but with the same effective concentration of available NO were examined and it was demonstrated that the cell proliferation ratio observed does not correlate with the half-lives of NO donors characterized in PBS, but does correlate well with the real-time NO profiles measured under the actual culture conditions. This data demonstrates the dynamic characteristic of the NO and NO donor in different biological systems and clearly illustrates the importance of tracking individual NO profiles under the actual biological conditions.
Asunto(s)
Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Animales , Dióxido de Carbono/metabolismo , Proliferación Celular , Células Cultivadas , Concentración de Iones de Hidrógeno , Iones/metabolismo , Metales/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Donantes de Óxido Nítrico/química , Compuestos Nitrosos , Oxidación-Reducción , S-Nitroso-N-Acetilpenicilamina/metabolismo , Solubilidad , Compuestos de SulfhidriloRESUMEN
BACKGROUND: Thrombospondin 1 (TSP-1) induces vascular smooth muscle cell (VSMC) migration and intimal hyperplasia. Statins and nitric oxide (NO) donors decrease intimal hyperplasia. We previously showed that statins (long-term exposure) and NO donors inhibit TSP-1-induced VSMC chemotaxis. HYPOTHESES: (1) Pretreatment with short-term statin will inhibit TSP-1-induced VSMC chemotaxis and (2) NO donors will enhance statin inhibition of TSP-1-induced or platelet-derived growth factor (PDGF)-induced VSMC chemotaxis. METHODS: We examined these treatment effects on TSP-1-induced VSMC chemotaxis: (1) long-term (20 hours) versus short-term (20 minutes) pravastatin, (2) diethylenetriamine NONOate (DETA/NO) or S-nitroso-N-acetylpenicillamine (SNAP) in combination with pravastatin, and (3) comparison of TSP-1 to PDGF as a chemoattractant. RESULTS: Pravastatin (long term or short term) inhibited TSP-1-induced chemotaxis. Diethylenetriamine NONOate and SNAP impeded statin inhibition of TSP-1-induced chemotaxis. Platelet-derived growth factor and TSP-1 had opposite effects on DETA/NO-pravastatin treatment. CONCLUSION: Short-term statin pretreatment inhibited TSP-1-induced VSMC chemotaxis, suggesting a pleiotropic effect. High-dose NO reversed statin inhibition of TSP-1-induced chemotaxis, suggesting NO and statin combination therapies warrant further study.
Asunto(s)
Quimiotaxis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Compuestos Nitrosos/farmacología , Pravastatina/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Trombospondina 1/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Compuestos Nitrosos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , S-Nitroso-N-Acetilpenicilamina/metabolismo , Factores de TiempoRESUMEN
We have recently developed tert-dodecane S-nitrosothiol (tDodSNO) as a photoactivated nitric oxide (NO) donor. We here compare the potency of tDodSNO to S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP), drugs which are also based upon the S-nitrosothiol functionality and have been extensively used for NO release studies. Photoactivation in vitro, at a clinically relevant light fluence rate (200W/m(2)), demonstrated that tDodSNO released much higher levels of NO than either GSNO or SNAP. When evaluated in an ex vivo aortic ring vasorelaxation assay, tDodSNO was also the only drug to exhibit a photodynamic response, with an 8 fold decrease in EC50 (8.1-1.0µM) upon irradiation. While both GSNO and SNAP induced NO dependent vasorelaxation at lower concentrations than tDodSNO (EC50׳s of 158 and 38nM respectively), this activity was due to their rapid metabolic decomposition, and could not be modulated by photoactivation. Additionally, tDodSNO׳s photodynamic response allowed vascular tone to be directly regulated by light intensity. Molecular modeling of drug properties suggested that these differences in activity could be attributed to a combination of an increase in tDodSNO׳s hydrophobicity, and substantial steric shielding of molecule׳s S-nitrosothiol group from solvent interactions. In conclusion, our study demonstrates that tDodSNO is currently the most effective known s-nitrosothiol for phototherapeutic applications.
Asunto(s)
Diseño de Fármacos , Donantes de Óxido Nítrico/metabolismo , Procesos Fotoquímicos , S-Nitroso-N-Acetilpenicilamina/metabolismo , S-Nitrosoglutatión/metabolismo , S-Nitrosotioles/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiología , Fenómenos Químicos , Guanilato Ciclasa/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Modelos Moleculares , Conformación Molecular , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Fotoquimioterapia , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , S-Nitrosotioles/química , S-Nitrosotioles/farmacología , Guanilil Ciclasa Soluble , Vasoconstricción/efectos de los fármacosRESUMEN
Hydrogen peroxide (H2O2), a member of reactive oxygen species (ROS), plays diverse physiological roles including host defense and cellular signal transduction. During ingestion of invading microorganisms, professional phagocytes such as macrophages release H2O2 specifically into the phagosome to direct toxic ROS toward engulfed microbes. Although H2O2 is considered to exert discrete effects in living systems depending on location of its production, accumulation, and consumption, there have been limitations of techniques for probing this oxygen metabolite with high molecular specificity at the subcellular resolution. Here we describe the development of an O(6)-benzylguanine derivative of 5-(4-nitrobenzoyl)carbonylfluorescein (NBzF-BG), a novel H2O2-specific fluorescent probe; NBzF-BG is covalently and selectively conjugated with the SNAP-tag protein, leading to formation of the fluorophore-protein conjugate (SNAP-NBzF). SNAP-NBzF rapidly reacts with H2O2 and thereby shows a 9-fold enhancement in fluorescence. When SNAP-tag is expressed in HEK293T cells and RAW264.7 macrophages as a protein C-terminally fused to the transmembrane domain of platelet-derived growth factor receptor (PDGFR), the tag is presented on the outside of the plasma membrane; conjugation of NBzF-BG with the cell surface SNAP-tag enables detection of H2O2 added exogenously. We also demonstrate molecular imaging of H2O2 that is endogenously produced in phagosomes of macrophages ingesting IgG-coated latex beads. Thus, NBzF-BG, combined with the SNAP-tag technology, should be useful as a tool to measure local production of H2O2 in living cells.
Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno/metabolismo , Fagosomas/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Fagocitosis , Espectrofotometría UltravioletaRESUMEN
Peroxiredoxins contribute to protection of some bacteria against reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs). Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with ROIs and RNIs during infection. In this study, we investigated the involvement of the 2-Cys peroxiredoxin (Prx) homologue in L. monocytogenes in the protection against ROIs and RNIs and in virulence through the construction of an in-frame prx deletion mutant. The Δprx mutant had increased sensitivity to hydrogen peroxide and cumene hydroperoxide compared to the wild-type strain. The mutant also exhibited an increased susceptibility to the nitric oxide-generating compound S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine hydrochloride (SIN-1), a peroxynitrite donor. Furthermore, a diminished virulence of the Δprx mutant relative to the wild-type was observed in C57BL/6 mice, but not in inducible nitric oxide synthase-deficient mice. The results suggest that Prx protects L. monocytogenes against oxidative and nitrosative stress in vitro and in vivo and that the prx-encoded polypeptide thereby is involved in L. monocytogenes virulence.
Asunto(s)
Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Estrés Oxidativo/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Virulencia/genética , Animales , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismoRESUMEN
Using a murine model, we evaluated the growth of ectopic endometrial tissue in the presence of T helper 1 (Th1) or Th2 cytokines or a nitric oxide donor (S-nitroso-N-acetyl-penicillamine [SNAP]). Female mice were autografted with endometrial tissue in the peritoneum. Different combinations and concentrations of cytokines or SNAP were injected intraperitoneally for 8 weeks. Implants were recovered, measured, and weighed. Cytokines were determined in plasma. Implants (weight and area) were smaller in mice that received interferon γ plus interleukin 2 (IFN-γ + IL-2) compared to mice treated with IL-2, IL-4 + IL-10 or saline solution, and saline solution compared to different concentrations of SNAP. The IL-2, IFN-γ, and IL-4 concentrations in plasma decreased in accordance with the increase in SNAP concentrations compared to saline solution. The promotion of a Th1 milieu in the peritoneum reduced the weight and area of the implant. Different concentrations of SNAP suppressed Th1 and Th2 cytokines and enabled the growth of the implant in this murine model.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Citocinas/farmacología , Endometrio/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Células TH1/efectos de los fármacos , Células Th2/efectos de los fármacos , Animales , Citocinas/administración & dosificación , Citocinas/sangre , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endometrio/inmunología , Endometrio/metabolismo , Endometrio/patología , Endometrio/trasplante , Femenino , Inyecciones Intraperitoneales , Interferón gamma/farmacología , Interleucina-2/farmacología , Interleucina-4/farmacología , Ratones , Ratones Endogámicos BALB C , Donantes de Óxido Nítrico/administración & dosificación , Donantes de Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/administración & dosificación , S-Nitroso-N-Acetilpenicilamina/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Factores de TiempoRESUMEN
Although the NLRP3 inflammasome plays a pivotal role in host defense, its uncontrolled activation is associated with inflammatory disorders, suggesting that regulation of the inflammasome is important to prevent detrimental effects. Type I IFNs and long-term LPS stimulation were shown to negatively regulate NLRP3 activation. In this study, we found that endogenous NO is involved in the regulation of NLRP3 inflammasome activation by either IFN-ß pretreatment or long-term LPS stimulation. Furthermore, S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, markedly inhibited NLRP3 inflammasome activation, whereas the AIM2 and NLRC4 inflammasomes were only partially inhibited by SNAP. An increase in mitochondrial reactive oxygen species induced by ATP was only modestly affected by SNAP treatment. Interestingly, S-nitrosylation of NLRP3 was detected in macrophages treated with SNAP, and this modification may account for the NO-mediated mechanism controlling inflammasome activation. Taken together, these results revealed a novel role for NO in regulating the NLRP3 inflammasome.
Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Inflamasomas/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Adenosina Trifosfato/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Células Cultivadas , Proteínas de Unión al ADN , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Inflamasomas/inmunología , Interferón beta/inmunología , Interferón beta/farmacología , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Especies Reactivas de Oxígeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunologíaRESUMEN
Despite the documented potential to leverage nitric oxide generation to improve in vivo performance of implanted devices, a key limitation to current NO releasing materials tested thus far is that there has not been a means to modulate the level of NO release after it has been initiated. We report the fabrication of a wireless platform that uses light to release NO from a polymethylmethacrylate (PMMA) optical fiber coated with an S-nitroso-N-acetylpenicillamine derivatized polydimethylsiloxane (SNAP-PDMS). We demonstrate that a VAOL-5GSBY4 LED (λ(dominant)=460 nm) can be used as a dynamic trigger to vary the level of NO released from 500 µm diameter coated PMMA. The ability to generate programmable sequences of NO flux from the surface of these coated fibers offers precise spatial and temporal control over NO release and provides a platform to begin the systematic study of in vivo physiological response to implanted devices. NO surface fluxes up to 3.88 ± 0.57 × 10(-10)mol cm(-2)min(-1) were achieved with -100 µm thick coatings on the fibers and NO flux was pulsed, ramped and held steady using the wireless platform developed. We demonstrate the NO release is linearly proportional to the drive current applied to the LED (and therefore level of light produced from the LED). This system allow the surface flux of NO from the fibers to be continuously changed, providing a means to determine the level and duration of NO needed to mediate physiological response to blood contacting and subcutaneous implants and will ultimately lead to the intelligent design of NO releasing materials tailored to specific patterns of NO release needed to achieve reliable in vivo performance for intravascular and subcutaneous sensors and potentially for a wide variety of other implanted biomedical devices.
Asunto(s)
Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/química , Fibras Ópticas , S-Nitroso-N-Acetilpenicilamina/metabolismo , Preparaciones de Acción Retardada , Dimetilpolisiloxanos/química , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/química , Polimetil Metacrilato/química , Prótesis e Implantes , S-Nitroso-N-Acetilpenicilamina/químicaRESUMEN
The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (â¢NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to â¢NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of â¢NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/â¢NO but failed to exert similar effects in the cells challenged only with â¢NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and â¢NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to â¢NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and â¢NO and the critical role of GSH in maintaining a functional mitochondria.
Asunto(s)
Ácido 3,4-Dihidroxifenilacético/farmacología , Muerte Celular/efectos de los fármacos , Glutatión/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Acetilcisteína/metabolismo , Animales , Dopamina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Radicales Libres/metabolismo , Glutatión/análogos & derivados , Donantes de Óxido Nítrico/metabolismo , Oxidación-Reducción , Células PC12 , Enfermedad de Parkinson/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
ßig-h3 is a TGF-ß (transforming growth factor ß)-induced ECM (extracellular matrix) protein that induces the secretion of MMPs (matrix metalloproteinases). However, the mechanism of induction is yet to be established. In this study, siRNAs (small interfering RNAs) targeted against ßig-h3 were transfected into SMMC-7721 cells [a HCC (human hepatocellular carcinoma) cell line] to knockdown the expression of ßig-h3. We found that NiCl2, a potent blocker of extracellular Ca2+ entry, reduced ßig-h3-induced secretion of MMP-2 and -9. Further investigation suggested that reduction in the levels of ßig-h3 decreased the secretion of MMP-2 and -9 that was enhanced by an increase in the concentration of extracellular Ca2+. SNAP (S-nitroso-N-acetylpenicillamine), a NO (nitric oxide) donor, and 8-Br-cGMP (8-bromo-cGMP) inhibited thapsigargin-induced Ca2+ entry and MMP secretion in the invasive potential of human SMMC-7721 cells. Further, the inhibitory effects of 8-Br-cGMP and SNAP could be significantly enhanced by down-regulating ßig-h3. ßig-h3 attenuates the negative regulation of NO/cGMP-sensitive store-operated Ca2+ entry. Our findings suggest that the expression of ßig-h3 might play an important role in the regulation of store-operated Ca2+ entry to increase the invasive potential of HCC cells.
Asunto(s)
Calcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Níquel/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Nitroso-N-Acetilpenicilamina/metabolismo , Tapsigargina/farmacología , TransfecciónRESUMEN
In the brain, the mu-opioid receptor (MOR) activates neural nitric oxide synthase (nNOS) through the PI3K/Akt pathway. The resulting nitric oxide (NO) enhances the function of the glutamate N-methyl-d-aspartate receptor (NMDAR)/calcium and calmodulin-dependent serine/threonine kinase (CaMKII), which subsequently diminishes MOR signaling strength. Because the ERK1/2 cascade is implicated in opioid tolerance, we analyzed the role of morphine-generated NO in this negative regulation. We found that NO-released endogenous zinc ions recruit the Ras/Raf-1/ERK1/2 cassette to histidine triad nucleotide-binding protein 1 (HINT1). A-Raf and B-Raf showed little or no MOR association. The zinc ions bridge the Raf-1 cysteine-rich domain (CRD) with HINT1 at the MOR C-terminus. Morphine also recruits PKCγ via NO/zinc to the MOR-HINT1 complex. Both Raf-1 and PKCγ CRDs bind simultaneously to HINT1, enabling PKCγ to enhance Raf-1 function to intensify MEK/ERK1/2 activation. Thus, through attached HINT1, the MOR facilitates the cross-talk of two NO- and zinc-regulated signal-transduction pathways, PKC/Src and Raf-1/ERK1/2, implicated in the negative control of morphine effects. This study reveals new aspects of ERK1/2 regulation by the MOR without requiring the transactivation of a receptor tyrosine kinase.
Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/fisiología , Zinc/metabolismo , Analgésicos Opioides/metabolismo , Animales , Quelantes/metabolismo , Etilenodiaminas/metabolismo , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Morfina/metabolismo , Naftalenos/metabolismo , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nitrocompuestos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , S-Nitroso-N-Acetilpenicilamina/metabolismoRESUMEN
Formation of nitric oxide and its derivative reactive nitrogen species during endotoxemia has been implicated in the pathogenesis of the associated cardiovascular dysfunction. This stress can promote nitrosative post-translational modifications of proteins that may alter their activity and contribute to dysregulation. We utilized the ascorbate-dependent biotin-switch method to assay protein S-nitrosylation and immunoblotted for tyrosine nitration to monitor changes in nitrosative protein oxidation during endotoxemia. Hearts from lipopolysaccharide (LPS)-treated rats showed no apparent variation in global protein S-nitrosylation, but this may be due to the poor sensitivity of the biotin-switch method. To sensitize our monitoring of protein S-nitrosylation we exposed isolated hearts to the efficient trans-nitrosylating agent nitrosocysteine (which generated a robust biotin-switch signal) and then identified a number of target proteins using mass spectrometry. We were then able to probe for these target proteins in affinity-capture preparations of S-nitrosylated proteins prepared from vehicle- or LPS-treated animals. Unexpectedly this showed a time-dependent loss in S-nitrosylation during sepsis, which we hypothesized, may be due to concomitant superoxide formation that may lower nitric oxide but simultaneously generate the tyrosine-nitrating agent peroxynitrite. Indeed, this was confirmed by immunoblotting for global tyrosine nitration, which increased time-dependently and temporally correlated with a decrease in mean arterial pressure. We assessed if tyrosine nitration was causative in lowering blood pressure using the putative peroxynitrite scavenger FeTPPS. However, FeTPPS was ineffective in reducing global protein nitration and actually exacerbated LPS-induced hypotension.
Asunto(s)
Endotoxemia/metabolismo , Corazón/efectos de los fármacos , Lipopolisacáridos/farmacología , Procesamiento Proteico-Postraduccional , Animales , Biotina/metabolismo , Presión Sanguínea , Cisteína/metabolismo , Cisteína/farmacología , Escherichia coli/química , Células HEK293 , Humanos , Hipotensión , Immunoblotting , Técnicas In Vitro , Lipopolisacáridos/metabolismo , Espectrometría de Masas , Metaloporfirinas/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Ácido Peroxinitroso/metabolismo , Proteínas/química , Proteínas/metabolismo , Ratas , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , Sensibilidad y Especificidad , Sepsis/metabolismo , Transducción de Señal , Telemetría , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMEN
S-nitrosylation, a post-translational modification of cysteine residues induced by nitric oxide, mediates many physiological functions. Due to the labile nature of S-nitrosylation, detection by mass spectrometry (MS) is challenging. Here, we developed an S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion efficiency for improved peptide identification using MS analyses. Using this strategy, we identified total 586 unique S-nitrosylation sites corresponding to 384 proteins in S-nitroso-N-acetylpenicillamine (SNAP)/l-cysteine-treated mouse MS-1 endothelial cells, including 234 previously unreported S-nitrosylated proteins. When the topologies of 84 identified transmembrane proteins were further analyzed, their S-nitrosylation sites were found to mostly face the cytoplasmic side, implying that S-nitrosylation occurs in the cytoplasm. In addition to the previously known acid/basic motifs, the ten deduced consensus motifs suggested that combination of local hydrophobicity and acid/base motifs in the tertiary structure contribute to the specificity of S-nitrosylation. Moreover, the S-nitrosylated cysteines showed preference on beta-strand, having lower relative surface accessibility at the S-nitrosocysteines.
Asunto(s)
Biotinilación/métodos , Cisteína/análogos & derivados , Proteoma/análisis , Proteómica/métodos , S-Nitrosotioles/metabolismo , Animales , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Cromatografía Liquida , Cisteína/metabolismo , Ratones , Proteoma/clasificación , Proteoma/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The role of NO in regulating the focal adhesion proteins, Src, FAK, p130 Cas, and PTP-alpha, was investigated. Fibroblasts expressing PTP-alpha (PTP-alpha(WT) cells), fibroblasts "knockout" for PTP-alpha (PTP-alpha(-/-) cells), and "rescued" "knockout" fibroblasts (PTP-alpha A5/3 cells) were stimulated with either S-nitroso-N-acetylpenicillamine (SNAP) or fetal bovine serum (FBS). FBS increased inducible NO synthase in both cell lines. Activation of Src mediated either by SNAP or by FBS occurred independent of dephosphorylation of Tyr527 in PTP-alpha(-/-) cells. Both stimuli promoted dephosphorylation of Tyr527 and activation of Src kinase in PTP-alpha(WT) cells. NO-mediated activation of Src kinase affected the activities of FAK and p130Cas and was dependent on the expression of PTP-alpha. Analogous to tyrosine phosphorylation, SNAP and FBS stimulated differential generation of NO and S-nitrosylation of Src kinase in both cell lines. Incubation with SNAP resulted in higher levels of NO and S-nitrosylation of immunoprecipitated Src in PTP-alpha(-/-) cells (oxidizing redox environment) as compared with the levels of NO and S-nitrosylated Src in PTP-alpha(WT) cells (reducing redox environment). SNAP differentially stimulated cell proliferation of both cell lines is dependent on the intracellular redox environment, Src activity, and PTP-alpha expression. This dependence also is observed with FBS-stimulated cell migration.
Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Óxido Nítrico/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Familia-src Quinasas/metabolismo , Animales , Bovinos , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteína Sustrato Asociada a CrK/genética , Fibroblastos/citología , Fibroblastos/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Ratones , Ratones Noqueados , Óxido Nítrico/genética , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , S-Nitroso-N-Acetilpenicilamina/metabolismo , Familia-src Quinasas/genéticaRESUMEN
The transnitrosylating nitric oxide (NO) donor nitrocysteine (CysNO) induced a disulfide bond between the two regulatory RI subunits of protein kinase A (PKA). The conventional NO donor S-nitroso-N-acetylpenicillamine failed to do this, consistent with our observation that it also did not promote protein S-nitrosylation. This disulfide oxidation event activated PKA and induced vasorelaxation independently of the classical beta-adrenergic or NO signaling pathway. Activation of PKA had also been anticipated to exert a positive inotropic effect on the myocardium but did not. The lack of positive inotropy was explained by CysNO concomitantly activating protein kinase G (PKG) Ialpha. PKG was found to exert a partial negative inotropic influence regardless of whether PKA was activated by classical beta-receptor stimulation or by disulfide bond formation. This work demonstrates that NO molecules that can induce S-nitrosylation directly activate type I PKA, providing a novel cross-talk to beta-adrenergic-like signaling without receptor or adenylate cyclase stimulation. However, the expected positive inotropic consequences of PKA activation by this novel mechanism are countermanded by the simultaneous dual activation of PKGIalpha, which is also activated by CysNO.
Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Masculino , Donantes de Óxido Nítrico/farmacología , Nitrocompuestos/metabolismo , Ratas , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiologíaRESUMEN
BACKGROUND: The role of the diffusible messenger nitric oxide (NO) in the regulation of pain transmission is still a debate of matter, pro-nociceptive and/or anti-nociceptive. S-Nitrosylation, the reversible post-translational modification of selective cysteine residues in proteins, has emerged as an important mechanism by which NO acts as a signaling molecule. The occurrence of S-nitrosylation in the spinal cord and its targets that may modulate pain transmission remain unclarified. The "biotin-switch" method and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were employed for identifying S-nitrosylated proteins. RESULTS: Here we show that actin was a major protein S-nitrosylated in the spinal cord by the NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP). Interestingly, actin was S-nitrosylated, more in the S2 fraction than in the P2 fraction of the spinal homogenate. Treatment of PC12 cells with SNAP caused rapid S-nitrosylation of actin and inhibited dopamine release from the cells. Just like cytochalasin B, which depolymerizes actin, SNAP decreased the amount of filamentous actin cytoskeleton just beneath the membrane. The inhibition of dopamine release was not attenuated by inhibitors of soluble guanylyl cyclase and cGMP-dependent protein kinase. CONCLUSION: The present study demonstrates that actin is a major S-nitrosylated protein in the spinal cord and suggests that NO directly regulates neurotransmitter release by S-nitrosylation in addition to the well-known phosphorylation by cGMP-dependent protein kinase.