Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Microbiol ; 59(6): 598-608, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34052992

RESUMEN

Aroma ester components produced by fermenting yeast cells via alcohol acetyltransferase (AATase)-catalyzed intracellular reactions are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. Acetate esters are reportedly produced at relatively high concentrations by non-Saccharomyces species. Here, we identified 12 ATF orthologues (SfATFs) encoding putative AATases, in the diploid genome of Saccharomycopsis fibuligera KJJ81, an isolate from wheat-based Nuruk in Korea. The identified SfATF proteins (SfAtfp) display low sequence identities with S. cerevisiae Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except SfAtf(A)4p and SfAtf(B)4p, contained the activation domain (HXXXD) conserved in other Atf proteins. Culture supernatant analysis using headspace gas chromatography mass spectrometry confirmed that the recombinant S. cerevisiae strains expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced high levels of isoamyl and phenethyl acetates. The volatile aroma profiles generated by the SfAtf proteins were distinctive from that of S. cerevisiae Atf1p, implying difference in the substrate preference. Cellular localization analysis using GFP fusion revealed the localization of SfAtf proteins proximal to the lipid particles, consistent with the presence of amphipathic helices at their N- and C-termini. This is the first report that systematically characterizes the S. fibuligera ATF genes encoding functional AATases responsible for acetate ester formation using higher alcohols as substrate, demonstrating their biotechnological potential for volatile ester production.


Asunto(s)
Acetatos/metabolismo , Ésteres/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas/metabolismo , Saccharomycopsis/enzimología , Secuencia de Aminoácidos , Fermentación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycopsis/química , Saccharomycopsis/genética , Saccharomycopsis/metabolismo , Alineación de Secuencia , Vino/análisis , Vino/microbiología
2.
J Microbiol Biotechnol ; 31(2): 272-279, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397826

RESUMEN

Two genes encoding probable α-L-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45°C and pH 7.0 in sodium phosphate buffer and at 50°C and pH 6.0 in sodium acetate buffer, respectively. These exo-acting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only L-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)-and α-(1,3)-L-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)-and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.


Asunto(s)
Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Oligosacáridos/metabolismo , Saccharomycopsis/enzimología , Catálisis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Oligosacáridos/química , Saccharomycopsis/química , Saccharomycopsis/genética , Saccharomycopsis/metabolismo , Especificidad por Sustrato
3.
World J Microbiol Biotechnol ; 33(7): 140, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28589508

RESUMEN

We describe a procedure by which filter paper is digested with a cellulolytic enzyme preparation, obtained from Trichoderma reesei cultivated under solid state fermentation conditions and then fermented by a recombinant Saccharomyces cerevisiae strain. The yeast strain produces a ß-glucosidase encoded by the BGL1 gene from Saccharomycopsis fibuligera that quantitatively and qualitatively complements the limitations that the Trichoderma enzyme complex shows for this particular activity. The supplemental ß-glucosidase activity fuels the progression of cellulose hydrolysis and fermentation by decreasing the inhibitory effects caused by the accumulation of cellobiose and glucose. Fermentation of filter paper by this procedure yields ethanol concentrations above 70 g/L.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , beta-Glucosidasa/metabolismo , Biocombustibles/microbiología , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Glucosa/metabolismo , Hidrólisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Trichoderma/enzimología , Trichoderma/crecimiento & desarrollo , beta-Glucosidasa/genética
4.
Appl Microbiol Biotechnol ; 100(1): 505-18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26450509

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment receptor proteins (SNAREs) are essential components of the yeast protein-trafficking machinery and are required at the majority of membrane fusion events in the cell, where they facilitate SNARE-mediated fusion between the protein transport vesicles, the various membrane-enclosed organelles and, ultimately, the plasma membrane. We have demonstrated an increase in secretory titers for the Talaromyces emersonii Cel7A (Te-Cel7A, a cellobiohydrolase) and the Saccharomycopsis fibuligera Cel3A (Sf-Cel3A, a ß-glucosidase) expressed in Saccharomyces cerevisiae through single and co-overexpression of some of the endoplasmic reticulum (ER)-to-Golgi SNAREs (BOS1, BET1, SEC22 and SED5). Overexpression of SED5 yielded the biggest improvements for both of the cellulolytic reporter proteins tested, with maximum increases in extracellular enzyme activity of 22 % for the Sf-Cel3A and 68 % for the Te-Cel7A. Co-overexpression of the ER-to-Golgi SNAREs yielded proportionately smaller increases for the Te-Cel7A (46 %), with the Sf-Cel3A yielding no improvement. Co-overexpression of the most promising exocytic SNARE components identified in literature for secretory enhancement of the cellulolytic proteins tested (SSO1 for Sf-Cel3A and SNC1 for Te-Cel7A) with the most effective ER-to-Golgi SNARE components identified in this study (SED5 for both Sf-Cel3A and Te-Cel7A) yielded variable results, with Sf-Cel3A improved by 131 % and Te-Cel7A yielding no improvement. Improvements were largely independent of gene dosage as all strains only integrated single additional SNARE gene copies, with episomal variance between the most improved strains shown to be insignificant. This study has added further credence to the notion that SNARE proteins fulfil an essential role within a larger cascade of secretory machinery components that could contribute significantly to future improvements to S. cerevisiae as protein production host.


Asunto(s)
Celulasa/metabolismo , Expresión Génica , Proteínas SNARE/biosíntesis , Saccharomyces cerevisiae/metabolismo , Celulasa/genética , Eurotiales/enzimología , Eurotiales/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomycopsis/enzimología , Saccharomycopsis/genética
5.
J Biotechnol ; 206: 79-88, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25937452

RESUMEN

The ß-glucosidases from Saccharomycopsis fibuligera (SfBGL1) and Trichoderma reesei (TrBGL1) were cloned and expressed in Pichia pastoris. Methanol concentration and pH significantly affected the production. The combined effects of the two factors were optimized by using the response surface method, resulting in a 137% and 84% increase in rTrBGL1 and rSfBGL1 yield compared to single-factor experiment. Structure and biochemical properties of the two enzyme were investigated and compared. They belong to glycosyl hydrolase family 3 and exhibit significant hydrolysis activity and low-level transglycosylation activity. The two enzymes show similar substrate affinity and ion-tolerance, and both of them can be activated by Cr(6+), Mn(2+) and Fe(2+). The rSfBGL1 has greater catalytic speed, higher specific activity and acid-tolerance than rTrBGL1, but rTrBGL1 is more thermostable and has higher optimal temperature than rSfBGL1. This study provides a useful and quick optimal method for recombinant enzyme production and makes a valuable comparison of biochemical properties, which opens important avenues of exploration for relationship between structure and function and further practical applications.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Proteínas Fúngicas/genética , Hidrolasas , Datos de Secuencia Molecular , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Trichoderma/enzimología , Trichoderma/genética , beta-Glucosidasa/genética
6.
J Microbiol Biotechnol ; 25(8): 1324-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25975612

RESUMEN

The nucleotide sequence of the TRP1 gene encoding phosphoribosyl anthranilate isomerase in yeast Saccharomycopsis fibuligera was determined by degenerate polymerase chain reaction and genome walking. Sequence analysis revealed the presence of an uninterrupted open-reading frame of 759 bp, including the stop codon, encoding a 252 amino acid residue. The deduced amino acid sequence of Trp1 in S. fibuligera was 43.5% homologous to that of Komagataella pastoris. The cloned TRP1 gene (SfTRP1) complemented the trp1 mutation in Saccharomyces cerevisiae, suggesting that it encodes a functional TRP1 in S. fibuligera. A new auxotrophic marker to engineer starch-degrading yeast S. fibuligera is now available. The GenBank Accession No. for SfTRP1 is KR078268.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/aislamiento & purificación , Saccharomycopsis/enzimología , Isomerasas Aldosa-Cetosa/deficiencia , Secuencia de Aminoácidos , Clonación Molecular , ADN de Hongos/química , ADN de Hongos/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Saccharomycopsis/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
7.
J Biotechnol ; 195: 8-14, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25533400

RESUMEN

Native enzyme and a mutant containing an extra disulphide bridge of recombinant Saccharomycopsis fibuligera R64 α-amylase, designated as Sfamy01 and Sfamy02, respectively, have successfully been overexpressed in the yeast Pichia pastoris KM71H. The purified α-amylase variants demonstrated starch hydrolysis resulting in a mixture of maltose, maltotriose, and glucose, similar to the wild type enzyme. Introduction of the disulphide bridge shifted the melting temperature (TM) from 54.5 to 56 °C and nearly tripled the enzyme half-life time at 65 °C. The two variants have similar kcat/KM values. Similarly, inhibition by acarbose was only slightly affected, with the IC50 of Sfamy02 for acarbose being 40 ± 3.4 µM, while that of Sfamy01 was 31 ± 3.9 µM. On the other hand, the IC50 of Sfamy02 for EDTA was 0.45 mM, nearly two times lower than that of Sfamy01 at 0.77 mM. These results show that the introduction of a disulphide bridge had little effect on the enzyme activity, but made the enzyme more susceptible to calcium ion extraction. Altogether, the new disulphide bridge improved the enzyme stability without affecting its activity, although minor changes in the active site environment cannot be excluded.


Asunto(s)
Disulfuros/química , Proteínas Fúngicas/química , Proteínas Recombinantes/química , Saccharomycopsis/enzimología , alfa-Amilasas/química , Disulfuros/metabolismo , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Pichia/genética , Pichia/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycopsis/genética , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
8.
Arch Biochem Biophys ; 564: 219-28, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25447817

RESUMEN

Lodderomyces elongisporus LH703 isolated from soil samples contained three novel aldo-keto reductases (AKRs) (LEAKR 48, LEAKR 49, and LEAKR 50). The three enzymes were cloned, expressed, and purified to homogeneity for characterization. These three AKRs shared <40% amino acid identity with each other. LEAKR 50 was identified as a member of AKR3 family, whereas the other two LEAKRs were identified as members of two novel AKR families, respectively. All the three AKRs required nicotinamide adenine dinucleotide phosphate as a cofactor. However, they showed diverse characteristics, including optimum catalyzing conditions, resistance to adverse reaction conditions, and substrate specificity. LEAKR 50 was estimated to be a promising biocatalyst that could reduce ethyl 4-chloroacetoacetate with high enantiomeric excess (98% e. e.) and high activity residue under adverse conditions.


Asunto(s)
Acetoacetatos/química , Aldehído Reductasa/química , Proteínas Fúngicas/química , NAD/química , Saccharomycopsis/enzimología , Aldehído Reductasa/genética , Aldo-Ceto Reductasas , Secuencia de Aminoácidos , Clonación Molecular , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Saccharomycopsis/genética
9.
Mol Biotechnol ; 56(1): 72-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23836443

RESUMEN

It has been reported that trehalose plays an important role in stress tolerance in yeasts. Therefore, in order to construct a stably recombinant Saccharomyces sp. W0 with higher ethanol tolerance, the TPS1 gene encoding 6-phosphate-trehalose synthase cloned from Saccharomycopsis fibuligera A11 was ligated into the 18S rDNA integration vector pMIRSC11 and integrated into chromosomal DNA of Saccharomyces sp. W0. The transformant Z8 obtained had the content of 6.23 g of trehalose/100 g of cell dry weight, while Saccharomyces sp. W0 only contained 4.05 g of trehalose/100 g of cell dry weight. The transformant Z8 also had higher ethanol tolerance (cell survival was 25.1 % at 18 ml of ethanol/100 ml of solution) and trehalose-6-phosphate synthase (Tps1) activity (1.3 U/mg) and produced more ethanol (16.4 ml of ethanol/100 ml of medium) than Saccharomyces sp. W0 (cell survival was 12.1 % at 18 ml of ethanol/100 ml of solution, Tps1 activity was 0.8 U/mg and the produced ethanol concentration was 14.2 ml of ethanol/100 ml of medium) under the same conditions. The results show that trehalose indeed can play an important role in ethanol tolerance and ethanol production by Saccharomyces sp. W0.


Asunto(s)
Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomyces/metabolismo , Saccharomycopsis/genética , Trehalosa/metabolismo , Clonación Molecular , Fermentación , Genes Fúngicos , Saccharomyces/clasificación , Saccharomyces/genética , Saccharomycopsis/clasificación , Saccharomycopsis/enzimología , Transformación Genética
10.
J Microbiol Biotechnol ; 23(11): 1577-85, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23928840

RESUMEN

Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of ß-glucosidase. In this study, three ß-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the ß-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera ß-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the ß-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of ß-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.


Asunto(s)
Celulosa/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/enzimología , beta-Glucosidasa/metabolismo , Fermentación , Expresión Génica , Hidrólisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Trichoderma/enzimología , beta-Glucosidasa/genética
11.
Appl Biochem Biotechnol ; 170(1): 44-57, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468006

RESUMEN

α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.


Asunto(s)
Proteínas Fúngicas/química , Ingeniería de Proteínas/métodos , Saccharomycopsis/química , alfa-Amilasas/química , Anhídridos Acéticos/química , Secuencia de Aminoácidos , Quelantes/química , Reactivos de Enlaces Cruzados/química , Dimetil Adipimidato/química , Estabilidad de Enzimas , Glioxilatos/química , Calor , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Polietilenglicoles/química , Proteolisis , Saccharomycopsis/enzimología , Almidón/metabolismo
12.
Appl Biochem Biotechnol ; 169(7): 1993-2003, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354502

RESUMEN

In this study, the native acid protease gene in Yarrowia lipolytica 22a-2 with high content of protein was disrupted, and the disruptant 3-13-10 obtained had very low acid protease activity. Then, the acid protease gene (AP1 gene) from Saccharomycopsis fibuligera A11 was actively expressed in the disruptant 3-13-10, and the transformant 43 carrying the AP1 gene had high specific acid protease activity (46.7 U/mg). The recombinant acid protease produced by the transformant 43 was found to be able to actively clot milk, and the transformant 43 still kept high content of protein. The hydrolysis products of κ-casein under catalysis of the recombinant acid protease and the commercial calf rennet had the same molecular mass, suggesting that the recombinant acid protease and its producer can be used both in cheese manufacturing and as protein source in food industry.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Proteínas en la Dieta/metabolismo , Proteínas Fúngicas/metabolismo , Leche/microbiología , Saccharomycopsis/enzimología , Yarrowia/enzimología , Animales , Proteasas de Ácido Aspártico/genética , Proteínas Fúngicas/genética , Saccharomycopsis/genética , Yarrowia/genética
13.
Enzyme Microb Technol ; 49(1): 88-93, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22112276

RESUMEN

The acid protease gene in Saccharomycopsis fibuligera A11 was disrupted by integrating the HPT (hygromycin B phosphotransferase) gene into ORF (Open Reading Frame) of the acid protease gene. The mutant 12 obtained could grow in the medium containing hygromycin. No clear zone formed by the mutant grown on the plate containing milk protein was observed whereas a big clear zone formed by the strain A11 was detected. The acid protease and amylases activities produced by the mutant within 3 days were 0.89 U/ml and 424.7 U/ml, respectively while those produced by the strain A11 were 13.5 U/ml and 259.9 U/ml, respectively. The amylases preparations produced by the mutant 12 and the strain A11 kept 88.8% and 45.5% of amylase activity, respectively after they were incubated at 37°C for two days. Trehalose amount accumulated in the mutant cells was 28.3% (w/w) while that accumulated in the cells of S. fibuligera A11 was 23.6 (w/w).


Asunto(s)
Genes Fúngicos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Amilasas/genética , Amilasas/metabolismo , Secuencia de Bases , ADN de Hongos/genética , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inactivación de Genes , Mutación , Trehalosa/biosíntesis
14.
Enzyme Microb Technol ; 49(1): 105-12, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22112279

RESUMEN

The BGL1 gene, encoding ß-glucosidase in Saccharomycopsis fibuligera, was intracellular, secreted or cell-wall associated expressed in an industrial strain of Saccharomyces cerevisiae. The obtained recombinant strains were studied under aerobic and anaerobic conditions. The results indicated that both the wild type and recombinant strain expressing intracellular ß-glucosidase cannot grow in medium using cellobiose as sole carbon source. As for the recombinant EB1 expressing secreted enzyme and WB1 expressing cell-wall associated enzyme, the maximum specific growth rates (µ(max)) could reach 0.03 and 0.05 h(-1) under anaerobic conditions, respectively. Meanwhile, the surface-engineered S. cerevisiae utilized 5.2 g cellobioseL(-1) and produced 2.3 g ethanol L(-1) in 48 h, while S. cerevisiae secreting ß-glucosidase into culture broth used 3.6 g cellobiose L(-1) and produced 1.5 g ethanolL(-1) over the same period, but no-full depletion of cellobiose were observed for both the used recombinant strains. The results suggest that S. cerevisiae used in industrial ethanol production is deficient in cellobiose transporter. However, when ß-glucoside permease and ß-glucosidase were co-expressed in this strain, it could uptake cellobiose and showed higher growth rate (0.11h(-1)) on cellobiose.


Asunto(s)
Celobiosa/metabolismo , Etanol/metabolismo , Saccharomycopsis/enzimología , beta-Glucosidasa/metabolismo , Anaerobiosis , Secuencia de Bases , Biocombustibles , Transporte Biológico Activo , ADN de Hongos/genética , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Microbiología Industrial , Cinética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharomycopsis/genética , Saccharomycopsis/crecimiento & desarrollo , beta-Glucosidasa/genética
15.
Fungal Genet Biol ; 48(9): 904-13, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21558012

RESUMEN

The MIG1 gene of Saccharomycopsis fibuligera A11 was cloned from its genomic DNA using the degenerated primers and inverse PCR. The MIG1 gene (1152bp, accession number: HM450676) encoded a 384-amino acid protein very similar to Mig1s from other fungi. Besides their highly conserved zinc fingers, the Mig1 proteins displayed short conserved motifs of possible significance in glucose repression. The MIG1 gene in S. fibuligera A11 was disrupted by integrating the HPT (hygromycin B phosphotransferase) gene into ORF (Open Reading Frame) of the MIG1 gene. The disruptant A11-c obtained could grow in the media containing hygromycin and 2-deoxy-d-glucose, respectively. α-Amylase, glucoamylse, acid protease and ß-glucosidase production by the disruptant and expression of their genes in the disruptant were greatly enhanced. This confirms that Mig1, the transcriptional repressor, indeed regulates expression of the genes and production of the extracellular enzymes in S. fibuligera A11. At the same time, it was found that cell budding was enhanced and mycelial formation was reduced in the disruptant.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Espacio Extracelular/enzimología , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica , Micelio/metabolismo , Saccharomycopsis/enzimología , Saccharomycopsis/crecimiento & desarrollo , Secuencia de Aminoácidos , Amilasas/genética , Amilasas/metabolismo , Secuencia de Bases , Clonación Molecular , Proteínas de Unión al ADN/genética , Espacio Extracelular/genética , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Micelio/genética , Micelio/crecimiento & desarrollo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Saccharomycopsis/genética , Saccharomycopsis/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
16.
Appl Microbiol Biotechnol ; 89(1): 121-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20821204

RESUMEN

Saccharomyces cerevisiae Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 ß-glucosidase, two relevant enzymes from a biotechnological point of view, are proteins with multidomain structure. Starting with homology-based structural models of Sta1 and Bgl1, we have constructed a series of hybrid enzymes by interchanging domains of the two proteins. The first purpose of these constructs was to check available hypotheses about the uncertain biological functions of two domains: the serine/threonine-rich domain (STRD) of Sta1 and a ß-sandwich domain present in Bgl1 that we have designated fibronectin-like domain (FLD). While, according to the initial hypothesis, proteins carrying the FLD tend to adhere to the cell wall, our results argued against the idea of an involvement of the STRD in protein secretion that stemmed from the presence of similar domains in different proteins secreted by yeast. The second objective of this work was to increase the enzymatic repertoire by generating enzymes with new structural and functional properties.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucano 1,4-alfa-Glucosidasa/química , Glucano 1,4-alfa-Glucosidasa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomycopsis/enzimología , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Glucano 1,4-alfa-Glucosidasa/genética , Anotación de Secuencia Molecular , Conformación Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomycopsis/química , Saccharomycopsis/genética , Alineación de Secuencia , beta-Glucosidasa/genética
17.
FEMS Yeast Res ; 11(1): 88-103, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21062416

RESUMEN

Monoterpenes are important aroma compounds in grape varieties such as Muscat, Gewürztraminer and Riesling, and are present as either odourless, glycosidically bound complexes or free aromatic monoterpenes. Commercial enzymes can be used to release the monoterpenes, but they commonly consist of crude extracts that often have unwanted and unpredictable side-effects on wine aroma. This project aims to address these problems by the expression and secretion of the Aspergillus awamoriα-l-arabinofuranosidase in combination with either the ß-glucosidases from Saccharomycopsis fibuligera or from Aspergillus kawachii in the industrial yeast Saccharomyces cerevisiae VIN13. The concentration of five monoterpenes was monitored throughout alcoholic fermentation of Gewürztraminer grapes. The recombinant yeast strains that caused an early boost in the geraniol concentration led to a reduction in the final geraniol levels due to the downregulation of the sterol biosynthetic pathway. Monoterpene concentrations were also analysed 9 and 38 days after racking and the performance of the VB2 and VAB2 recombinant strains was similar, and in many cases, better than that of a commercial enzyme used in the same experiment. The results were backed by sensorial analysis, with the panel preferring the aroma of the wines produced by the VAB2 strain.


Asunto(s)
Aspergillus/enzimología , Expresión Génica , Glicósido Hidrolasas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Saccharomycopsis/enzimología , beta-Glucosidasa/biosíntesis , Bebidas Alcohólicas/análisis , Aspergillus/genética , Fermentación , Glicósido Hidrolasas/genética , Monoterpenos/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomycopsis/genética , Factores de Tiempo , beta-Glucosidasa/genética
18.
J Microbiol Biotechnol ; 20(11): 1539-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21124060

RESUMEN

Glutathione in beer works as the main antioxidant compounds which correlates with beer flavor stability. High residual sugars in beer contribute to major non-volatile components which correlate to high caloric content. In this work, Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and Scharomycopsis fibuligera ALP1 gene encoding alpha-amylase were co-expressed in industrial brewing yeast strain Y31 targeting at alpha-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), and new recombinant strain TY3 was constructed. The glutathione content from the fermentation broth of TY3 increased to 43.83 mg/l compared to 33.34 mg/l from Y31. The recombinant strain showed high alpha-amylase activity and utilized more than 46% of starch after 5 days growing on starch as sole carbon source. European Brewery Convention tube fermentation tests comparing the fermentation broth of TY3 and Y31 showed that the flavor stability index increased to 1.3 fold and residual sugar concentration were reduced by 76.8%, respectively. Due to the interruption of ILV2 gene and ADH2 gene, the amounts of off-flavor compounds diacetyl and acetaldehyde were reduced by 56.93% and 31.25%, comparing with the amounts of these from Y31 fermentation broth. In addition, as no drug-resistance genes were introduced to new recombinant strain, consequently, it should be more suitable for use in beer industry because of its better flavor stability and other beneficial characteristics.


Asunto(s)
Cerveza/análisis , Glutatión/metabolismo , Microbiología Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cerveza/microbiología , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ingeniería Genética , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Humanos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Saccharomycopsis/metabolismo , Gusto , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
19.
Protein J ; 29(5): 355-64, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20552260

RESUMEN

A fragment coding for a putative extracellular alpha-amylase, from the genomic library of the yeast Saccharomycopsis fibuligera KZ, has been subcloned into yeast expression vector pVT100L and sequenced. The nucleotide sequence revealed an ORF of 1,485 bp coding for a 494 amino acid residues long protein with 99% identity to the alpha-amylase Sfamy from S. fibuligera HUT 7212. The S. fibuligera KZ alpha-amylase (Sfamy KZ) belongs to typical extracellular fungal alpha-amylases classified in the glycoside hydrolase family 13, subfamily 1, as supported also by clustering observed in the evolutionary tree. Sfamy KZ, in addition to the essential GH13 alpha-amylase three-domain arrangement (catalytic TIM barrel plus domains B and C), does not contain any distinct starch-binding domain. Sfamy KZ was expressed as a recombinant protein in Saccharomyces cerevisiae and purified to electrophoretic homogeneity. The enzyme had a molecular mass 53 kDa and contained about 2.5% of carbohydrate. The enzyme exhibited pH and temperature optima in the range of 5-6 and 40-50 degrees C, respectively. Stable adsorption of the enzyme to starch granules was not detected but a low degradation of raw starch in a concentration-dependent manner was observed.


Asunto(s)
Clonación Molecular , Biología Computacional , Proteínas Fúngicas/química , Saccharomycopsis/enzimología , alfa-Amilasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycopsis/genética , Almidón/metabolismo , Temperatura , Zea mays , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
20.
Appl Microbiol Biotechnol ; 87(2): 669-77, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20349181

RESUMEN

The acid protease structural gene was amplified from the genomic DNA of Saccharomycopsis fibuligera A11. When the gene was cloned into the multiple cloning site of the surface display vector pINA1317-YlCWP110 and expressed in the cells of Yarrowia lipolytica, the cells displaying the acid protease could form clear zone on the plate-containing milk indicating that they had extracellular acid protease activity. The cells displaying the acid protease can be used to effectively clot skimmed milk. The highest clotting milk activity (1,142.9 U/ml) was observed under the conditions of pH 3.0, 40 degrees C, 20 mM of CaCl(2), and 10% skimmed milk powder. We found that the acid protease displayed on the cells of Y. lipolytica which has generally regarded as safe status could be easily isolated and concentrated compared to the free acid protease. Therefore, the displayed acid protease may have many potential applications in food and cheese industries. This is the first report that the yeast cells displaying the acid protease were used to clot milk.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Expresión Génica , Leche/química , Saccharomycopsis/enzimología , Yarrowia/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Bovinos , Membrana Celular/genética , Proteínas Fúngicas/genética , Leche/microbiología , Transporte de Proteínas , Saccharomycopsis/genética , Yarrowia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...