RESUMEN
Utilizing visible and near-infrared (Vis-NIR) spectroscopy in conjunction with chemometrics methods has been widespread for identifying plant diseases. However, a key obstacle involves the extraction of relevant spectral characteristics. This study aimed to enhance sugarcane disease recognition by combining convolutional neural network (CNN) with continuous wavelet transform (CWT) spectrograms for spectral features extraction within the Vis-NIR spectra (380-1400 nm) to improve the accuracy of sugarcane diseases recognition. Using 130 sugarcane leaf samples, the obtained one-dimensional CWT coefficients from Vis-NIR spectra were transformed into two-dimensional spectrograms. Employing CNN, spectrogram features were extracted and incorporated into decision tree, K-nearest neighbour, partial least squares discriminant analysis, and random forest (RF) calibration models. The RF model, integrating spectrogram-derived features, demonstrated the best performance with an average precision of 0.9111, sensitivity of 0.9733, specificity of 0.9791, and accuracy of 0.9487. This study may offer a non-destructive, rapid, and accurate means to detect sugarcane diseases, enabling farmers to receive timely and actionable insights on the crops' health, thus minimizing crop loss and optimizing yields.
Asunto(s)
Aprendizaje Profundo , Enfermedades de las Plantas , Saccharum , Espectroscopía Infrarroja Corta , Análisis de Ondículas , Saccharum/química , Espectroscopía Infrarroja Corta/métodos , Hojas de la Planta/química , Análisis de los Mínimos Cuadrados , Análisis DiscriminanteRESUMEN
The infrastructure boom has driven up cement demand to 30 billion tons annually. To address this and promote sustainable construction, researchers are developing solutions for carbon-neutral building practices, aiming to transform industrial waste into an eco-friendly alternative. This study aims to develop and enhance the mechanical and durability properties of alkali-activated composites (AACs) by incorporating varying amounts (5, 10, 15, and 20%) of finely ground bagasse ash (GBA) and polyvinyl alcohol (PVA) fibers. Results indicate that higher GBA content initially reduces the 7th and 14th-day strength but results in increased strength at later ages. The optimum 28-day strength is achieved with a 10% GBA content, leading to a 10% increase in compressive strength, 8% increase in tensile strength, and 12% increase in flexural strength. Additionally, the incorporation of GBA enhanced the resistance of the composite to chloride ingress, thus reducing its conductance and increasing the overall durability. This study demonstrated the potential of GBA as an eco-friendly material, emphasizing the significance of tailored AACs formulations for durable and sustainable construction practices.
Asunto(s)
Álcalis , Celulosa , Alcohol Polivinílico , Saccharum , Resistencia a la Tracción , Saccharum/química , Alcohol Polivinílico/química , Celulosa/química , Álcalis/química , Materiales de Construcción , Fuerza Compresiva , Ensayo de MaterialesRESUMEN
Natural fibres are abundant, renewable, and biodegradable, which has inspired numerous academics worldwide to investigate their possible applications in various industrial fields. The food packaging sector is seeking bio-based and biodegradable substitutes to increase sustainability. In this study, new composites were prepared from natural rubber (NR) and sugarcane bagasse fibres (SCB) with different concentrations of SCB (0, 2.5, 5, 10 &20 phr). The effect of SCB on the properties of natural rubber was studied before and after the alkaline treatment of the fibres. The biocomposites are characterized using Fourier transmission infrared spectroscopy, thermogravimetric analysis, scanning electron microscope, transmission electron microscope, and dielectric measurements in addition to rheological and mechanical analysis. The overall migration test for biocomposites loaded with 20phr SCB was performed to assess the biocomposite's safety as food contact materials. The study's results indicated that, adding SCB improved the conductivity, tensile strength, and elongation at break of natural rubber. Alkaline treatment strengthened the bonding between the filler and matrix and improved biocomposites' thermal dielectric and mechanical properties. The overall migration test indicated that the alkaline treatment increased the overall migration to simulants. Accordingly, alkaline-treated NR-SCB biocomposites are effective eco-friendly food packaging candidates for certain types of food such as aqueous non-acidic products.
Asunto(s)
Celulosa , Embalaje de Alimentos , Goma , Saccharum , Saccharum/química , Goma/química , Celulosa/química , Embalaje de Alimentos/métodos , Reciclaje , Resistencia a la Tracción , Espectroscopía Infrarroja por Transformada de Fourier , TermogravimetríaRESUMEN
Synthetic plastics are in great demand in society due to their diversified properties, but they cause environmental pollution due to their non-biodegradable nature. Therefore, synthetic plastics are in need to be replaced with biodegradable plastics. Polyhydroxyalkanoates (PHAs), bacterial biopolymers are natural alternative to synthetic plastics. These are present inside the bacterial cytoplasm in granular form. Presently, the production cost of PHA is high due to expensive carbon substrates used in its biosynthesis. Therefore, this study focuses on the cost-effective production of PHA using waste carbon sources. Rice bran and sugarcane molasses were used as the carbon source for PHA production from Bacillus subtilis, Bacillus cereus, Alcaligenes sp. and Pseudomonas aeruginosa. PHA production from these bacterial strains was confirmed through Sudan Black-B screening. With rice bran, as carbon source, the highest PHA yield obtained was for P. aeruginosa, which yielded 93.7% and lowest was 35.5% for B. cereus. Surprisingly, B. cereus produced the highest cell dry mass (0.045 g/L) but its extracted PHA contents were lowest being only 0.02 g/L. Alcaligenes sp. with 0.031 g/L CDM yielded 87.1% PHA. B. subtilis had a CDM 0.029 g/L, 0.02 g/L PHA content and a yield of 69.10%. In the case of sugarcane molasses, P. aeruginosa produced 95% PHA yield, 0.02 g/L CDM, and 0.019 g/L PHA content. Alcaligenes sp. yielded 90.9% PHA, 0.011 g/L CDM, and 0.01 g/L PHA content. B. subtilis produced 91.6% PHA yield, 0.012 g/L CDM, 0.011 g/L PHA content; B. cereus produced 80% PHA yield, 0.015 g/L CDM, 0.012 g/L PHA content at 37 °C, pH 7. Higher concentrations of carbon sources increased the CDM and decreased the PHA yield. The maximum yield of PHA was obtained from sugarcane molasses. 24-48 h of incubation was optimal for B. subtilis and B. cereus, while for Alcaligenes and P. aeruginosa incubation time of 48-96 h was desirable for higher PHA yield. The extracted biopolymers were analyzed by Fourier transform infrared spectroscopy (FTIR), which identified the extracted biopolymers as poly-3-hydroxybutyrate P(3HB). The thermal properties of the extracted biopolymers, such as melting temperatures, were analyzed by differential scanning calorimetry (DSC), which confirmed the thermal stability.
Asunto(s)
Carbono , Melaza , Oryza , Polihidroxialcanoatos , Saccharum , Polihidroxialcanoatos/metabolismo , Carbono/metabolismo , Saccharum/química , Saccharum/microbiología , Saccharum/metabolismo , Melaza/microbiología , Oryza/microbiología , Oryza/metabolismo , Oryza/química , Alcaligenes/metabolismo , Pseudomonas aeruginosa/metabolismo , Bacillus cereus/metabolismo , Bacillus subtilis/metabolismo , Bacterias/metabolismoRESUMEN
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Asunto(s)
Celulosa , Medios de Cultivo , Fermentación , Lípidos , Saccharum , Yarrowia , Yarrowia/metabolismo , Saccharum/química , Lípidos/biosíntesis , Lípidos/química , Biomasa , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Glicerol/farmacologíaRESUMEN
Heavy metal-contaminated soil has a great impact on yield reduction of vegetable crops and soil microbial community destruction. Biochar-derived waste biomass is one of the most commonly applied soil conditioners in heavy metal-contaminated soil. Different heavy metal-contaminated soil added with suitable biochars represent an intriguing way of the safe production of crops. This study investigated the effects of two types of biochar [rice husk biochar (RHB) and sugarcane bagasse biochar (SBB)] on Cd and Pb accumulation in Shanghaiqing (SHQ, a variety of Brassica campestris L.) and Fengyou 737 (FY, a variety of Brassica napus), as well as on the soil microbial community, through a field experiment. RHB and SBB were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmet-Teller method. The results showed that RHB and SBB displayed the higher pH, cation exchange capacity and pore properties, and the addition of RHB and SBB enhanced soil pH and rhizosphere microorganisms promoting vegetables yield. RHB treatments were more effective than SBB in reducing upward transfer of Cd and Pb, blocking the accumulation of Cd and Pb in the edible parts of SHQ and FY, and decreasing soil Cd and Pb bioavailability. Additionally, RHB and SBB changed the composition of the rhizosphere soil microbial community. The application of biochar promoted the growth of ecologically beneficial bacteria (Nitrospira, Opitutus, and Gemmatimonas) and fungi (Mortierella and Holtermanniella), whereas reducing the enrichment of plant pathogenic fungi (Alternaria, Stagonosporopsis, Lectera, and Periconia) in rhizosphere soil. Our findings demonstrated that the application of RHB significantly reduces Cd and Pb accumulation in the edible parts by decreasing the soil Cd and Pb bioavailability and altering the rhizosphere microbial community composition in two Brassica vegetables grown on Cd/Pb-contaminated soils. Thus, the application of two biochar, especially RHB is a feasible strategy for the safe production of vegetable crops in Cd/Pb co-contaminated soils.
Asunto(s)
Brassica , Cadmio , Carbón Orgánico , Plomo , Oryza , Saccharum , Contaminantes del Suelo , Carbón Orgánico/química , Saccharum/química , Celulosa/química , Microbiología del Suelo , Rizosfera , Verduras , Restauración y Remediación Ambiental/métodos , Suelo/químicaRESUMEN
In this study, sugarcane bagasse (SB), which was preliminarily treated with H3PO4, was utilized to produce biochar (SB-BC). The SB-BC was subsequently modified with KOH to enrich oxygen-containing functional groups (OCFGs) for the enhanced adsorption of NH4+ from wastewater. Batch tests revealed that KOH-modified SB-BC (SB-MBC) increased the maximum Langmuir adsorption capacity of NH4+ by approximately twofold, from 27.1 mg/g for SB-BC to 53.1 mg/g for SB-MBC. The optimal operational conditions for NH4+ adsorption onto SB-MBC were pH of 7.0 and a biochar dose of 3.0 g/L for the removal of 50 mg/L NH4+ at room temperature (25 ± 2 °C) over 180 min of contact. The enhanced adsorption capacity of NH4+ onto SB-MBC was due to the important contribution of the OCFGs enriched on the surface of biochar, which was increased by about fourfold, after being modified by KOH. The NH4+ adsorption dynamics were better fitted by the Elovich and the NH4+ adsorption isotherms were better described by Langmuir and Sips models, showing that the adsorption process was dominated by monolayer chemisorption. The properties of the adsorption materials before and after adsorption of NH4+ confirmed that cation exchange, electrostatic attraction and surface complexation were the main mechanisms controlling the adsorption process. The desorption and reusability tests of NH4+-saturated SB-MBC revealed that NH4+ adsorption slightly decreased after three successive sorptionâdesorption cycles. The findings suggested that SB-MBC is a promising and feasible adsorbent for the effective treatment of NH4+-contaminated water sources. Future work should conduct tests for treatment of NH4+-rich real wastewater and utilize NH4+-saturated SB-MBC as slow releasing fertilizer for plants growth.
Asunto(s)
Celulosa , Carbón Orgánico , Saccharum , Contaminantes Químicos del Agua , Carbón Orgánico/química , Saccharum/química , Adsorción , Contaminantes Químicos del Agua/química , Celulosa/química , Purificación del Agua/métodos , Compuestos de Amonio/química , Hidróxidos/química , Compuestos de Potasio/química , Concentración de Iones de Hidrógeno , Aguas Residuales/químicaRESUMEN
The study examined the effects of three pretreatments, blanching (5, 10, and 30 min), ultrasound (15, 20, and 30 min), and steam blanching (10, 20, and 30 min) on sugarcane, assessing their impact on sugarcane juice quality parameters and aroma compounds. The control had the highest soluble solid content, while the ultrasound-15 min (US-15 min)-treated sample had the lowest, affecting pH, total acidity, and color values significantly. Color analysis showed lower L* values and less greenish tones in treated samples. The implemented pretreatments effectively reduce the browning index, with the US-20 min treatment showing the most significant reduction compared to the control sample. All pretreatments deactivated polyphenol oxidase. Carbon isotope analysis yielded significant results. Principal component analysis and hierarchical clustering linked 1,1-diphenyl-2-picrylhydrazyl (DPPH) with 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 5-hydroxymethyl furfural (HMF) with total phenolic content. The study also highlights significant variations in aroma compound profiles among pretreated sugarcane juice samples, with blanching for 10 min showing notable increases in specific compounds like 2-heptanone and nonanol. Hierarchical clustering showed similarities between blanching-30 min and US-30 min, contrasting with the control. Blanching-10 min had a positive impact on sugarcane juice quality. In conclusion, the study emphasized how pretreatments affect physicochemical properties and aroma compounds in sugarcane juice. PRACTICAL APPLICATION: The research findings suggest that blanching and ultrasound pretreatments can be used by the food industry to improve sugarcane juice quality by reducing browning, enhancing color, and altering aroma profiles. These pretreatments could extend the shelf life and appeal of sugarcane juice, making it more attractive to consumers while maintaining its nutritional properties.
Asunto(s)
Color , Manipulación de Alimentos , Jugos de Frutas y Vegetales , Odorantes , Saccharum , Saccharum/química , Odorantes/análisis , Jugos de Frutas y Vegetales/análisis , Manipulación de Alimentos/métodos , Compuestos Orgánicos Volátiles/análisis , Fenoles/análisis , Reacción de MaillardRESUMEN
This study evaluated the ability of triethyl benzyl ammonium chloride/lactic acid deep eutectic solvent extracted lignin (TEBAC/LA-DES-L) to adsorb methylene blue (MB) without additional functional group modification. The structure and morphology of TEBAC/LA-DES-L were characterized using SEM, BET, FT-IR, and TGA techniques. Various factors influencing MB adsorption, such as extraction temperature, solution pH, adsorbent dose, initial MB concentration, adsorption time, and reaction temperature, were investigated. The Redlich-Peterson isotherm displayed a good fit for the experimental data, with a maximum adsorption capacity of 85.16 mg/g. Kinetic analysis suggested that the adsorption process followed the pseudo-second-order model, with adsorption occurring in <100 min on DES-L-4 h. The mechanism of MB adsorption on DES-L-4 h was attributed to electrostatic attraction, hydrophobic interactions, and hydrogen bonding forces. Overall, DES-L-4 h demonstrated high adsorption capacity and rapid adsorption rate, making it a promising adsorbent for effectively removing cationic dyes from wastewater.
Asunto(s)
Celulosa , Disolventes Eutécticos Profundos , Lignina , Azul de Metileno , Saccharum , Contaminantes Químicos del Agua , Azul de Metileno/química , Azul de Metileno/aislamiento & purificación , Lignina/química , Saccharum/química , Adsorción , Celulosa/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Concentración de Iones de Hidrógeno , Porosidad , Purificación del Agua/métodos , Colorantes/química , Colorantes/aislamiento & purificación , Temperatura , Aguas Residuales/químicaRESUMEN
As environmental pollution intensifies, the interest in bioplastics is growing. The bioplastic polyhydroxyalkanoates (PHAs), which are produced and degraded by microorganisms, have received considerable attention. However, the production cost of PHA is still high, and several ways to increase economy of PHA production have been studied. Therefore, as one way of solution, Halomonas species were screened and evaluated with cheap substrates such as molasses and soybean flour. Among tested strains, Halomonas cerina YK44 was selected and used for polyhydroxybutyrate (PHB) production with molasses and soybean flour together, whose combination was not evaluated well before, in tap water. The medium composition optimization showed maximum PHB production at 4 % sugarcane molasses, 2 % NaCl, 0.05 % soybean flour, and pH 8 in tap water (9.2 g/L DCW, 7.3 g/L PHB, and 79.7 % PHB contents). However, cell growth of halotolerant H. cerina YK44 was disturbed by 0.2 % furfural, which existed in biomass based sugars as inhibitors. Physical and thermal analyses revealed that PHB film started from sugarcane molasses and soybean flour was no different from that initiated from simple sugars (Tm was 175.8 °C and 176.2 °C, PDI was 1.29, and 1.31, respectively).
Asunto(s)
Glycine max , Halomonas , Melaza , Saccharum , Saccharum/química , Saccharum/metabolismo , Glycine max/química , Glycine max/metabolismo , Halomonas/metabolismo , Polihidroxialcanoatos/biosíntesis , Hidroxibutiratos/metabolismo , Harina , Concentración de Iones de Hidrógeno , Agua Potable/química , Agua/química , BiomasaRESUMEN
Sugarcane bagasse (SCB) has a recalcitrant structure, which hinders its component dismantling and subsequent high value utilization. Some organic solvents are favorable to dismantle lignocellulose, but their high viscosity prevents separation of components and reuse of solvents. Herein, ethylene glycol phenyl ether (EGPE)-acid system is used as an example to develop green and efficient methods to dismantle SCB, purify polysaccharides and lignin, and reuse solvents. Results show that dismantling SCB at 130 °C, 0.5 % H2SO4, and 100 min can obtain 85.5 % cellulose recovery, 94.1 % hemicellulose removal and 83.7 % lignin removal. Different molecular weight saccharides are separated by membranes filtration and centrifugation, and lignin recovered by antisolvent precipitation. The solvent recovered by distillation, achieving high dismantling efficiency of 89.2 % cellulose recovery, 94.1 % hemicellulose removal and 94.4 % lignin removal after four recycles. Results show a promising approach for the closed-loop process of dismantling lignocellulose, fractionating saccharides, and reusing solvents in high-viscosity systems.
Asunto(s)
Celulosa , Lignina , Solventes , Celulosa/química , Solventes/química , Viscosidad , Lignina/química , Reciclaje , Fraccionamiento Químico/métodos , Saccharum/química , Polisacáridos/químicaRESUMEN
Preservative ingredients in cosmetic formulations undertake a necessary role in the prevention of microbial contamination. In this field, there is an unmet need for natural, sustainable, and effective preservatives. Thus, the main goal of this work was to evaluate a sugarcane straw extract-based ingredient and investigate its potential as a preservative for cosmetic applications. Different ingredients were developed using several cosmetic solvents to improve the solubility of the extracted compounds. The antimicrobial activity was assessed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The 1,2-hexanediol was the solvent that allowed us to achieve the ingredient (20% dry extract dispersed in 25% 1,2-hexanediol in water) with the best antimicrobial performance, showing a minimum inhibitory concentration of between 5% and 3% (I). The 5% (w/v) concentration of this ingredient complied with the USP51 standards for cosmetic preservatives. Real-time (25 °C, 65% RH) and accelerated stability (40 °C, 75% RH) tests were conducted to determine the ingredient stability, and it was found that one month of storage time at room temperature would be ideal for better ingredient stability and performance in terms of composition, pH, color, and antioxidant activity.
Asunto(s)
Antiinfecciosos , Cosméticos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Conservadores Farmacéuticos , Saccharum , Saccharum/química , Cosméticos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Conservadores Farmacéuticos/química , Conservadores Farmacéuticos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Staphylococcus aureus/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Escherichia coli/efectos de los fármacos , Candida albicans/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacosRESUMEN
This work describes the development of a new automated parallel dispersive tip microextraction method (Au-Pa-DPX) for the determination of eleven polycyclic aromatic hydrocarbons (PAHs) in four samples of Brazilian sugarcane spirit beverages, with separation and detection done by the HPLC-DAD. The results obtained with the Au-Pa-DPX approach were also compared with those obtained via the conventional parallel manual DPX method with the same samples and optimized extraction process. Desorption solvent and cycles of desorption, cleaning and extraction were optimized using response surface methodology and univariate approaches. For the Au-Pa-DPX method, the coefficient of determination (R2) ranged from 0.9948 to 0.9997. The limits of detection and quantification were all 0.303 µg l-1 and 1.00 µg l-1, respectively. Interday and intraday precision ranged from 7.6 % to 31.7 % and 0.40 % to 15.8 %, respectively. For the manual parallel DPX method, the interday and intraday precision ranged from 8.2 % to 38.1 % and 5.40 % to 18.7 %, respectively. The relative recovery values obtained with the proposed method ranged from 53.29 to 124.94 %. The enrichment factors ranged from 15.13 to 22.35. The sum of PAH concentrations in the four samples ranged from undetected to 25.58 µg l-1. These results, when correlated to other methods, highlight the gains in regards to precision obtained with the automated apparatus. Furthermore, when compared to other methods from the literature, it is an interesting green alternative for the determination of these analytes and this sample, with high throughput (4.67 min per sample), low consumption of solvents and samples, generating less waste and reducing health risks to the analyst.
Asunto(s)
Límite de Detección , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Saccharum/química , Microextracción en Fase Líquida/métodos , Bebidas Alcohólicas/análisis , Reproducibilidad de los Resultados , Bebidas/análisisRESUMEN
The utilization of biowastes for producing biochar to remove potentially toxic elements from water represents an important pathway for aquatic ecosystem decontamination. Here we explored the significance of thiol-functionalization on sugarcane bagasse biochar (Th/SCB-BC) and rice husk biochar (Th/RH-BC) to enhance arsenite (As(III)) removal capacity from water and compared their efficiency with both pristine biochars (SCB-BC and RH-BC). The maximum As(III) sorption was found on Th/SCB-BC and Th/RH-BC (2.88 and 2.51 mg g-1, respectively) compared to the SCB-BC and RH-BC (1.51 and 1.40 mg g-1). Relatively, a greater percentage of As(III) removal was obtained with Th/SCB-BC and Th/RH-BC (92% and 83%, respectively) at a pH 7 compared to pristine SCB-BC and RH-BC (65% and 55%) at 6 mg L-1 initial As(III) concentration, 2 h contact time and 1 g L-1 sorbent dose. Langmuir (R2 = 0.99) isotherm and pseudo-second-order kinetic (R2 = 0.99) models provided the best fits to As(III) sorption data. Desorption experiments indicated that the regeneration ability of biochars decreased and it was in the order of Th/SCB-BC (88%) > Th/RH-BC (82%) > SCB-BC (77%) > RH-BC (69%) up to three sorption-desorption cycles. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy results demonstrated that the thiol (-S-H) functional groups were successfully grafted on the surface of two biochars and as such contributed to enhance As(III) removal from water. Spectroscopic data indicated that the surface functional moieties, such as -S-H, - OH, - COOH, and C = O were involved to increase As(III) sorption on thiol-functionalized biochars. This study highlights that thiol-grafting on both biochars, notably on SCB-BC, enhanced their ability to remove As(III) from water, which can be used as an effective technique for the treatment of As from drinking water.
Asunto(s)
Arsenitos , Celulosa , Carbón Orgánico , Oryza , Saccharum , Contaminantes Químicos del Agua , Carbón Orgánico/química , Saccharum/química , Oryza/química , Adsorción , Arsenitos/química , Contaminantes Químicos del Agua/química , Celulosa/química , Compuestos de Sulfhidrilo/químicaRESUMEN
Biochar amendment has emerged as a potential solution for preventing, remediating, and mitigating agricultural compound pollution. This groundbreaking technique not only improves crucial soil properties like porosity, water retention capacity, cation exchange capacity, and pH, but also intricately impacts the interaction and retention mechanisms of polluting molecules. In this study, we investigate the dynamic of the herbicide Imazapic when subjected to applying pyrolyzed biochars, specifically at temperatures of 300 and 500 °C, within the context of a low-fertility soil characterized as dystrophic Yellow Ultisol (YUd) in a sugarcane cultivation area in Igarassu-PE, Brazil. The biochars were produced from sugarcane bagasse by pyrolysis process in a muffle furnace. In laboratory conditions, with saturated soil columns under steady-state, analyses of the mechanisms involved in interaction and transport and determining hydrodispersive parameters for Imazapic were performed by the two-site nonequilibrium transport model using the CXTFIT 2.0 program. Samples of YUd soil amended with biochar pyrolyzed at 300 °C presented a negligible interaction with Imazapic. However, adding biochar pyrolyzed at 500 °C (BC500) to the soil samples enhanced the adsorption coefficient and improved the interaction with Imazapic. This research points out that biochar produced from agricultural waste biomass, such as sugarcane bagasse specifically pyrolyzed at 500 °C, offers a potential means to adsorb herbicides, reducing their leaching to deeper layers of the amended soils and the risk of groundwater contamination and potential environmental negative impacts.
Asunto(s)
Carbón Orgánico , Herbicidas , Saccharum , Contaminantes del Suelo , Suelo , Saccharum/química , Carbón Orgánico/química , Herbicidas/química , Adsorción , Contaminantes del Suelo/química , Suelo/química , Imidazoles/química , Brasil , Restauración y Remediación Ambiental/métodos , Agricultura/métodos , Celulosa , Ácidos NicotínicosRESUMEN
The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.
Asunto(s)
Biomasa , Celulosa , Eucalyptus , Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Celulosa/química , Celulosa/metabolismo , Hidrólisis , Eucalyptus/química , Saccharum/química , Fermentación , Gluconacetobacter xylinus/metabolismo , Polisacáridos/química , Polisacáridos/metabolismoRESUMEN
Non-centrifugal raw cane sugar (NRCS) is a minimally processed product from sugarcane (Saccharum officinarum L). This product contains phytochemical and nutritional compounds that benefit human health. Despite these advantages, NRCS commercialization is hindered by a lack of knowledge about its composition and, consequently, the absence of quality standards. Studies associating the nutritional composition of sugarcane varieties and their genuine products have not yet been found in the literature, and understanding this relationship can help establish quality standards for this product. Therefore, this study evaluated the mineral nutritional composition of genuine derivative NRCS produced from two sugarcane varieties obtained under different agronomic conditions at two stages of maturation to verify the relationships between raw material and the product. The obtained sugarcanes, juices, and bagasse, as well as the produced sugars, were analyzed for mineral content, such as calcium, magnesium, potassium, phosphorus, sulfur, iron, manganese, copper, and zinc, using inductively coupled plasma optical emission spectrometry. Most mineral constituents of sugarcane are in the juice in direct proportions to those in raw sugarcane. Thus, minimally processed food derivatives have nutritional characteristics equivalent to the raw materials. Consumption of NRCS contributes to meeting daily requirements for essential nutrients such as magnesium, copper, potassium, and manganese. For manganese, 25 g of NRCS, like the one produced in this study, can fulfill 22 to 76 % of an adult male's daily mineral requirements. The variation observed in the four NRCS samples, obtained from the same sugarcane variety under different maturation and agronomic conditions, was 250 %. This variation makes establishing quality parameters for mineral or ash content difficult. Therefore, setting mineral content levels for NRCS is inappropriate, as this parameter naturally depends on the raw material.
Asunto(s)
Minerales , Valor Nutritivo , Saccharum , Saccharum/química , Minerales/análisis , Celulosa/análisis , Celulosa/química , Manipulación de Alimentos/métodosRESUMEN
In this study, a novel and cost-effective approach was employed to prepare an effective Pb(II) adsorbent. We synthesized highly porous CMCSB-SCB microbeads with multiple active binding sites by combining carboxymethylated chitosan Schiff base (CMCSB) and sugarcane bagasse (SCB). These microbeads were structurally and morphologically characterized using various physical, analytical, and microscopic techniques. The SEM image and N2-adsorption analysis of CMCSB-SCB revealed a highly porous structure with irregularly shaped voids and interconnected pores. The CMCSB-SCB microbeads demonstrated an impressive aqueous Pb(II) adsorption capacity, reaching a maximum of 318.21 mg/g, under identified optimal conditions: pH 4.5, 15 mg microbeads dosage, 30 min contact time, and Pb(II) initial concentration (350 mg/L). The successful adsorption of Pb(II) onto CMCSB-SCB beads was validated using FTIR, EDX, and XPS techniques. Furthermore, the experimental data fitting indicated a good agreement with the Langmuir model (R2 = 0.99633), whereas the adsorption kinetics aligned well with the pseudo-second-order model (R2 = 0.99978). The study also identified the Pb(II) adsorption mechanism by CMCSB-SCB microbeads as monolayer chemisorption.
Asunto(s)
Celulosa , Quitosano , Plomo , Microesferas , Saccharum , Bases de Schiff , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Quitosano/análogos & derivados , Plomo/química , Plomo/aislamiento & purificación , Adsorción , Bases de Schiff/química , Celulosa/química , Celulosa/análogos & derivados , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Saccharum/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Agua/químicaRESUMEN
This study aimed to assess the effectiveness of urban derived biochars such as Sugarcane bagasse (SB), Brinjal Stem (BS), and Citrus Peel (CP) produced at two different pyrolysis conditions (450 and 600 °C for 60 min) for soil heavy metal bioremediation potential. An ex-situ study was conducted to remediate single heavy metal-contaminated SoilRite with lead (Pb), copper (Cu), chromium (Cr) and cadmium (Cd), with biochars applied at different rates. Heavy metal status in soilrite was evaluated using various extraction methods (water-soluble, exchangeable, TCLP (Toxicity Characteristic Leaching Procedure), and PBET (Physiologically Based Extraction Tests)) to determine the biochar treatments' efficacy. The findings show that SB biochar at 450-60 are more effective in immobilizing heavy metals in water-soluble (Cd-100% Pb and Cu-70%), exchangeable (Pb:91%, Cd and Cu by 70-80%) and PBET-extracted forms (Cd-91%, Pb-80%, and Cu-75%), whereas biochar derived from BS (84%) and CP (90%) at 600-60 are more effective in immobilizing TCLP-extracted form of Pb and Cu. Urban derived biochars significantly reduced the toxicity of Pb, Cu, and Cd in various extractable forms and can stabilize and convert them into less accessible forms except for Cr. These extraction methods aid in evaluating environmental risks and influencing remediation strategies for soil heavy metal pollution. Urban biochar, as a cost-effective and eco-friendly solution, significantly solves this issue, facilitating sustainable waste management.
Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Metales Pesados , Pirólisis , Contaminantes del Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Metales Pesados/química , Metales Pesados/análisis , Restauración y Remediación Ambiental/métodos , Citrus/química , Saccharum/química , Suelo/química , Biodegradación AmbientalRESUMEN
Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, Co = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, Co = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R2 > 0.4 and X2 < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose-Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R2 = 0.993, X2 = 0.0032 (pilot-scale) and R2 = 0.986, X2 = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed.