Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.876
Filtrar
1.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731617

RESUMEN

In this study, a library of 3,7-di(hetero)aryl-substituted 10-(3-trimethylammoniumpropyl)10H-phenothiazine salts is prepared. These title compounds and their precursors are reversible redox systems with tunable potentials. The Hammett correlation gives a very good correlation of the first oxidation potentials with σp parameters. Furthermore, the title compounds and their precursors are blue to green-blue emissive. Screening of the salts reveals for some derivatives a distinct inhibition of several pathogenic bacterial strains (Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, Aconetobacter baumannii, and Klebsiella pneumoniae) in the lower micromolar range.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Fenotiazinas , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Fenotiazinas/farmacología , Fenotiazinas/química , Fenotiazinas/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Staphylococcus aureus/efectos de los fármacos , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/síntesis química , Escherichia coli/efectos de los fármacos , Oxidación-Reducción , Bacterias/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
2.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692139

RESUMEN

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/química
3.
Chemosphere ; 358: 142202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692361

RESUMEN

Desalination reverse osmosis reject brine-based porous geopolymer (RO/GP) was produced and investigated as an improved adsorbent for phosphorus (P) removal from tainted seawater, brackish water, river water, and municipal wastewater effluent. The RO reject brine/geopolymer was produced by reacting metakaolin and fly ash with a Na-alkali activator and anhydrous RO brine as a sacrificial template. The influence of RO reject brine content on water absorption, porosity, mechanical, and structural properties were examined. The developed RO-based geopolymers exhibited the greatest porosity (58.3-84.2 % vol%), a significant ratio of open porosity to total porosity (67.7-92.1 %), and outstanding compression strength (3.6-10.4 MPa). The produced RO/GP structure has an adsorption capacity of 92.4 mg-P/g. The sequestration reaction of phosphorus by RO/GP is of pseudo-second-order kinetic behavior via Chi-squared (χ2), RMSE, and determination coefficient (R2) values. Regarding their agreement with Langmuir behavior, the phosphorus adsorption uptakes occur in homogeneous and monolayer states. The reaction is exothermic, spontaneous, and favorable. The RO/GP exhibits significant affinity for phosphorus co-existing with Cl-, Na+, SO42-, K+, HCO3-, and Ca2+. The RO/GP shows high safety during the adsorption investigation, with a total cost of 0.32 $/kg-P.


Asunto(s)
Fósforo , Sales (Química) , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Fósforo/química , Porosidad , Adsorción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Aguas Residuales/química , Sales (Química)/química , Polímeros/química , Agua de Mar/química , Cinética , Ósmosis
4.
J Environ Manage ; 359: 121057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718606

RESUMEN

Brine, a by-product of desalination and industrial facilities, is becoming more and more of an environmental issue. This comprehensive techno-economic assessment (TEA), focusing on the technical and economic aspects, investigates the performance and viability of a novel hybrid desalination brine treatment system known as zero liquid discharge (ZLD). Notably, this research represents the first instance of evaluating the feasibility and effectiveness of integrating three distinct desalination processes, namely brine concentrator (BC), high-pressure reverse osmosis (HPRO), and membrane-promoted crystallization (MPC), within a ZLD framework. The findings of this study demonstrate an exceptional water recovery rate of 97.04%, while the energy requirements stand at a reasonable level of 17.53 kWh/m3. Financially, the ZLD system proves to be at least 3.28 times more cost-effective than conventional evaporation ponds and offers comparable cost efficiency to alternatives such as land application and deep-well injection. Moreover, the ZLD system exhibits profitability potential by marketing both drinking water and solid salt or solely desalinated water. The daily profit from the sale of generated water varies from US$194.08 to US$281.41, with Greece and Cyprus attaining the lowest and highest profit, respectively. When considering the sale of both salt and water, the profit rises by 8% across all locations.


Asunto(s)
Purificación del Agua , Purificación del Agua/métodos , Purificación del Agua/economía , Ósmosis , Sales (Química)/química
5.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38720447

RESUMEN

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Asunto(s)
Agua de Mar , Purificación del Agua , Purificación del Agua/métodos , Agua de Mar/química , Luz Solar , Salinidad , Sales (Química)/química , Cloruro de Sodio/química
6.
Chirality ; 36(5): e23672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693625

RESUMEN

Hydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-ß-cyclodextrin (CM-ß-CD) as the chiral mobile phase agent (CMPA). The effects of CCM-ß-CD, pH, and triethylamine (TEA) V% on the enantio-separation process were explored. Under the optimum conditions at 24°C, the retention times for the two enantiomers were t R 1 = 29.39 min $$ {t}_{R1}=29.39\ \min $$ and t R 2 = 32.42 min $$ {t}_{R2}=32.42\ \min $$ , resulting in R s = 1.87 $$ {R}_s=1.87 $$ . The resolution via diastereomeric salt formation of Rac-HCQ was developed to obtain the active pharmaceutical ingredient of single enantiomer S-HCQ. Di-p-Anisoyl-L-Tartaric Acid (L-DATA) was proved effective as the resolution agent for Rac-HCQ. Surprisingly, it was found that refluxing time was a key fact affecting the resolution efficiency, which meant the kinetic dominate during the process of the resolution. Four factors-solvent volume, refluxing time, filtration temperature, and molar ratio-were optimized using the single-factor method and the response surface method. Two cubic models were established, and the reliability was subsequently verified. Under the optimal conditions, the less soluble salt of 2L-DATA:S-HCQ was obtained with a yield of 96.9% and optical purity of 63.0%. The optical purity of this less soluble salt increases to 99.0% with a yield of 74.2% after three rounds recrystallization.


Asunto(s)
Hidroxicloroquina , Hidroxicloroquina/química , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno , beta-Ciclodextrinas/química , Cromatografía de Fase Inversa/métodos , Etilaminas/química , Termodinámica , Sales (Química)/química
7.
J Mass Spectrom ; 59(6): e5037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752484

RESUMEN

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.


Asunto(s)
Cationes , Depsipéptidos , Protones , Espectrometría de Masa por Ionización de Electrospray , Depsipéptidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Cationes/química , Álcalis/química , Bacillus cereus/química , Sales (Química)/química
8.
J Vet Sci ; 25(2): e23, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38568825

RESUMEN

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.


Asunto(s)
Antiinfecciosos , Sales (Química) , Humanos , Animales , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Células Epiteliales , Histona Desacetilasas
9.
PLoS One ; 19(4): e0299926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625887

RESUMEN

Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 µg/kg DM; P = 0.020), iodine 38% (604 to 373 µg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.


Asunto(s)
Characiformes , Lisina , Animales , Lisina/metabolismo , Characiformes/metabolismo , Sales (Química)/metabolismo , Valor Nutritivo
10.
Molecules ; 29(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611844

RESUMEN

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Asunto(s)
Mercurio , Metales Pesados , Ligandos , Sales (Química) , Metales Pesados/toxicidad , Mercurio/toxicidad , Iones , Antibacterianos/farmacología , Alquenos , Polímeros , Piridinas
11.
Molecules ; 29(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611900

RESUMEN

Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.


Asunto(s)
Butirilcolinesterasa , Inhibidores de la Colinesterasa , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Sales (Química) , Complejos Multienzimáticos , Triazoles/farmacología
12.
Adv Appl Microbiol ; 126: 63-92, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38637107

RESUMEN

Selenium (Se) is an essential trace element present as selenocysteine (SeCys) in selenoproteins, which have an important role in thyroid metabolism and the redox system in humans. Se deficiency affects between 500 and 1000 million people worldwide. Increasing Se intake can prevent from bacterial and viral infections. Se deficiency has been associated with cancer, Alzheimer, Parkinson, decreased thyroid function, and male infertility. Se intake depends on the food consumed which is directly related to the amount of Se in the soil as well as on its availability. Se is unevenly distributed on the earth's crust, being scarce in some regions and in excess in others. The easiest way to counteract the symptoms of Se deficiency is to enhance the Se status of the human diet. Se salts are the most toxic form of Se, while Se amino acids and Se-nanoparticles (SeNPs) are the least toxic and most bio-available forms. Some bacteria transform Se salts into these Se species. Generally accepted as safe selenized microorganisms can be directly used in the manufacture of selenized fermented and/or probiotic foods. On the other hand, plant growth-promoting bacteria and/or the SeNPs produced by them can be used to promote plant growth and produce crops enriched with Se. In this chapter we discuss bacterial Se metabolism, the effect of Se on human health, the applications of SeNPs and Se-enriched bacteria, as well as their effect on food fortification. Different strategies to counteract Se deficiency by enriching foods using sustainable strategies and their possible implications for improving human health are discussed.


Asunto(s)
Nanopartículas , Compuestos de Selenio , Selenio , Humanos , Selenio/química , Selenio/metabolismo , Sales (Química) , Bacterias/genética , Bacterias/metabolismo
13.
Angew Chem Int Ed Engl ; 63(19): e202318127, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38570814

RESUMEN

The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λmax as long as 720 nm. Computational studies allow the development of a platform for the prediction of λmax and λEm. Furthermore, we demonstrate the compatibility of these novel fluorophores with live cell imaging in HEK293 cells, suggesting PyrAtes as potent intracellular markers.


Asunto(s)
Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Células HEK293 , Microscopía Fluorescente , Sales (Química)/química , Estructura Molecular
14.
Environ Sci Pollut Res Int ; 31(21): 31123-31134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627346

RESUMEN

Electrochemical desalination is an effective method for recovering salts from reverse osmosis (RO) brine. However, traditional technologies like bipolar membrane technology often face challenges related to membrane blockage. To overcome this issue, a preparative vertical-flow electrophoresis (PVFE) system was used for the first time to treat RO brine of petrochemical wastewater. In order to optimize the PVFE operation and maximize acids and bases production while minimizing energy consumption, the response surface method was employed. The independent variables selected were the electric field intensity (E) and flow rate (v), while the dependent variables were the acid-base concentration and energy consumption (EC) for acid-base production. Using the central composite design methodology, the operation parameters were optimized to be E = 154.311 V/m and v = 0.83 mL/min. Under these conditions, the base concentrations of the produced bases and acids reached 3183.06 and 2231.63 mg/L, respectively. The corresponding base EC and acid EC were calculated to be 12.57 and 11.62 kW·h/kg. In terms of the acid-base concentration and energy consumption during the PVFE process, the electric field intensity was found to have a greater influence than the flow rate. These findings provide a practical and targeted solution for recycling waste salt resources from RO brine.


Asunto(s)
Ósmosis , Aguas Residuales , Aguas Residuales/química , Electroforesis , Eliminación de Residuos Líquidos/métodos , Sales (Química)
15.
Artículo en Inglés | MEDLINE | ID: mdl-38564965

RESUMEN

In the present work, a new microextraction procedure combined with gas chromatography-mass spectrometry has been developed for the analysis of several aliphatic amines from urine sample. The sample preparation method was a continuous homogenous liquid phase microextraction that was based on in-situ preparation of 4-chlorophenol: choline chloride deep eutectic solvent. The deep eutectic solvent was prepared by passing the mixture of related compounds through a syringe barrel filled with exothermic salts (calcium chloride and potassium bromide). The released heat by dissolving the salts and increasing the solution ionic strength assists the formation of the deep eutectic solvent. The influence of various factors on the efficiency of the proposed procedure including salts amount, flow rate, pH, salting-out effect, and extraction solvent volume was studied. The calibration curves were linear broadly over the concentration range of 1.2-250 ng mL-1 with coefficient of determinations ≥0.996. The enrichment factors were in the range of 188-246 and the limits of detection and quantification were 0.16-0.37 and 0.56-1.2 ng mL-1, respectively. Based on the results, the offered method was sensitive, rapid, eco-friendly, and efficient for extracting and determining aliphatic amines in urine samples.


Asunto(s)
Microextracción en Fase Líquida , Solventes/química , Microextracción en Fase Líquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Disolventes Eutécticos Profundos , Sales (Química) , Colina , Límite de Detección
16.
Chemosphere ; 358: 142055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641292

RESUMEN

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Asunto(s)
Salinidad , Agua de Mar , Contaminantes Químicos del Agua , Purificación del Agua , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Purificación del Agua/métodos , China , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Sales (Química)/química , Ácidos Ftálicos/análisis , Trihalometanos/análisis
17.
Trials ; 25(1): 270, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641845

RESUMEN

BACKGROUND: The World Health Organization recommends universal iron supplementation for children aged 6-23 months in countries where anaemia is seen in over 40% of the population. Conventional ferrous salts have low efficacy due to low oral absorption in children with inflammation. Haem iron is more bioavailable, and its absorption may not be decreased by inflammation. This study aims to compare daily supplementation with haem iron versus ferrous sulphate on haemoglobin concentration and serum ferritin concentration after 12 weeks of supplementation. METHODS: This will be a two-arm, randomised controlled trial. Gambian children aged 6-12 months with anaemia will be recruited within a predefined geographical area and recruited by trained field workers. Eligible participants will be individually randomised using a 1:1 ratio within permuted blocks to daily supplementation for 12 weeks with either 10.0 mg of elemental iron as haem or ferrous sulphate. Safety outcomes such as diarrhoea and infection-related adverse events will be assessed daily by the clinical team (see Bah et al. Additional file 4_Adverse event eCRF). Linear regression will be used to analyse continuous outcomes, with log transformation to normalise residuals as needed. Binary outcomes will be analysed by binomial regression or logistic regression, Primary analysis will be by modified intention-to-treat (i.e., those randomised and who ingested at least one supplement dose of iron), with multiple imputations to replace missing data. Effect estimates will be adjusted for baseline covariates (C-reactive protein, alpha-1-acid glycoprotein, haemoglobin, ferritin, soluble transferrin receptor). DISCUSSION: This study will determine if therapeutic supplementation with haem iron is more efficacious than with conventional ferrous sulphate in enhancing haemoglobin and ferritin concentrations in anaemic children aged 6-12 months. TRIAL REGISTRATION: Pan African Clinical Trial Registry PACTR202210523178727.


Asunto(s)
Anemia Ferropénica , Anemia , Niño , Humanos , Hierro , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Sales (Química)/metabolismo , Sales (Química)/uso terapéutico , Gambia , Compuestos Ferrosos/efectos adversos , Ferritinas , Anemia/tratamiento farmacológico , Hemoglobinas/metabolismo , Suplementos Dietéticos , Inflamación/tratamiento farmacológico , Hemo/metabolismo , Hemo/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Sci Rep ; 14(1): 8248, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589617

RESUMEN

Characterization of the microbial activity impacts on transport and storage of hydrogen is a crucial aspect of successful Underground Hydrogen Storage (UHS). Microbes can use hydrogen for their metabolism, which can then lead to formation of biofilms. Biofilms can potentially alter the wettability of the system and, consequently, impact the flow dynamics and trapping mechanisms in the reservoir. In this study, we investigate the impact of microbial activity on wettability of the hydrogen/brine/rock system, using the captive-bubble cell experimental approach. Apparent contact angles are measured for bubbles of pure hydrogen in contact with a solid surface inside a cell filled with living brine which contains sulphate reducing microbes. To investigate the impact of surface roughness, two different solid samples are used: a "rough" Bentheimer Sandstone sample and a "smooth" pure Quartz sample. It is found that, in systems where buoyancy and interfacial forces are the main acting forces, the impact of biofilm formation on the apparent contact angle highly depends on the surface roughness. For the "rough" Bentheimer sandstone, the apparent contact angle was unchanged by biofilm formation, while for the smooth pure Quartz sample the apparent contact angle decreased significantly, making the system more water-wet. This decrease in apparent contact angle is in contrast with an earlier study present in the literature where a significant increase in contact angle due to microbial activity was reported. The wettability of the biofilm is mainly determined by the consistency of the Extracellular Polymeric Substances (EPS) which depends on the growth conditions in the system. Therefore, to determine the impact of microbial activity on the wettability during UHS will require accurate replication of the reservoir conditions including surface roughness, chemical composition of the brine, the microbial community, as well as temperature, pressure and pH-value conditions.


Asunto(s)
Hidrógeno , Cuarzo , Humectabilidad , Sales (Química)
19.
Mol Pharm ; 21(5): 2590-2605, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38656981

RESUMEN

We report a novel utilization of a pH modifier as a disproportionation retardant in a tablet formulation. The drug molecule of interest has significant bioavailability challenges that require solubility enhancement. In addition to limited salt/cocrystal options, disproportionation of the potential salt(s) was identified as a substantial risk. Using a combination of Raman spectroscopy with chemometrics and quantitative X-ray diffraction in specially designed stress testing, we investigated the disproportionation phenomena. The learnings and insight drawn from crystallography drove the selection of the maleate form as the target API. Inspired by the fumarate form's unique stability and solubility characteristics, we used fumaric acid as the microenvironmental pH modulator. Proof-of-concept experiments with high-risk (HCl) and moderate-risk (maleate) scenarios confirmed the synergistic advantage of fumaric acid, which interacts with the freebase released by disproportionation to form a more soluble species. The resultant hemifumarate helps maintain the solubility at an elevated level. This work demonstrates an innovative technique to mediate the solubility drop during the "parachute" phase of drug absorption using compendial excipients, and this approach can potentially serve as an effective risk-mitigating strategy for salt disproportionation.


Asunto(s)
Química Farmacéutica , Composición de Medicamentos , Fumaratos , Solubilidad , Fumaratos/química , Concentración de Iones de Hidrógeno , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Espectrometría Raman/métodos , Difracción de Rayos X/métodos , Comprimidos/química , Sales (Química)/química , Maleatos/química , Excipientes/química , Disponibilidad Biológica
20.
Int J Biol Macromol ; 267(Pt 2): 131481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599431

RESUMEN

We developed an effective and eco-friendly strategy using chitosan gel-molten salt to achieve high loading (2.23 At. %) of single Fe-NX as assistive active sites. These sites were combined with small NiCo alloy NPs distributed on porous carbon aerogels to boost the ORR performance. The FeSAs-NiCo alloy@N-C sphere exhibits exceptional mass activity and specific activity of 3.705 A.mg-1 and 8.79 mA.cm-2(ECSA), respectively, at 0.85 V versus RHE. It has a superior onset potential of 1.08 V versus RHE, surpassing that of its nanoparticle Fe counterpart and NiCo alloy@N-C sphere. The significant improvement in ORR performance of the FeSAs-NiCo alloy@N-C sphere could be attributed to the positive effects of increased lattice strain due to the single atoms of Fe-NX hybridized with small NiCo alloy NPs. The chitosan gel-assisted molten salt strategy and assistive active sites of Fe-NX hybridized with NiCo alloy NPs regulate the electronic properties of the FeSAs-NiCo alloy@N-C sphere, both geometrically via lattice strain mismatch and electronically through shifting of the d-band center. This could influence the binding energies for oxygen and/or oxygen reduction intermediate adsorption/desorption. The additional improvement in the ORR performance of the FeSAs-NiCo alloy@N-C sphere also benefits from having a lower electrochemical activation energy.


Asunto(s)
Aleaciones , Quitosano , Geles , Oxidación-Reducción , Oxígeno , Quitosano/química , Oxígeno/química , Aleaciones/química , Geles/química , Hierro/química , Nanopartículas del Metal/química , Níquel/química , Cobalto/química , Catálisis , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA